首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to estimate direct and maternal genetic parameters for calving difficulty score, stillbirth, and birth weight at first and later parities for Charolais and Hereford cattle in Sweden. Calving traits have long been recorded for pure-bred beef cattle in Sweden, but only birth weight has been used in the selection in order to avoid calving difficulties. Linear animal model analyses included records on birth weight for 60,309 Charolais and 30,789 Hereford calves born from 1980 to 1999, and calving traits for 74,538 Charolais and 37,077 Hereford calves born from 1980 to 2001. The frequencies of difficult calvings and stillbirths were approximately 6% at first and 1 to 2% at later parities for both breeds. Fewer than half the stillborn calves were born from difficult calvings. Heritabilities estimated for birth weight in different univariate and bivariate analyses for Charolais and Hereford calves born at first and later parities ranged from 0.44 to 0.51 for direct effects and 0.06 to 0.15 for maternal effects. Heritabilities on the observable scale for calving difficulty score of Charolais and Hereford, scored in three classes, ranged from 0.11 to 0.16 for direct and 0.07 to 0.12 for maternal effects at first parity, and lower at later parities. All estimated heritabilities for stillbirth were very low (0.002 to 0.016 on the observable scale). Direct-maternal genetic correlations were negative, with few exceptions. Genetic correlations between the traits and between parities within traits were generally moderate to high and positive. Calving difficulty score should be included in the genetic evaluation of beef breeds in Sweden, whereas progeny groups in Swedish beef populations are too small for stillbirth to be considered directly.  相似文献   

2.
The objective of this study was to estimate genetic correlations between calving difficulty score and carcass traits in Charolais and Hereford cattle, treating first and later parity calvings as different traits. Genetic correlations between birth weight and carcass traits were also estimated. Field data on 59,182 Charolais and 27,051 Hereford calvings, and carcass traits of 5,260 Charolais and 1,232 Hereford bulls, were used in bivariate linear animal model analyses. Estimated heritabilities were moderate to high (0.22 to 0.50) for direct effects on birth weight, carcass weight, and (S)EUROP (European Community scale for carcass classification) grades for carcass fleshiness and fatness. Heritabilities of 0.07 to 0.18 were estimated for maternal effect on birth weight, and for direct and maternal effects on calving difficulty score at first parity. Lower heritabilities (0.01 to 0.05) were estimated for calving difficulty score at later parities. Carcass weight was positively genetically correlated (0.11 to 0.53) with both direct and maternal effects on birth weight and with direct effects on calving difficulty score. Carcass weight was, however, weakly or negatively (-0.70 to 0.07) correlated with maternal calving difficulty score. Higher carcass fatness grade was genetically associated with lower birth weight, and in most cases, also with less difficult calving. Genetic correlations with carcass fleshiness grade were highly variable. Moderately unfavorable correlations between carcass fleshiness grade and maternal calving difficulty score at first parity were estimated for both Charolais (0.42) and Hereford (0.54). This study found certain antagonistic genetic relationships between calving performance and carcass traits for both Charolais and Hereford cattle. Both direct and maternal calving performance, as well as carcass traits, should be included in the breeding goal and selected for in beef breeds.  相似文献   

3.
Calving records from the Animal Breeding Center of Iran collected from January 1987 to December 2007 and comprising 292,875 calving events of Holsteins from 1,413 dairy herds were analyzed using univariate and bivariate linear animal models to estimate heritabilities and genetic correlations for calving intervals in the first three lactations of Holstein cows. Genetic trends were obtained by regressing yearly mean estimates of breeding values on calving year. Average calving intervals were from 406 to 414 days and decreased over the parities. Heritability estimates for calving intervals varied from 0.03 to 0.04 across the parities. Also, estimates of genetic correlations between calving intervals in different parities were high and ranged from 0.67 to 0.89. The average annual phenotypic trends obtained from fitting linear regression of annual mean calving intervals at parity 1 and 2 were significant (P < 0.01), but the phenotypic trend of calving interval at parity 3 was not significant over the years. On the other hand, there was an increasing genetic trend for calving interval at parity 1, and there were decreasing genetic trends for calving intervals at parity 2 and 3 over the years (P < 0.01). The low estimates of heritability obtained in this study imply that much of the improvement in calving interval traits could be attained by improvement of production environment rather than genetic selection.  相似文献   

4.
Birth weight and calving difficulty were analyzed with Bayesian methodology using univariate linear models, a bivariate linear model, a threshold model for calving difficulty, and a joint threshold-linear model using a probit approach. Field data included 26,006 records of Gelbvieh cattle. Simulated populations were generated using parameters estimated from the field data. The Gibbs sampler was used to obtain estimates of the marginal posterior mean and standard deviation of the (co)variance components, heritabilities, and correlations. In the univariate analyses, the posterior mean of direct heritability for calving difficulty was .23 with the threshold model and .18 with the linear model. Maternal heritabilities were .10 and .08, respectively. In the bivariate analysis, posterior means of direct heritability for calving difficulty were .21 and .18 for the bivariate linear-threshold and linear-linear model, respectively. Maternal heritabilities were .09 and .06, respectively. Direct heritability for birth weight was .25 for the univariate model and .26 for bivariate models. Maternal heritability was .05 for the linear-threshold model and the univariate model and .06 for the bivariate linear model. Genetic correlation between direct genetic effects in both traits was .81 for the linear-threshold model and .79 for the bivariate linear. Residual correlation was .35 for the bivariate linear model and .50 for the bivariate linear-threshold. A simulation study confirmed that the posterior mean of the marginal distribution was suitable as a point estimate for univariate threshold and bivariate linear-threshold models.  相似文献   

5.
ZUSAMMENFASSUNG: Populationsparameter für Geburts- und Vlie?gewicht von Baluchi Schafen Das Datenmarterial stammt von zwei Herden einer Schafzuchtstation in NO Iran aus den Jahren 1966-1989. Die Tiere waren unselektiert und stammten aus zuf?llig verteilten Paarungen. Es wurden Geburtsgewicht und Vlie?gewicht bei verschiedenen Altersstufen erhoben und Varianzkomponenten mittels Restringierter Maximaler Likelihood mit einem bivariaten Tiermodell mit fixen Wirkungen von Jahr, Geschlecht, Geburtstyp und Parit?t sowie Zufallswirkungen für additiven Genotyp des Lammes (direkt) und des Mutterschafes (maternal), gemeinsamer Umwelt (ausgenommen Vlie?gewicht) und Resteinflu? gesch?tzt. Direkte und maternale genetische Korrelationen zwischen Leistungen verschiedener Parit?ten wurden berechnet. In Herde 1 scheinen Varianzen und Heritabilit?tswerte für Lammgewicht bis Parit?t 5 zuzunehmen, kaum aber in Herde 2. Die durchschnittlichen Heritabilit?tswerte, direkt, maternal und gesamt waren 0.12, 0.11 und 0.26, die genetische Korrelation zwischen direkten und maternalen Wirkungen 0.42. Bei Vlie?gewicht waren in Herde 1 keine Ver?nderungen der Varianzen und Heritabilit?tswerte mit Alter zu erkennen, aber bei Herde 2 nahmen ph?notypische und Umweltvarianz mit Alter leicht zu. Durchschnittliche direkte, maternale und Gesamtheritabilit?t waren 0.19, 0.04 und 0.22, die genetische Korrelation zwischen direkten und maternalen Wirkungen geringgradig positiv in Herde 1, aber mit Alter zunehmend negativ in Herde 2. Die genetischen Korrelationen für direkte Wirkungen auf Geburtsgewicht waren hoch zwischen Parit?ten 1 bis 5, aber niedriger bei Parit?t 6 und jene zwischen maternal bedingten Wirkungen zeigten ?hnliche Trends. In Herde 2 waren Werte mit Parit?t 6 ?hnlich wie die zwischen den übrigen Parit?ten. Die die Vlie?gewichte betreffenden direkt genetischen Korrelationen zwischen Parit?ten waren in beiden Herden ?hnlich (0.73-0.92), jene, die maternale Wirkungen betreffen, deutlich geringer, besonders soweit sie Parit?ten 5 und 6 betroffen haben und zeigten besonders bei Herde 2 starke Schwankungen (-0.54 bis 0.74). SUMMARY: Direct and maternal performance of ewes at different parities were examined in Baluchi sheep. The data set was collected during the period 1966-1989 from two flocks at a sheep breeding station in the north-east of Iran. The animals included in the data set were unselected and randomly mated. The traits analysed were birth weight of lamb and fleece weight at different parities of the ewe. Variance components were estimated using Restricted Maximum Likelihood with a bivariate animal model including fixed effects of year, sex, type of birth and parity, and random effects of additive genotype of lamb (direct genetic effect), additive genotype of ewe (maternal genetic effect) and common environment (excluded for ewe fleece weight), and random residual effect. Direct and maternal genetic correlations between different parities were estimated. There was evidence of increasing phenotypic and genetic variances and heritabilities from parity 5 for birth weight of lamb in flock 1, but only evidence of a slightly increasing age trend for the environmental and phenotypic variance in flock 2. The average heritabilities over flocks and parities were 0.12, 0.11 and 0.26 for the direct, maternal and total heritability, respectively, while the average genetic correlation between direct and maternal effects for this trait was 0.42. There were no indications of any age changes in variances or heritabilities for ewe fleece weight in flock 1, but indications of slightly increasing age trends for the environmental and phenotypic variance. The average heritabilities over flocks and parities were 0.19, 0.04 and 0.22 for the direct, maternal and total heritability, respectively, while the average genetic correlation between direct and maternal effects was slightly positive in flock 1 but increasingly negative with age of the ewe in flock 2. Direct genetic correlations between parities 1-5 were very high for birth weight of lambs (on average 0.96) in contrast to the markedly lower correlations of parities 1-5 with parity 6 (on average 0.67) in flock 1 with a similar pattern for the maternal genetic correlations. In flock 2, these correlations were also high but without the marked decrease between parities 1-5 with parity 6 that was found in flock 1. Direct genetic correlations between the various parities for ewe fleece weight were similar for the two flocks, ranging from 0.73 to 0.92 and without any obvious differences between the various combinations of parities. However, the maternal were markedly lower than the direct genetic correlations, especially for the combinations of parity 5 and 6 with the earlier parities, and most pronounced in flock 2 fluctuating from -0.54 to 0.79. To obtain reliable estimates of breeding values for birth weight of lamb, it is recommended that the prediction should include not only earlier but also later parities (ages) of the ewe.  相似文献   

6.
The aim of the study was to obtain estimates of genetic correlations between direct and maternal calving performance of heifers and cows and beef production traits in Piemontese cattle. Beef production traits were daily gain, live fleshiness, and bone thinness measured on 1,602 young bulls tested at a central station. Live fleshiness (six traits) and bone thinness were subjectively scored by classifiers using a nine-point linear grid. Data on calving performance were calving difficulty scores (five classes from unassisted to embryotomy) routinely recorded in the farms. Calving performance of heifers and cows were considered different traits. A total of 30,763 and 80,474 calving scores in first and later parities, respectively, were used to estimate covariance components with beef traits. Data were analyzed using bivariate linear animal models, including direct genetic effects for calving performance and beef traits and maternal genetic effects only for calving performance. Due to the nature of the data structure, which involved traits measured in different environments and on different animals, covariances were estimated mostly through pedigree information. Genetic correlations of daily gain were positive with direct calving performance (0.43 in heifers and 0.50 in cows) and negative with maternal calving performance (-0.23 and -0.28 for heifers and cows, respectively). Live fleshiness traits were moderately correlated with maternal calving performance in both parities, ranging from 0.06 to 0.33. Correlations between live fleshiness traits and direct calving performance were low to moderate and positive in the first parity, but trivial in later parities. Bone thinness was negatively correlated with direct calving performance (-0.17 and -0.38 in heifers and cows, respectively), but it was positively correlated to maternal calving performance (0.31 and 0.40). Estimated residual correlations were close to zero. Results indicate that, due to the existence of antagonistic relationships between the investigated traits, specific selection strategies need to be studied.  相似文献   

7.
Heritability of 2-yr-old heifer calving difficulty score was estimated in nine purebred and three composite populations with a total of 5,986 calving difficulty scores from 520 sires and 388 maternal grandsires. Estimates were 0.43 for direct (calf) genetic effects and 0.23 for maternal (heifer) genetic effects. The correlation between direct and maternal effects was -0.26. Direct effects were strongly positively correlated with birth weight and moderately correlated with 200-d weight and postweaning gain. Smaller negative correlations of maternal calving difficulty with direct effects of birth weight, weaning weight, and postweaning gain were estimated. Calving difficulty was scored from 1 to 7. Predicted heritabilities using seven optimal scores were similar to those using four scores. The predicted heritability using only two categories was reduced 23%. Phenotypic and direct genetic variance increased with increasing average population calving difficulty score. The estimated direct and maternal heritabilities for 2-yr-old calving difficulty score were larger than many literature estimates. These estimates suggested substantial variance for direct and maternal genetic effects. The direct effects of 2-yr-old calving difficulty score seemed to be much more closely tied to birth weight than were maternal effects.  相似文献   

8.
The direct and maternal genetic effects were estimated for the preweaning growth of Retinta calves with a multitrait model across parities, using a longitudinal approach with random regression models (RRM). The 120 (P120) and 180 days (P180) weights (5972 calves) were considered as different traits in each calving. The heritability of direct effect across parities was on average 0.37 for P120 and 0.58 for P180, slightly higher than the estimates by univariate (0.30 and 0.56) and bivariate models (0.30 and 0.51, respectively). The heritability for maternal effects was 0.16 for P120 and 0.26 for P180 and very similar by uni‐ (0.16 and 0.23) and multivariate model (0.16 and 0.22, respectively). The correlation between direct and maternal effects by RRM showed a pronounced antagonism ?0.64 for P120 and ?0.78 for P180), likewise uni‐ (?0.62 and ?0.72) and multivariate case (?0.64 and ?0.74, respectively). The preweaning weights should be considered as different traits across parities, because the genetic correlations were different from unity. The RRM also allowed us to estimate all the parameters throughout the calving trajectory of the cow. The use of multiple traits RRM across parities can provide very useful information for the breeding programmes.  相似文献   

9.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

10.
Heritabilities and genetic correlations between birth weight (n = 13,741), adjusted 240-day weaning weight (WW, n = 8,806) and age at first calving (AFC, n = 3,955) of Brown Swiss cattle in Mexico were estimated. Data from 91 herds located in 19 of 32 states of Mexico from 1982 to 2006 were provided by the Mexican Brown cattle Breeder Association. Components of (co)variance, direct and maternal heritabilities were estimated for birth weight, WW and AFC using bivariate animal models. Direct and maternal heritabilities were 0.21 and 0.05 for birth weight, 0.40 and 0.05 for WW, whereas direct heritability for AFC was 0.08. The correlations between direct and maternal effects for birth weight and WW were −0.49 and −0.64, respectively. The genetic correlations between birth weight–WW and WW–AFC were 0.36 and −0.02, respectively. Under the conditions of this study, selection for increasing birth weight would increase WW, but increasing WW will not change AFC.  相似文献   

11.
The objective of this study was to estimate heritability and genetic correlations between the liabilities of clinical mastitis (CM), milk fever (MF), metritis (MET), and retained placenta (RP) within the first three lactations of Holstein dairy cows. The records of 57,301 dairy cows from 20 large dairy herds in Iran between January 2005 and June 2009 were analysed with univariate and bivariate threshold animal models, using Gibbs sampling methodology. The final model included the fixed class effects of herd-year, season of calving, parity of dam, the linear covariate effect of age at calving, and the random direct genetic effect of animal. Posterior means of heritability for liabilities in first, second, and third lactations were 0.06, 0.08, and 0.09, respectively, for CM; 0.10, 0.12, and 0.11, respectively, for MF; 0.09, 0.07, and 0.10, respectively, for MET, and 0.07, 0.08, and 0.08, respectively, for RP. Posterior means of genetic correlations between disease liabilities were low or moderate (from −0.01 to 0.26). The results of this study indicated the importance of health traits for considering in the selection index of Iranian Holstein dairy cows.  相似文献   

12.
Calving performance records from the American Angus Herd Improvement Registry files were used to estimate variance components for calving ease and survival to 24 h. Genetic parameters for direct and maternal effects were estimated by using a sire-maternal grandsire model. Data included two independent samples of 19 and 34 herds with complete calving information. Maternal variance for calving ease was much larger than the variance for the direct effect of the sire. Maternal heritability for calving ease was .27 and .20 in the two samples of herds, respectively. Heritabilities for direct effects were .21 and .07. The genetic correlations between direct and maternal effects were -.93 and -.80. There was little genetic variation in survival at birth. Parameter estimates were within the allowable parameter space in the sample of 19 herds. Heritability for the direct effect of the sire on survival was .04. Maternal heritability was .09, and the direct-maternal correlation was -.85.  相似文献   

13.
This study compared the accuracy of several models for obtaining genetic evaluations of calving difficulty. The models were univariate threshold animal (TAM), threshold sire-maternal grandsire (TSM), linear animal (LAM), and linear sire-maternal grandsire (LSM) models and bivariate threshold-linear animal (TLAM), threshold-linear sire-maternal grandsire (TLSM), linear-linear animal (LLAM), and linear-linear sire-maternal grandsire (LLSM) models for calving difficulty and birth weight. Data were obtained from the American Gelbvieh Association and included 84,420 first-parity records of both calving difficulty and birth weight. Calving difficulty scores were distributed as 73.4% in the first category (no assistance), 18.7% in the second, 6.3% in the third, and 1.6% in the fourth. Included in the animal models were fixed sex of calf by age of dam subclasses, random herd-year-season effects, and random animal direct and maternal breeding values. Sire-maternal grandsire models were similar to the animal models, with animal and maternal effects replaced by sire and maternal grandsire effects. Models were compared using a data splitting technique based on the correlation of estimated breeding values from two samples, with one-half of the calving difficulty records discarded randomly in the first sample and the remaining calving difficulty records discarded in the second sample. Reported correlations are averages of 10 replicates. The results obtained using animal models confirmed the slight advantage of TAM over LAM (0.69 vs 0.63) and TLAM over LLAM (0.90 vs 0.86). Bivariate analyses greatly improved the accuracy of genetic prediction of direct effects on calving difficulty relative to univariate analyses. Similar ranking of the models was found for maternal effects, but smaller correlations were obtained for bivariate models. For sire-maternal grandsire models, no differences between sire or maternal grandsire correlations were observed for TLSM compared to LLSM, and small differences were observed between TSM and LSM. The threshold model offered advantages over the linear model in animal models but not in sire-maternal grandsire models. For genetic evaluation of calving difficulty in beef cattle, the threshold-linear animal model seems to be the best choice for predicting both direct and maternal effects.  相似文献   

14.
Calving ease scores from Holstein dairy cattle in the Walloon Region of Belgium were analysed using univariate linear and threshold animal models. Variance components and derived genetic parameters were estimated from a data set including 33 155 calving records. Included in the models were season, herd and sex of calf × age of dam classes × group of calvings interaction as fixed effects, herd × year of calving, maternal permanent environment and animal direct and maternal additive genetic as random effects. Models were fitted with the genetic correlation between direct and maternal additive genetic effects either estimated or constrained to zero. Direct heritability for calving ease was approximately 8% with linear models and approximately 12% with threshold models. Maternal heritabilities were approximately 2 and 4%, respectively. Genetic correlation between direct and maternal additive effects was found to be not significantly different from zero. Models were compared in terms of goodness of fit and predictive ability. Criteria of comparison such as mean squared error, correlation between observed and predicted calving ease scores as well as between estimated breeding values were estimated from 85 118 calving records. The results provided few differences between linear and threshold models even though correlations between estimated breeding values from subsets of data for sires with progeny from linear model were 17 and 23% greater for direct and maternal genetic effects, respectively, than from threshold model. For the purpose of genetic evaluation for calving ease in Walloon Holstein dairy cattle, the linear animal model without covariance between direct and maternal additive effects was found to be the best choice.  相似文献   

15.
Genetic parameters were estimated for loge somatic cell count (LSCC) for the first three lactations of 31 236 Holstein/Friesian cows with 308 534, 236 277 and 206 729 test day yields in parities 1, 2 and 3, respectively. An animal random regression model was employed in the analyses using Gibbs sampling with each parity regarded as different traits. Linear and quadratic functions were fitted for the animal and permanent environmental effects respectively, using orthogonal polynomials. Daily heritabilities increased with days in milk (DIM) and averaged about 0.07 in all three parities. This increase in heritabilities with DIM was due to an increase in genetic variance and decreases in both permanent and residual environmental variances with DIM. Environmental effects have a large influence on LSCC in early lactation in all three parities. Within lactation, genetic correlations were highest between adjacent DIM but decreased as DIM got further apart. However, this decrease was slowest in parity one and greatest in parity three. The lowest correlation within lactation was 0.10 between DIM 7 and 305 in parity 3. Across lactations, genetic correlations were highest between parities 2 and 3, intermediate between 1 and 3, and lowest between 1 and 2. The genetic correlations computed for completed lactations were 0.69, 0.79 and 0.98 between parities 1 and 2, 1 and 3, and 2 and 3, respectively. Corresponding phenotypic correlations between parities were 0.38, 0.31 and 0.52, respectively. A test day model, accounting for these variations in heritabilities and genetic correlations, should result in a more accurate evaluation.  相似文献   

16.
The aim of this study was to estimate genetic and phenotypic parameters for growth and survival traits of Sahiwal cattle in Kenya and determine their relationship to milk production and fertility. Performance records of 5,681 animals were obtained from the National Sahiwal Stud and the traits considered were: birth weight (kilogrammes), weaning weight (kilogrammes), pre-weaning average daily gain (grammes per day), post-weaning average daily gain (grammes per day), yearling weight (kilogrammes), mature weight at 36 months (kilogrammes), pre-weaning survival rate (SR), post-weaning survival rate (PSR), lactation milk yield (kilogrammes), age at first calving (days), and calving interval (days). The data was analysed using univariate and bivariate animal model based on restricted maximum likelihood methods, incorporating all known pedigree relationship among animals. The additive direct effects were more pronounced than maternal genetic effects in early and in post-yearling growth performance. The additive genetic variance and heritabilities were low for SR and PSR. The correlation between direct additive genetic and maternal genetic effect were negative for pre-yearling traits. Genetic and phenotypic correlations among growth traits and between growth and milk yield were positive, whilst those between growth and fertility were weak and negative. Correlations between survival and growth were generally low and positive. The estimates obtained in this study provide the necessary technical parameters for evaluating alternative breeding programmes and selection schemes for sustainable improvement of Sahiwal cattle.  相似文献   

17.
The first three lactation curves of the Japanese Holstein cows were analyzed using a random regression (RR) test-day model with a cubic Legendre polynomial fitted to each of the three parities. The first three eigenvectors of the additive genetic RR covariance matrix explained 77.8, 10.9, and 4.2% of the total variance of the three parities and are associated mainly with the level of milk yield, the linear increase, and the concave curve, respectively. On a lactational basis, as the parity increases, the contribution of the first eigenvector to a lactational variation decreases whereas the contribution of the second eigenvector increases sharply. This means that the impact of the first eigenvector on the level of milk production decreases across parity whereas the effect of the second eigenvector on the shape of the lactation curve increases across parity. The first lactation curve was the most persistent, followed by the second and the third lactation. Persistency and days to reach peak yield decrease as the parity increases (45, 40, and 36 days for the first three parities). Daily heritabilities within lactation were lower for the first parity than for the second or the third parity. The first three lactation curves possess distinctive genetic characteristics that merit consideration when combining the proofs of the first three lactations to select for lifetime production. Within- and between-parity genetic correlations between the constant and the linear RR coefficients were all positive, suggesting that raising the level of milk production in one parity would increase the linear slope in all parities, thus improving persistency. Within- and between-parity genetic correlations between the constant and the quadratic RR coefficients were all negative, implying that increasing the level of production in one parity would deepen and/or widen the concave curve in all parities, thus decreasing persistency. The linear and quadratic RR coefficients were negatively correlated within or between parities and thus have antagonistic effects on persistency.  相似文献   

18.
Calving records from the Animal Breeding Center of Iran collected from January 1990 to December 2007 and comprising 207,106 first calving events of Holsteins from 2,506 herds were analysed using univariate and bivariate linear sire models to estimate heritabilities and genetic correlations between age at first calving (AFC) and productive performance. Average AFC was 26.48 months in this study. The peak in the frequency distribution of AFC clearly exists coinciding with cows calving for the first time at approximately 25 months of age. Heritability estimate for AFC was 0.34 which was greater than the corresponding values for productive traits. The heritability estimates were low to medium for productive traits which ranged from 0.17 to 0.26 for cows in their first calvings. Except for fat and protein percentages of milk, phenotypic and genetic correlations between AFC and productive performance traits were low to moderately negative. Range of genetic correlations between productive traits was −0.53 to 0.99. Reduction of age at first calving appeared to have a negative effect on first lactation protein and fat percentages; however, it had positive effects on milk yield, fat yield, protein yield and their mature equivalents. It seems that reducing age at first calving to 24–25 months is probably more profitable than reducing age at first calving to an earlier time in Iranian conditions.  相似文献   

19.
Calving records (n = 6,763) obtained from first, second, and third parities of 3,442 spring-calving, Uruguayan Aberdeen Angus cows were used to estimate heritabilities and genetic correlations for the linear trait calving day (CD) and the binary trait calving success (CS), using models that considered CD and CS at 3 calving opportunities as separate traits. Three approaches were defined to handle the CD observations on animals that failed to calve: 1) the cows were assigned a penalty value of 21 d beyond the last observed CD record within contemporary group (PEN); 2) the censored CD values were randomly obtained from a truncated normal distribution (CEN); and 3) the CD records were treated as missing, and the parameters were estimated in a joint threshold-linear analysis including CS traits (TLMISS). The models included the effects of contemporary group (herd x year of calving x mating management), age at calving (3 levels), physiological status at mating (nonlactating or lactating), animal additive genetic effects, and residual. Estimates of heritability for CD traits in the PEN and CEN data sets ranged from 0.20 to 0.31, with greater values in the first calving opportunity. Genetic correlations were positive and medium to high in magnitude, 0.57 to 0.59 in the PEN data set and 0.38 to 0.91 in the CEN data set. In the TLMISS data set, heritabilities ranged from 0.19 to 0.23 for CD and 0.37 to 0.42 for CS. Genetic correlations between CD traits varied between 0.82 and 0.88; between CS traits, genetic correlations varied between 0.56 and 0.80. Negative (genetically favorable), medium to high genetic correlations (-0.54 to -0.91) were estimated between CD and CS traits, suggesting that CD could be used as an indicator trait for CS. Data recording must improve in quality for practical applications in genetic evaluation for fertility traits.  相似文献   

20.
Up to 109,447 records of 49,656 Large White sows were used to evaluate the genetic relationship between number of pigs born dead (BD) and number born alive (BA) in first and later parities. Performance data (n = 30,832) for ultrasound backfat (BF) at the end of the test and days to reach 113.5 kg (AD) were used to estimate their relationships with BD and BA at first parity in a four-trait threshold-linear analysis (TL). Effects were year-farm, contemporary group (CG: farm-farrowing year-farrowing month) and animal additive genetic. At first parity, estimates of heritability were 0.09, 0.09, 0.37, and 0.31 for BA, BD, AD, and BF, respectively. The estimate of genetic correlation between BD and litter size was -0.04 (BD-BA). Corresponding values with test traits were both -0.14 (BD-AD, BD-BF). Estimates of genetic correlation between BA and performance traits were 0.08 (BA-AD) and 0.05 (BA-BF). The two test traits were moderately negatively correlated (-0.22). For later parities, a six-trait (BD, BA in three parities) TL model was implemented. The estimates of additive genetic variances and heritability increased with parity for BD and BA. Estimates of heritabilities were: 0.09, 0.10, and 0.11 for BD, and 0.09, 0.12, and 0.12 for BA in parities one to three, respectively. Estimates of genetic correlations between different parities were high (0.91 to 0.96) for BD, and slightly lower (0.74 to 0.95) for BA. Genetic correlations between BD and BA were low and positive (0.02 to 0.17) for BA in Parities 1 and 2, but negative (-0.04 to -0.10) for BA in Parity 3. Selection for increased litter size should have little effect on farrowing piglet mortality. Intense selection for faster growth and increased leanness should increase farrowing piglet mortality of first-parity sows. A repeatability model with a simple correction for the heterogeneity of variances over parities could be implemented to select against farrowing mortality. The genetic components of perinatal piglet mortality are independent of the ones for litter size in the first parity, and they show an undesirable, but not strong, genetic association in second parity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号