首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Phosphorus (P) is essential macronutrient for soybean [Glycine max (L.) Merr.] growth and function. The objective of this study was to determine effect of phosphorus nutrition (including phosphorus nutrition level and interruption of phosphorus supply) on nitrogen accumulation, nodule nitrogen fixation and yield of soybean plants by 15N labeling with sand culture. The results showed that they all presented a single peak curve with improvement of phosphorus nutrition level, when phosphorus concentration of nutrient solution was about 31 mg/L, they all reached the maximum and effect of phosphorus nutrition level on nodule nitrogen fixation was lower than that on yield formation level. Interruption of phosphorus supply during soybean growth period, nitrogen accumulation and nodule nitrogen fixation were seriously inhibited, and yield was decreased significantly when interruption of phosphorus supply during V3-R1 and R1-R5 period, while interruption of phosphorus supply during R5-R7 period had no significant effect on nitrogen accumulation, nodule nitrogen fixation and yield. So soybean nitrogen metabolism and yield were sensitive to phosphorus nutrition in the V3-R5 period, those were not sensitive to phosphorus nutrition after R5 period.  相似文献   

2.
Abstract

Magnesium (Mg) deficiency is one of the major nutritional problems in tropic and subtropic areas, where the most soils are acidic. In this study, the effects of Mg application and Bradyrhizobium inoculation on growth, nodulation, symbiotic nitrogen (N) fixation as well as N nutrition status in soybean (Glycine max L.) were investigated in hydroponics under greenhouse conditions. With the increase of Mg up to 0.75?mM at low N and up to 0.5?mM at high N solutions, the dry weights of shoots, roots, and pod grain yield in soybean were increased, while further increase in Mg supply inhibited soybean growth. The availability of Mg was found to entail an improved uptake of N by plants and nodulation process in the root by Bradyrhizobium. Inoculation with rhizobial inoculants not only formed many nodules, but also increased soybean shoot, root biomass and yield, as well as plant N nutrient status.  相似文献   

3.
Abstract

Soybean cultivation in Ethiopia is dominated by smallholder farmers who use little or no inputs, often resulting in low yields. The use of effective rhizobia strains was considered as an ecologically and environmentally sound approach for soybean production. Field experiments were conducted during 2015/16 cropping seasons at two different agro-climatic regions in Ethiopia to investigate the effectiveness of local soybean isolates for improving nodulation, growth, yield and quality of soybean. Ten treatments comprising of seven indigenous rhizobia isolates, one exotic strain, nitrogen fertilized treatment and uninoculated control were arranged in randomized complete block design in three replications. Results of the experiment revealed that nodule number and nodule dry weight significantly increased from nil in the uninoculated control to 14–34 and 110–521?mg plant?1, respectively due to inoculation with different isolates. Furthermore, inoculation significantly increased shoot dry weight by 24–46%, shoot nitrogen concentration by 20–30%, shoot N content by 29–49%, plant height by 14–41%, pods per plant by 12–38%, seeds per pod by 7–19%, thousand seed weight by 15–24%, grain yield by 22–115% and protein content by 7–39% compared with the uninoculated control. Generally, isolates Jm-1-Bo, As-5-Aw, Bk-3-Aw, Cw-6-Aw and MAR 1495 performed better than the others in most yield parameters at both locations of which Jm-1-Bo and As-5-Aw were the local isolates performing best irrespective of location, and were superior to the effective exotic standard strain. Therefore, isolates Jm-1-Bo, As-5-Aw and Bk-3-Aw could be utilized as candidates for inoculant production at large scale in areas with similar agroecology.  相似文献   

4.
大豆生物固氮模型研究进展   总被引:1,自引:0,他引:1  
定量描述大豆生物固氮量对于施肥管理以及农业非点源污染控制具有十分重要的意义。生物固氮模型作为一种重要工具,在定量预测大豆生物固氮速率方面具有不可替代的作用。国内研究者对不同环境因子对固氮的影响开展了一些工作,但多未从定量角度出发。国外的生物固氮模型按构建方式大致可以分为经验模型和机理模型两类。其中机理模型研究较多,也是目前生物固氮模型的主要发展方向。本文简述了这两类模型的研究现状,并着重介绍了5种目前国外使用较为广泛的田间尺度下的大豆生物固氮机理模型,比较了不同模型中采用的环境因子响应函数的差异,并对进一步的研究作了展望,以期为国内大豆生物固氮定量研究工作的开展提供借鉴。  相似文献   

5.
6.
Two cultivars of soybean (Glycine max L. Merr .), Kitamusume and Toyosuzu were grown with commercially-purchased granulated soil in a greenhouse. Kitamusume formed a larger number of nodules per g shoot dry weight and its nodules showed a smaller average diameter and average dry weight per nodule than Toyosuzu regardless of plant age or rhizobial strains (Bradyrhizobium japonicum (AI017, J5033, 646, J1B140), B. elkanii (USDA94), and Rhizobium fredii (MAFF210054)) inoculated at the rate of 108-109 cells per 3 L pot. These differences were observed in the nodules formed on both primary and lateral roots. With a lower inoculation dose of rhizobia (102 and 105 cells per pot), Kitamusume formed a smaller number of larger nodules than Toyosuzu inoculated with 108-109 cells per pot. This result indicated that the number of nodules was the factor directly controlled by host, because the size of the nodules was not determined by the genetic background, but changed depending on the number of nodules formed. The number of the first order lateral roots of 21 d old Kitamusume was 1.49 times larger than that of Toyosuzu. The relationship between the number of nodules and the number of first order lateral roots of 14 cultivars showed a significant positive correlation. These results indicated that the formation of nodules and lateral roots may be similarly controlled by a certain factor in different cultivars.  相似文献   

7.
8.
Summary Previous laboratory and greenhouse studies have shown that phages significantly reduce soil populations of homologous rhizobia. Reductions in nodulation and N2 fixation have also been observed. The purpose of the current study was to examine the effect of a phage specific ofBradyrhizobium japonicum USDA 117 on nodulation, nodule occupancy, N2 fixation and soybean growth and yield under field conditions. The phage was inoculated in combination withB. japonicum USDA 117 and/orB. japonicum USDA 110 (resistant strain) into a rhizobia-free sandy loam soil and planted toGlycine max (L.) Merr. Williams. When the phage was applied to soil inoculated withB. japonicum USDA 117 alone, significant reductions in nodule weight and number, shoot weight, foliar N, nitrogenase activity, and seed index were observed. When, however, the soil also contained the non-homologous strain,B. japonicum USDA 110, no significant effects on any of these parameters were found. Nodule occupancy by competing strains ofB. japonicum USDA 110 and USDA 117 was also affected by the phage. In soil which did not contain the phage, 46% and 44% of the identified nodules were occupied by USDA 110 and 117, respectively. When the phage was present in the soil, nodule occupancy byB. japonicum USDA 117 was reduced to 23%, while occupancy byB. japonicum USDA 110 was increased to 71%. These results suggest that nodulation by selected strains of rhizobia can be restricted and nodulation by more effective, inoculated strains can be increased through the introduction of a homologous phage to soils.  相似文献   

9.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

10.
壳聚糖对NaCl胁迫下菜用大豆结瘤固氮的影响   总被引:1,自引:0,他引:1  
【目的】研究壳聚糖对盐胁迫抑制菜用大豆结瘤固氮的缓解效应,为进一步探讨壳聚糖抗逆机理提供新的线索。【方法】以蛭石为基质,以菜用大豆‘特早王’–根瘤菌共生体系为研究对象,采用人工气候箱培养,研究NaCl胁迫下壳聚糖对菜用大豆根瘤形成、生物固氮的影响。菌种为与‘特早王’共生匹配性较好的快生根瘤菌N18。接种后的植株进行如下4个处理:1)叶面喷施清水,根部浇灌无氮营养液(CK);2)叶面喷施壳聚糖水溶液,根部浇灌无氮营养液(CTS);3)叶面喷施清水,根部浇灌溶有NaCl的无氮营养液(Cl);4)叶面喷施壳聚糖水溶液,根部浇灌溶有NaCl的无氮营养液(CTS+Cl)。上述各处理施用的水或水溶液均为无菌水配制,NaCl处理的浓度为50 mol/L,CTS处理的适宜浓度为200 mg/L。接种30天后,将大豆植株取出,用清水将根部蛭石冲洗干净后,立即测定根瘤固氮酶活性、根瘤数及根瘤鲜重,然后测定根瘤豆血红蛋白含量和根系活力,最后测植株干重和全氮量。【结果】氯化钠胁迫下,植株干重显著下降,与CK相比降幅达49%,喷施壳聚糖后(CTS+Cl),降低幅度显著减小,但依然显著低于CK (P <0.05)。无盐条件下,与CK相比,壳聚糖处理(CTS)增加植株干重的效果不明显。喷施壳聚糖显著增加了菜用大豆的根瘤数、根瘤鲜重、植株含氮量、根系活力、豆血红蛋白含量及固氮酶活性(P <0.05)。NaCl胁迫显著抑制了菜用大豆的结瘤固氮作用,其中根瘤数、根瘤鲜重分别较CK下降了79%、90%,而壳聚糖处理(CTS+Cl)使菜用大豆在盐逆境下的结瘤数、根瘤鲜重、植株全氮含量、根系活力、豆血红蛋白含量及固氮酶活性等均显著回升,增幅分别达对照的29%、20%、17%、48%、19%、21%,但均显著低于CK。【结论】非NaCl胁迫下,喷施壳聚糖可以显著促进菜用大豆结瘤,提高豆血红蛋白含量及固氮酶活性,最终增加植株含氮量。在NaCl胁迫下,外源壳聚糖可以显著缓解氯化钠胁迫导致的对根系活力和结瘤固氮的影响。因此,叶面喷施壳聚糖是促进菜用大豆结瘤固氮和生长的有效措施。  相似文献   

11.
To characterize the regulation site and manner of the abundant nodulation in the soybean (Glycine max (L.) Merr.) cv. Kitamusume, three grafting eperiments were carried out as follows: reciprocal wedge grafting and inter-cultivar approach grafting between Kitamusume and a normal nodulating cultivar, Toyosuzu, as well as wedge grafting of scions of the supernodulating mutant En6500 onto either Kitamusume or Toyosuzu rootstock. In the reciprocal wedge grafting, the number of nodules per shoot dry weight and average weight per nodule in the grafted plants were consistent with those exhibited by the genotype of their rootstocks. Approach grafting did not affect the number of nodules per shoot dry weight on either side of the inter-cultivar approachgrafted plant. Although grafting of the mutant scion resulted in the loss of the autoregulatory response from the roots of both cultivars, difference in the number of nodules per g shoot dry weight still remained between the two cultivars. These results suggested that the abundant nodulation in Kitamusume is controlled by the root in a non-systemic manner and is independent of the autoregulation mechanism.  相似文献   

12.
The effects of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense strains on the growth of soybean were evaluated with regard to the estimation of N2 fixation using the 15N isotope dilution technique. Inoculation, in general, increased the dry mass of soybean as well as nitrogen content. Dual inoculation with a mixture of B. japonicum and A. brasilense strains was superior over single inoculation with B. japonicum. Nitrogen fixed (Ndfa) varied according to inoculant and soil conditions. Percentages of nitrogen derived from air (% Ndfa) using a non-nodulating isoline were 72% and 76% for B. japonicum and B. japonicum plus A. brasilense, respectively, in non-sterile soil. A similar but higher trend was recorded in sterilized soil, in which the percentages of N2 fixed were 81% and 86% for single and dual inoculation, respectively. The correlation coefficient between N2 fixed and N uptake (r=0.94) and dry mass (r=0.89) was significant. Application of special bacterial inoculants in agricultural systems of Egypt seems to be a promising technology and could be used for improving soybean growth as well as soil fertility, thus minimizing environmental pollution. Received: 10 January 1996  相似文献   

13.
Nodulated soybean (Glycine max. (L) Merr. cv. Williams) plants were hydroponically cultured, and various combinations of 1-week culture with 5 or 0 mm nitrate were applied using 13-d-old soybean seedlings during three successive weeks. The treatments were designated as 0-0-0, 5-5-5, 5-5-0, 5-0-0, 5-0-5, 0-5-5, and 0-0-5, where the three sequential numbers denote the nitrate concentration (mm) applied in the first-second-third weeks. The size of the individual nodule was measured periodically using a slide caliper. All the plants were harvested after measurement of the acetylene reduction activity (ARA) at the end of the treatments. In the 0-0-0 treatment, the nodules grew continuously during the treatment period. Individual nodule growth was immediately suppressed after 5 mm nitrate supply. However, the nodule growth rapidly recovered by changing the 5 mm nitrate solution to a 0 mm nitrate solution in the 5-0-0 and 5-5-0 treatments. In the 5-0-5 treatment, nodule growth was completely inhibited in the first and the third weeks with 5 mm nitrate, but the nodule growth was enhanced in the second week with 0 mm nitrate. The nodule growth response to 5 mm nitrate was similar between small and large size nodules. After the 5-5-5, 5-0-5, 0-0-5, and 0-5-5 treatments, where the plants were cultured with 5 mm nitrate in the last third week, the ARA per plant was significantly lower compared with the 0-0-0 treatment. On the other hand, the ARA after the 5-0-0 and 5-5-0 treatments was relatively higher than that after the 0-0-0 treatment, possibly due to the higher photosynthate supply associated with the vigorous vegetative growth of the plants supplemented with nitrate nitrogen. It is concluded that both soybean nodule growth and N2 fixation activity sensitively responded to the external nitrate level, and that these parameters were reversibly regulated by the current status of nitrate in the culture solution, possibly through sensing of the nitrate concentration in roots and / or nodules.  相似文献   

14.
A major constraint for crop production on disturbed soils is phosphorus (P). A 2-year field study was conducted on a disturbed soil to evaluate broiler litter ash (BLA) as an inexpensive phosphorus fertilizer for soybean. BLA or super phosphate (SP) was applied at four rates and planted with soybean followed by wheat. At soybean growth stage R3, two plants from each plot were removed for tissue analysis. Soybean tissue P concentration distributions were in the order pods?>?leaves?>?stems?>?roots. At maturity, soybean grain and wheat tissue yields were not significantly affected by P source. Except for the high superphosphate rate for the second crop, P concentrations of soybean grain and wheat tissue were not significant between P source. In this study, BLA was as effective as SP for growth of soybean grain and wheat tissue, suggesting that BLA can be used as an inexpensive P fertilizer on low P disturbed soils.  相似文献   

15.
The long-term effect of the concentration and duration of application of nitrate from the lower part of soybean roots on the nodulation and nitrogen fixation in the upper part of roots was investigated using a two-layered pot system separating the upper roots growing in a vermiculite medium and the lower roots growing in a nutrient solution. Continuous absence of nitrate (hereafter referred to as “0–0 treatment”), and continuous 1 mM (1–1 treatment) and 5 mM (5–5 treatment) nitrate treatments were imposed in the lower pot from transplanting to the beginning of the maturity stage. In addition, 5 mM nitrate was supplied partially from the beginning of the pod stage till the beginning of the maturity stage (0–5 treatment) or from transplanting till the beginning of the pod stage (5–0 treatment). The values of the total plant dry weight and seed dry weight were highest in the 5–5 treatment, intermediate in the 1–1, 5–0, 0–5 treatments, and lowest in the 0–0 treatment. The values of the nodule dry weight and nitrogen fixation activity (acetylene reduction activity) were lowest in the 5–5 treatment. The value of the nodule dry weight in the upper roots was highest in the plants subjected to the 1–1 treatment and exceeded that in the 0–0 treatment. Total nitrogen fixation activity of the upper nodules per plant at the beginning of the pod stage was also highest in the 1–1 treatment. These results indicated that long-term supply of a low level of nitrate from the lower roots could promote nodulation and nitrogen fixation in the upper part of roots. Withdrawal of 5 mM nitrate after the beginning of the pod stage (5–0 treatment) markedly enhanced nodule growth and ARA per plant in the upper roots at the beginning of the maturity stage when the values of both parameters decreased in the other treatments. The nitrate concentration in the nodules attached to the upper roots was low, including the 5–5 treatment regardless of the stages of growth. This indicated that the inhibitory effect of 5 mM nitrate or promotive effect of 1 mM nitrate supplied from the lower roots was not directly controlled by nitrate itself, but was mediated by some systemic regulation, possibly by the C or/and N requirement of the whole plant.  相似文献   

16.
Abstract

The effects of foliar fertilizer applications to soybeans during seed‐filling were examined using a complete factorial design with four levels each of nitrogen (N), phosphorus plus potassium (P+K) and sulfur (S). Hodgson soybeans were planted in 76‐cm rows on a Piano silt loam (Typic Argiudoll) in 1976 and 1977. Four fertilizer spray applications were made at 7‐ to 10‐day intervals beginning at stage R4 2. The application of N generally increased yield, seed weight, and percent N in the grain both years of the experiment. Phosphorus, K, and S had little influence on the parameters measured. Leaf burn after each fertilizer application was significantly increased by most levels of fertilizer addition.  相似文献   

17.
Summary Hydrogenase activities and N2-fixing capacities of soybean nodules (Glycine max. cv. Hodgson), inoculated with strains ofBradyrhizobium japonicum andRhizobium fredii from different geographical regions, were measured after 35 days of culture under controlled conditions. Of the strains tested, 47% induced nodules with bacteroids which recycled H2. The data obtained suggest that H2-recycling ability is not a major factor influencing early N2-fixation which depends essentially on the precocity and intensity of the initial nodulation.  相似文献   

18.
19.
马占相思根瘤菌结瘤固氮特性的分析   总被引:1,自引:1,他引:1  
相思属(Acacia)树种是速生的热带、亚热带豆科植物。对现在大面积种植的相思树品种——马占相思的根瘤菌进行分离和筛选,获得菌株若干株,对它们的结瘤固氮特性和对马占相思、大叶相思及厚荚相思生长的影响等进行了初步研究。结果表明。无氮条件下接种马占相思根瘤菌,能显著促进这3个树种的株重、株高和生物量的增长;苗圃接种马占相思根瘤菌。马占相思苗高增加27.6%,地径增加14.8%,植株鲜重增加32.6%,结瘤数增加83.8%。  相似文献   

20.
ABSTRACT

While pulses are staple food-legumes in Ethiopia, their productivity is low due to low soil fertility. Elite rhizobial strains that significantly increased shoot dry weight and nitrogen (N) contents of common beans and soybeans in greenhouse were selected for two-year field trials to evaluate their effect on yields of the pulses in the field. Each pulse had six treatments, namely four rhizobial inoculants, uninoculated control, and synthetic N fertilizer. In the drought-affected year 2015, inoculated pulses tolerated moisture stress better than non-inoculated controls. Inoculation was conducive to higher or equivalent yields compared to synthetic N fertilizer. At Halaba, bean inoculated with strain HAMBI3562 gave the highest grain yield (1500 ± 81 kg ha?1; mean±SE) while the control yielded only 653 ± 22 kg ha?1. At Boricha, HAMBI3570 gave a grain yield (640 ± 35 kg ha?1) comparable to synthetic N. When rainfall was optimal in 2016, inoculation with HAMBI3562 and HAMBI3570 gave grain yields (around 4300 kg ha?1) equivalent to synthetic N. With soybean, strain HAMBI3513 produced consistently higher or comparable biomass and grain yields compared to synthetic N. In conclusion, HAMBI3562 and HAMBI3570 for beans and HAMBI3513 for soybeans can serve as inoculants for areas having similar conditions as the test areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号