首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Growth and physiological performance of multipurpose tree species can be severely constrained by low phosphorus (P) availability in highly weathered soils. Limitations to plant growth are accentuated by seasonal dry periods. The overall objective of this study was to examine P fertilization and irrigation effects on survival, growth, biomass partitioning, foliar nutrients, intrinsic water-use efficiency (WUE) indexed by δ13C, Rhizobium nodulation, and carbohydrate content as an indicator of resprouting potential, of mimosa (Albizia julibrissin Durz.), a N2-fixing tree species being tested for browse in agroforestry practices in south-central USA. In a field experiment carried out during two growing seasons near Booneville, Arkansas, USA, mimosa had a strong growth response to irrigation. The trial was arranged in a split plot design with three replications with irrigation as main plot treatment and P as sub-plot treatment. Mean total plant aboveground biomass at the end of the second growing season was 9.8 and 44.1 g plant−1 for the rainfed treatment without and with 300 mm of irrigation water, respectively. Placed P fertilization increased mean total aboveground biomass from 19 g plant−1 for the 0-P treatment to 69 g plant−1 for the treatment with 90 kg P ha−1 year−1. Similarly, irrigation consistently increased stem basal diameter, total height, survival, root, stem, foliar and total aboveground biomass, and number of nodules per plant. Phosphorus fertilization increased basal diameter, and root and stem biomass in both irrigation treatments, survival and nodulation in the rainfed treatment, and foliar and total aboveground biomass in the rainfed +300 mm irrigation treatment. There was a decrease of foliar δ13C suggesting that WUE decreased with P fertilization. In a pot experiment, seedlings were subjected to a factorial combination of two irrigation treatments and six P levels in a randomized complete block design. Irrigation increased basal diameter, root, stem, foliar and total biomass, leaf area and nodulation, whereas P fertilization (i.e., levels from 0 to 3.68 g P kg−1 soil) had similar effect in all the above variables except foliar biomass. Foliar P concentration to obtain 90% of the maximum total plant biomass (critical level) was estimated at 0.157%. Total nonstructural and water soluble carbohydrate, and starch concentrations increased non-linearly with irrigation and P addition suggesting impaired re-growth potential after defoliation of seedlings with reduced water supply and at low soil P availability. Results of this study indicated strong limitations for growth and regrowth potential of mimosa on a highly weathered soil with very low P availability and seasonal water content shortages. Placed (i.e., near the plant base) application of P appeared to be a good strategy to fertilize perennial woody plants.  相似文献   

3.
4.
Ethanol was produced from the hydrolysate collected as the water-soluble (WS) portion after hot-compressed water (HCW) treatment of Japanese beech. The process involved saccharification with β-xylosidase followed by isomerization with xylose isomerase and fermentation with Saccharomyces cerevisiae. Several process schemes were compared to investigate the effect of process integration of saccharification, isomerization, and fermentation. Higher ethanol yields were obtained for the processes that integrated isomerization and fermentation or saccharification and isomerization. Integration of isomerization and fermentation was effective in converting xylose into ethanol. Similarly, integration of saccharification and isomerization was effective in converting xylooligosaccharides into xylulose. It is presumed that the saccharification reaction toward xylose and the isomerization reaction toward xylulose were linked and therefore each reaction was enhanced.  相似文献   

5.

Key message

Quercus secondary forests show a gradual transition toward mixed forests, with sweet chestnut ( Castanea sativa ) becoming increasingly abundant in the western Spanish Central System. Additionally, in chestnut-dominated stands, it shows a certain resistance to competitive displacement by Quercus pyrenaica . Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Context

Sweet chestnut, Castanea sativa, is a component of European broadleaf forests and is one of the most managed trees. Due to a reduction in cultural inputs, chestnut-dominated stands tend to be invaded by other species, and it is unclear how chestnut is able to persist in natural mixed forests.

Aims

Our work aimed to identity the main factors that limit the establishment of C. sativa and to analyze the recruitment and mortality processes of C. sativa trees.

Methods

The age, growth ring patterns, regeneration density, and the spatial structure of trees and saplings in 11 plots in the Spanish Central System were analyzed.

Results

Chestnut seedling density increased with C. sativa basal area, but transition toward the sapling stage appeared limited owing to light availability. In Quercus pyrenaica secondary forests, sparse canopies did not constrain chestnut regeneration, and in old chestnut stands, C. sativa showed a certain resistance to competitive displacement. By contrast, mixed young coppices showed a high mortality, most likely due to competition with other vigorous resprouters.

Conclusion

Quercus secondary forests showed a gradual transition toward mixed forests with sweet chestnut becoming increasingly more abundant. In old stands, C. sativa is likely to persist under a gap-phase mode of regeneration. Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.
  相似文献   

6.
7.
8.

• Introduction   

Atmospheric deposition is an important input of major nutrients into forest ecosystems. The long-term goal of this work was to apply stable isotope methodology to assess atmospheric nutrient deposition in forest systems.  相似文献   

9.
10.
Conjugation of δ-endotoxin from Bacillus thuringiensis with abamectin, a toxin of Streptomyces avermitilis, was carried out to form a new type of biocide, GCSC-BtA based on “Germany-China Scientific Cooperation” research, for the control of agricultural insect pests. The strategy for biochemical linkage was designed by conjugating an amino group in B.t. protoxin with a carboxyl group in carboxylated abamectin under the treatment of conjugator EDC [1-Ethyl-3-(3-dimethylaminopropyl carbodiimide Hydrochloride)]. The formation of B.t. protoxin was processed by solubilizing B.t. crystal in 25?mM dithiothreitol (DTT) at 37?°C for 2?h. The carboxylated abamectin was formed by carboxylating the NaH-activated abamectin with 10?mg/ml butyric anhydride at 111?°C in a water-circumfluent condensation device for 2?h. The conjugating reaction, consisting of 5?mg/ml B.t. protoxin, 10?mg/ml carboxylated abamectin and 19.17?mg/ml EDC, was successfully conducted at room temperature for 24?h. Significant differences were found between pure abamectin, carboxylated abamectin and the conjugated BtA by means of UV-photo absorptions recorded at wavelengths 354, 438, 518, 600?nm (P?<?0.01). LT50 of the conjugated GCSC-BtA to the 3rd instar larvae of Plutella xylostella (L.) (Lep., Plutellidae) was 35.27 μg a.i./ml, about 62?% and 76?% of that caused by the B.t. protoxin and the caxboxylated abamectin, respectively. The conjugated GCSC-BtA caused 87.14?% mortalities in larvae of P. xylostella, 93.75?% in adult Myzus persicae (Sulzer) (Hom., Aphididae) and 89.33?% in adult Phyllotreta vittata Fabricius (Col., Chrysomelidae) as compared to 48.33?% by the B.t. crystal only in P. xylostella. The symptoms caused by conjugated GCSC-BtA in the 3rd instar of P. xylostella were black color in the head part and white-yellow in the abdomen of dead larvae, which differed from the black color or the white-yellow all along the body caused by either the B.t. crystal or the abamectin, respectively. It was concluded that the conjugated GCSC-BtA biocide had a broader host spectrum and a faster killing speed than either the B.t. crystal or abamectin alone for the control of agricultural pests.  相似文献   

11.
12.
13.
由于森林缔造了我,因此我生命的每一个细节都在与森林对话。当我心浮气躁时,森林用宁静的语言使我顿悟,至纯至静的哲理,才是修炼的主题。  相似文献   

14.
15.
Abstract The biology of two important lepidopterous pests, Prays oleae Bernard and Palpita unionalis Hübner, was studied. The target pests were reared on olive plants, Oleae europaea L. (Oleaceae) under laboratory conditions for two successive generations, from March to June 2002. For P. oleae, the duration of larval stage development in the first generation was 21.4 ± 0.18 days at 19.3–20.9 °C, 65–68 % R.H, while in the second generation it was 14.8 ± 0.10 days at 20.8–24.2 °C, 65–69 % R.H. The number of eggs laid per female ranged from 58 to 109 eggs in the first generation, and from 47 to 113 in the second. The larval stage duration of P. unionalis was 16.3 ± 0.12 days at 16.8–22.9 °C, 65–69 % R.H. and 15.5 ± 0.12 days at 21.6–25.5 °C, 66–69 % R.H. for the first and second generations, respectively. Also, the number of eggs laid per female ranged from 630 to 653 eggs, and from 425 to 493 eggs in the second generation under the same previous laboratory conditions. P. oleae laid eggs at night mostly singly on flower-buds, more on the calyx. than on the petals. The larvae mined on leaves and damaged groups of flowers. P. unionalis adults were active at night, laid eggs singly at twilight usually on the lower surface of foliage. Larvae fed on leaves spinning several leaves together to form shelter for the pupa.  相似文献   

16.
Interrelationships between self-thinning, biomass density, and plant form were mathematically modeled in relation to stand development in which self-thinning is either not occurring or is occurring. The relationship between biomass density and mean shoot mass is derived as a simple power function at the stage when self-thinning does not occur. When self-thinning occurs, constant biomass density is attained when the 3/2 power law of self-thinning applies and the allometric coefficient is assumed to be 1/3 in the allometry between mean plant height and aboveground mass. The applicability of this mathematical model and the allometric reformulations of the self-thinning exponent were tested using experimental data for dense populations of Chamaecyparis obtusa seedlings during the first 2 years of growth. On the basis of the results of the present model and experimental data, the dependence on competition of the mean height:diameter ratio, mean stem diameter, and leaf biomass density are discussed. As a result, the mean height:diameter ratio was almost asymptotically constant at the latter growth stage in the second-year seedlings, so that the 3/2 power law of self-thinning was held in the present analysis. However, the value of height:diameter ratio will become smaller in older stands, because tree height is considered to be asymptotic with respect to tree age due to hydraulic and other limits. Therefore, the present modeling implies that one of the reasons why the 3/2 power law from a geometric basis has been recently rejected depends on whether or not the height:diamter ratio is constant in older trees.  相似文献   

17.
Acacia pennatula trees are the most conspicuous woody species in the pasturelands of the Nature Reserve Mesas de Moropotente, Estelí, Nicaragua. Cattle ranchers keep A. pennatula because it produces fence posts, forage (pods) and firewood. A population projection matrix model was developed to: (1) estimate the sustainable harvest (H) of fence posts at different tree population densities, (2) explore the range of recruitment (R), and survival and growth of both saplings and small poles compatible with current population density, and (3) determine how much carbon is stored in the soil-pasture-tree system. Acacia pennatula trees take 40 years to reach H size (D30 ≥ 30 cm). Estimated sustainable H from current tree population density is 1.8l7 trees ha−1 year−1, yielding 2.8 large and 11.2 regular size fence posts ha−1 year−1. This annual output easily satisfies the needs of a typical 100 ha cattle ranch in the study area. Current population density is congruent with very low R (<100 saplings ha−1 year−1), very low survival rates (<0.30%) and/or retarded D30 growth of saplings and small poles. Total carbon in tree biomass was only 37 Mg ha−1. Cattle ranchers have learned to harness the invasive nature of the species to obtain valuable tree products for farm use or sale.  相似文献   

18.
19.
The effect of Thidiazuron (TDZ), basal media and light quality on adventitious shoot regeneration from in vitro cultured stem of Populus albaxP berolinensis were determined to establish a high efficiency shoot regeneration system from stem explants of P. alba~P berolinensis. Stems ofPopulus alba~P berolinensis were collected from cultured shoots in vitro derived from dormancy buds of 3-year-old seedlings. The stem explants were cultured on MS medium containing 0.02-mg·L-1NAA (naphthaleneacetic acid), and 0.1, 0.3, 0.5 and 1.0 mg·L-1 concentrations of TDZ to determine the effect of TDZ on shoot regeneration. Three basal media, i.e. MS, woody plant medium (WPM) and B5, were used to test their influences of different media on adventitious shoot regeneration. Green, red, blue and yellow plastic films in comparison with florescent light as control were used to observe their effects on shoot regeneration. The results showed that differ- ent concentrations of TDZ had an evident influence on shoot regeneration. Lower concentration of TDZ (0.1 mg·L-1) resulted in more ad- ventitious shoot regeneration and higher concentration of TDZ (〉0.1 mg·L-1) inhibited shoot regeneration. Among different media, MS medium exhibited a high efficiency for shoot regeneration, followed by WPM medium, while B5 medium inhibited shoot regeneration. Normal light and yellow light exhibited better effects on shoot regeneration, compared with other light.  相似文献   

20.
Long-term (40 years) effects of two soil amelioration techniques [NPKMgCa fertilization + liming; combination of PKMgCa fertilization, liming, tillage, and introduction of lupine (Lupinus polyphyllus L.)] on chemical topsoil properties, stand nutrition, and stand growth at two sites in Germany (Pfaffenwinkel, Pustert) with mature Scots pine (Pinus sylvestris L.) forest were investigated. Both sites are characterized by base-poor parent material, historic N and P depletion by intense litter-raking, and recent high atmospheric N input. Such sites contribute significantly to the forested area in Central Europe. Amelioration resulted in a long-term increase of pH, base saturation, and exchangeable Ca and Mg stocks in the topsoil. Moreover, significant losses of the forest floor in organic carbon (OC) and nitrogen stocks, and a decrease of the C/N ratio in the topsoil were noticed. The concentrations and stocks of OC and N in the mineral topsoil increased; however, the increases compensated only the N, but not the OC losses of the forest floor. During the recent 40 years, the N nutrition of the stands at the control plots improved considerably, whereas the foliar P, K, and Ca concentrations decreased. The 100-fascicle weights and foliar concentrations of N, P, Mg, and Ca were increased after both amelioration procedures throughout the entire 40-year period of investigation. For both stands, considerable growth acceleration during the recent 40 years was noticed on the control plots; the amelioration resulted in an additional significant long-term growth enhancement, with the NPKMgCa fertilization liming + being more effective than the combination of PKMgCa fertilization, liming, tillage, and introduction of lupine. The comprehensive evaluation of soil, foliage, and growth data revealed a key relevance of the N and P nutrition of the stands for their growth, and a change from initial N limitation to a limitation of other growth factors (P, Mg, Ca, and water).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号