首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.  相似文献   

2.
A genome scan to detect QTL influencing growth and carcass-related traits was conducted in a Charolais x Holstein crossbred cattle population. Phenotypic measurements related to growth and carcass traits were made on the 235 second-generation crossbred males of this herd (F2 and reciprocal backcrosses), which were born in 4 consecutive annual cohorts. Traits measured in vivo were related to birth dimensions, growth rates, and ultrasound measurements of fat and muscle depth. The animals were slaughtered near a target BW of 550 kg, and a wide range of postmortem traits were measured: visual assessment of carcass conformation and carcass fatness, estimated subcutaneous fat percentage, weights of kidney knob and channel fat, and weights of carcass components after commercial and full-tissue dissections. The whole population, including grandparents, parents, and the crossbred bulls, was genotyped initially for 139 genome-wide microsatellite markers. Twenty-six additional markers were subsequently analyzed to increase marker density on some of the chromosomes where QTL had been initially identified. The linear regression analyses based on the 165 markers revealed a total of 51 significant QTL at the suggestive level, 21 of which were highly significant (F-value >or=9; based on the genome-wide thresholds obtained in the initial scan). A large proportion of the highly significant associations were found on chromosomes 5 and 6. The most highly significant QTL was localized between markers DIK1054 and DIK082 on chromosome 6 and explained about 20% of the phenotypic variance for the total bone proportion estimated after the commercial dissection. In the adjacent marker interval on this chromosome, 2 other highly significant QTL were found that explain about 30% of the phenotypic variance for birth dimension traits (BW and body length at birth). On chromosome 5, the most significant association influenced the lean:bone ratio at the forerib joint and was flanked by markers DIK4782 and BR2936. Other highly significant associations were detected on chromosomes 10 (estimated subcutaneous fat percentage), 11 (total saleable meat proportion), 16 (prehousing growth rate), and 22 (bone proportion at the leg joint). These results provide a useful starting point for the identification of the genes associated with traits of direct interest to the beef industry, using fine mapping or positional candidate gene approaches.  相似文献   

3.
A whole genome scan to map quantitative trait loci (QTL) for persistency of milk yield (PMY), persistency of fat yield (PFY), persistency of protein yield (PPY) and persistency of milk energy yield (PEY) was performed in a granddaughter design in the German Holstein dairy cattle population. The analysis included 16 paternal half‐sib families with a total of 872 bulls. The analysis was carried out for the first lactation and for the first three lactations combined using univariate weighted multimarker regression. Controlling the false discovery rate across traits and data sets at a level of 0.15 and treating the four persistency traits as different traits revealed 27 significant QTL. A total of 12 chromosomes showed significant QTL effects on a chromosomewise basis. The DGAT1 effect was highly significant for PPY and protein yield. A haplotype analysis using results of previous studies of the same design revealed a co‐segregation of various persistency QTL and QTL affecting health traits like dystocia and stillbirth and functional traits like non‐return rate 90 and somatic cell score.  相似文献   

4.
In the present study 3 connected F(2) crosses were used to map QTL for classical fat traits as well as fat-related metabolic and cytological traits in pigs. The founder breeds were Chinese Meishan, European Wild Boar, and Pietrain with to some extent the same founder animals in the different crosses. The different selection history of the breeds for fatness traits as well as the connectedness of the crosses led to a high statistical power. The total number of F(2) animals varied between 694 and 966, depending on the trait. The animals were genotyped for around 250 genetic markers, mostly microsatellites. The statistical model was a multi-allele, multi-QTL model that accounted for imprinting. The model was previously introduced from plant breeding experiments. The traits investigated were backfat depth and fat area as well as relative number of fat cells with different sizes and 2 metabolic traits (i.e., soluble protein content as an indicator for the level of metabolic turnover and NADP-malate dehydrogenase as an indicator for enzyme activity). The results revealed in total 37 significant QTL on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 14, 17, and 18, with often an overlap of confidence intervals of several traits. These confidence intervals were in some cases remarkably small, which is due to the high statistical power of the design. In total, 18 QTL showed significant imprinting effects. The small and overlapping confidence intervals for the classical fatness traits as well as for the cytological and metabolic traits enabled positional and functional candidate gene identification for several mapped QTL.  相似文献   

5.
A three-generation resource family was created by crossing two Berkshire grandsires with nine Yorkshire granddams to identify QTL affecting growth, body composition, and meat quality. A total of 512 F2 offspring were evaluated for 11 traits related to growth and body composition and 28 traits related to meat quality. All animals were initially genotyped for 125 markers across the genome. The objectives of this advanced phase of the project were to further identify and characterize QTL after genotyping for another 33 markers in special regions of interest, and to develop and apply methods for detecting QTL with parent-of-origin effects. New marker linkage maps were derived and used in QTL analysis based on line-cross least squares regression-interval mapping. A decision tree for identifying QTL with parent-of-origin effects was developed based on tests against the Mendelian mode of expression. Empirical significance thresholds were derived at chromosomewise and genomewise levels using specialized permutation strategies to create data under the null hypothesis appropriate for each test. Significance thresholds derived by the permutation tests were validated based on simulation of a pedigree and data structure similar to the Berkshire-Yorkshire population. The addition of 33 markers resulted in the discovery of 29 new QTL at the 5% chromosomewise level using the Mendelian model of analysis. Thirteen of the original QTL were no longer significant at the 5% chromosomewise level. A total of 33 QTL with parent-of-origin effects were identified, including QTL with paternal expression for backfat and loin muscle area on chromosome 2, near IGF2, and QTL with maternal expression for drip loss and reflectance on chromosome 9. Tests for imprinting against Mendelian expression identified much fewer QTL with parent-of-origin effects than tests based on significance of paternal and maternal alleles, which have been used in other studies. The detected QTL and their identified mode of expression will allow further research in these QTL regions and their utilization in marker-assisted improvement of meat quality.  相似文献   

6.
This study presents a new method that combines QTL mapping and gene introgression. The effectiveness of this method for simultaneous detection and introgression of a desirable QTL from a donor line into a recipient line was evaluated by simulation. For evaluation, we used the fourth backcross generation of 2 inbred lines. The difference between the 2 lines for the trait of interest was described entirely by 1 QTL, with the donor line carrying the superior allele. Nine scenarios, combinations of 3 heritabilities (h(2) = 0.10, 0.05, or 0.01) and 3 population sizes (N = 100, 500, or 1,000) were considered in the simulation. Selection of parents for the next backcross was based solely upon the estimated probability of carrying the superior allele after a QTL analysis. Estimates of the QTL location and allele substitution effect in most scenarios were comparable to the true values. However (with either small h(2) or N) the QTL allele substitution effect was underestimated, and location was also biased. The SE of the estimates decreased with increasing N. The retained donor chromosome segment and linkage drag were close to the expected values from other published work. In general, combined detection and introgression of genes underlying desirable traits not only saves at least 1 generation, but also it ensures that the desirable QTL is introgressed where its function is simultaneously tested in a planned environment and recipient genome structure.  相似文献   

7.
A genome-wide scan for QTL affecting economically important traits in beef production was performed using an F(2) resource family from a Japanese Black x Limousin cross, where 186 F(2) animals were measured for growth, carcass, and meat-quality traits. All family members were genotyped for 313 informative microsatellite markers that spanned 2,382 cM of bovine autosomes. The centromeric region of BTA2 contained significant QTL (i.e., exceeding the genome-wide 5% threshold) for 5 carcass grading traits [LM area, beef marbling standards (BMS) number, luster, quality grade, and firmness), 8 computer image analysis (CIA) traits [LM lean area, ratio of fat area (RFA) to LM area, LM area, RFA to musculus (M.) trapezius area, M. trapezius lean area, M. semispinalis lean area, RFA to M. semispinalis area, and RFA to M. semispinalis capitis area], and 5 meat quality traits (contents of CP, crude fat, moisture, C16:1, and C18:2 of LM). A significant QTL for withers height was detected at 80.3 cM on BTA5. We detected significant QTL for the C14:0 content in backfat and C14:0 and C14:1 content in intermuscular fat around the 62.3 to 71.0 cM region on BTA19 and for C14:0, C14:1, C18:1, and C16:0 content and ratio of total unsaturated fatty acid content to total SFA content in intramuscular fat at 2 different regions on BTA19 (41.1 cM for C14:1 and 62.3 cM for the other 4 traits). Overall, we identified 9 significant QTL regions controlling 27 traits with genome-wide significance of 5%; of these, 22 traits exceeded the 1% genome-wide threshold. Some of the QTL affecting meat quality traits detected in this study might be the same QTL as previously reported. The QTL we identified need to be validated in commercial Japanese Black cattle populations.  相似文献   

8.
李凯年 《饲料广角》2001,(23):22-22
大豆异黄酮(ISF)是一种可能影响瘦肉和脂肪沉积的日粮添加剂。ISF是二酚化合物,是3种自然产生的植物雌激素之一。在结构和功能上与天然雌激素类似,能与雌激素受体微弱结合,引起与天然雌激素的竞争。由于这种雌激素样功能,ISF作为一种降低动物脂肪沉积的饲料添加剂可能有效。Cook(1998)报告,添加ISF(1.585g/kg日粮)可以提高生长速度和肌肉生长,而对6~32kg体重猪的胴体脂肪没有影响。Payne等(2001)报告,向玉米-大豆蛋白浓缩日粮(CSPC)中加ISF,可以提高胴体瘦肉率和减少胴体  相似文献   

9.
We used a half-sib family of purebred Japanese Black (Wagyu) cattle to locate economically important quantitative trait loci. The family was composed of 348 fattened steers, 236 of which were genotyped for 342 microsatellite markers spanning 2,664 cM of 29 bovine autosomes. The genome scan revealed evidence of 15 significant QTL (<5% chromosome-wise level) affecting growth and carcass traits. Of the 15 QTL, six QTL were significant at the 5% experiment-wise level and were located in bovine chromosomes (BTA) 4, 5, and 14. We analyzed these three chromosomes in more detail in the 348 steers, with an average marker interval of 1.2 cM. The second scan revealed that the same haplotype of the BTA 4 region (52 to 67 cM) positively affected LM area and marbling. We confirmed the QTL for carcass yield estimate on BTA 5 in the region of 45 to 54 cM. Five growth-related QTL located on BTA 14, including slaughter and carcass weights, were positively affected by the same region of the haplotype of BTA 14 (29-51 cM). These data should provide a useful reference for further marker-assisted selection in the family and positional cloning research. The research indicates that progeny design with moderate genotyping efforts is a powerful method for detecting QTL in a purebred half-sib family.  相似文献   

10.
The objective of this study was to identify quantitative trait loci for economically important traits in two families segregating an inactive copy of the myostatin gene. Two half-sib families were developed from a Belgian Blue x MARC III (n = 246) and a Piedmontese x Angus (n = 209) sire. Traits analyzed were birth, weaning, and yearling weight (kg); preweaning average daily gain (kg/d); postweaning average daily gain (kg/d); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of the myostatin gene was removed using phase information from six microsatellite markers flanking the locus. Interactions of the myostatin gene with other loci throughout the genome were also evaluated: The objective was to use markers in each family, scanning the genome approximately every 25 to 30 centimorgans (cM) on 18 autosomal chromosomes, excluding 11 autosomal chromosomes previously analyzed. A total of 89 markers, informative in both families, were used to identify genomic regions potentially associated with each trait. In the family of Belgian Blue inheritance, a significant QTL (expected number of false-positives = 0.025) was identified for marbling score on chromosome 3. Suggestive QTL for the same family (expected number of false-positives = 0.5) were identified for retail product yield on chromosome 3, for hot carcass weight and postweaning average daily gain on chromosome 4, for fat depth and marbling score on chromosome 8, for 14-d Warner-Bratzler shear force on chromosome 9, and for marbling score on chromosome 10. Evidence suggesting the presence of an interaction for 3-d Warner-Bratzler shear force between the myostatin gene and a QTL on chromosome 4 was detected. In the family of Piedmontese and Angus inheritance, evidence indicates the presence of an interaction for fat depth between the myostatin gene and chromosome 8, in a similar position where the evidence suggests the presence of a QTL for fat depth in the family with Belgian Blue inheritance. Regions identified underlying QTL need to be assessed in other populations. Although the myostatin gene has a considerable effect, other loci with more subtle effects are involved in the expression of the phenotype.  相似文献   

11.
12.
The detection of quantitative trait loci (QTL) of behavioural traits has mainly been focussed on mouse and rat. With the rapid development of molecular genetics and the statistical tools, QTL mapping for behavioural traits in farm animals is developing. In chicken, a total of 30 QTL involved in pecking-related traits, open-field behaviour, tonic immobility, response to novel objects, and response to a restraint test were detected in different studies. In the search for a useful early predictor for feather pecking (FP) behaviour in adult laying hens, the following was found: FP in young animals is not a predictor for FP in adult animals, however, open-field behaviour in young animals is genetically correlated with FP in adult hens. Before the implementation of FP behaviour or open-field behaviour in breeding programmes, it is essential to know more about the correlation between these behavioural traits and also their relationship with production traits. Nevertheless, with the QTL for behavioural traits and the chicken genome sequence in progress, a better understanding of the underlying genetic mechanisms of behavioural traits will be feasible.  相似文献   

13.
In broiler chickens, bone problems are an important welfare issue that has been linked to genetic selection for rapid growth. The objectives of this study were to identify and fine map quantitative trait loci (QTL) associated with bone traits. The Northeast Agricultural University resource population (NEAURP) being an F(2) population was used in this study, and a total of 17 bone traits were measured. In primary genome scan, the linkage map was constructed with 23 microsatellite markers across the entire chicken chromosome 1. Seventeen QTLs for bone traits were identified and 12 of these were found between LEI0079 and ROS0025 (50.8 cM apart). To fine map the QTLs located between LEI0079 and ROS0025, more markers and more individuals were used and a new partial linkage map was constructed. The confidence intervals for QTLs were sharply narrowed down from 24.5~52.6 to 2.7~17.0 Mb. This study identified chromosome regions harbouring significant QTLs affecting bone traits and showed that the use of more markers and individuals could decrease the confidence interval of QTL effectively. The results provide a useful reference for further candidate gene research and MAS for bone traits.  相似文献   

14.
A QTL analysis of behavioral and neuroendocrine responses to a "novel environment" stress was conducted in a three-generation experimental cross between Meishan and Large White pig breeds. A total of 186 F2 males and 182 F2 females were studied for their behavioral and neuroendocrine reactivity to a novel environment test at 6 wk of age. Locomotion, vocalization, and defecation rate, as well as exploration time, were measured for 10 min. Blood samples were taken immediately before and after the test to measure plasma levels of ACTH, cortisol, and glucose. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using two interval mapping methods: a line-cross regression method, where founder lines were assumed to be fixed for different QTL alleles, and a half-/full-sib maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Both methods revealed a highly significant gene effect for poststress cortisol level (P < 0.001) and a significant effect for basal cortisol level (P < 0.05) at the end of the q arm of chromosome 7, explaining, respectively, 20% and 7% of the phenotypic variance. Meishan alleles are associated with higher cortisol levels and are partially dominant (for poststress levels) over Large White alleles. Other significant gene effects on biological measures were detected on chromosomes 1 and 17 (ACTH response to stress), 3, 5, and 8 (glucose levels). The SSC 17 QTL explains 12% of the phenotypic variance of poststress ACTH levels, with a suggestive evidence of imprinting effects. Meishan alleles are associated with lower poststress ACTH levels. Gene effects of low amplitude only were found for behavioral reactivity traits. Considering the effects of stress neuroendocrine systems on energy fluxes and protein deposition, and the importance of stress reactivity for meat quality and animal welfare, these results open new perspectives for pig selection.  相似文献   

15.
Most QTL detection studies in pigs have been carried out in experimental F(2) populations. However, segregation of a QTL must be confirmed within a purebred population for successful implementation of marker-assisted selection. Previously, QTL for meat quality and carcass traits were detected on SSC 7 in a Duroc purebred population. The objectives of the present study were to carry out a whole-genome QTL analysis (except for SSC 7) for meat production, meat quality, and carcass traits and to confirm the presence of segregating QTL in a Duroc purebred population. One thousand and four Duroc pigs were studied from base to seventh generation; the pigs comprised 1 closed population of a complex multigenerational pedigree such that all individuals were related. The pigs were evaluated for 6 growth traits, 7 body size traits, 8 carcass traits, 2 physiological traits, and 11 meat quality traits, and the number of pigs with phenotypes ranged from 421 to 953. A total of 119 markers were genotyped and then used for QTL analysis. We utilized a pedigree-based, multipoint variance components approach to test for linkage between QTL and the phenotypic values using a maximum likelihood method; the logarithm of odds score and QTL genotypic heritability were estimated. A total of 42 QTL with suggestive linkages and 3 QTL with significant linkages for 26 traits were detected. These included selection traits such as daily BW gain, backfat thickness, loin eye muscle area, and intramuscular fat content as well as correlated traits such as body size and meat quality traits. The present study disclosed QTL affecting growth, body size, and carcass, physiological, and meat quality traits in a Duroc purebred population.  相似文献   

16.
选择东北细毛羊×德国肉用美利奴的杂交一代肉羊12只,分成对照组、试验Ⅰ组和Ⅱ组,每组4只,研究谷胱甘肽对肉羊生长性能、屠宰性能及肉品质的影响。试验期60 d。结果表明:与对照组相比,谷胱甘肽显著提高了肉羊的日增重(P<0.05),试验Ⅰ组、Ⅱ组分别提高了14.6%和11.4%;降低了肉羊的料重比(P<0.05),试验Ⅰ组、Ⅱ组分别降低了11.0%和8.1%。试验Ⅰ组的净肉率和GR值显著高于对照组(P<0.05),Ⅱ组的宰前活重显著高于对照组(P<0.05);试验Ⅰ组肉的剪切力显著低于对照组(P<0.05);试验Ⅰ组、Ⅱ组的滴水损失显著低于对照组(P<0.05),而熟肉率显著高于对照组(P<0.05),且两试验组间差异不显著(P>0.05);各试验组宰后45 min内肉的pH没有显著差异(P>0.05),但试验Ⅰ组24 h的pH极显著地高于其他2组(P<0.01)。  相似文献   

17.
The effects of the bovine myostatin gene on chromosome 2 on birth and carcass traits have been previously assessed. The objective of this study was to identify additional quantitative trait loci (QTL) for economically important traits in two families segregating an inactive copy of myostatin. Two half-sib families were developed from Belgian Blue x MARC III (n = 246) and Piedmontese x Angus (n = 209) sires. Traits analyzed were birth (kg) and yearling weight (kg); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of myostatin on these traits was removed by using phase information obtained from the previous study with six microsatellite markers flanking the locus. Selective genotyping was done on 92 animals from both families to identify genomic regions potentially associated with retail product yield and fat depth, using a total of 150 informative markers in each family. Regions in which selective genotyping indicated the presence of QTL were evaluated further by genotyping the entire population and additional markers. For the family with Belgian Blue inheritance (n = 246), a significant QTL for birth and yearling weight was identified on chromosome 6. Suggestive QTL were identified for longissimus muscle area and hot carcass weight on chromosome 6 and for marbling on chromosomes 17 and 27. For the family with Piedmontese inheritance (n = 209), suggestive QTL on chromosome 5 were identified for fat depth, retail product yield, and USDA yield grade and on chromosome 29 for Warner-Bratzler shear force at 3 and 14 d postmortem. Interactions suggesting the presence of QTL were observed between myostatin and chromosome 5 for Warner-Bratzler shear force at 14 d postmortem and between myostatin and chromosome 14 for fat depth. Thus, in families segregating an inactive copy of myostatin in cattle, other loci influencing quantitative traits can be detected. These results are the initial effort to identify and characterize QTL affecting carcass and growth traits in families segregating myostatin.  相似文献   

18.
Real-time ultrasound technology offers the possibility of estimating carcass characteristics in live animals and represents a potential method for selection of breeding stocks. A total of 745 live lambs born during 2001–2003 into two flocks was used to estimate rib muscle and fat depth by ultrasound. Lambs came from 559 ewes and 97 rams of a fat-tailed breed, known as the ‘Barbarine’ in North Africa. Ultrasound measurements of external fat thickness (UFD) and muscle (UMD), taken at the 12–13th rib and palpation of body conditions (loin and tail scores) were made for 150 days until lambs 520 days old of lamb ages. Main results showed that UMD and UFD had the same trend as live weights from 150 to 240 days old. They decreased from 150 to 200 days old, and then increased. The same trend was seen for loin and tail scores. Average differences in live weights between male and female lambs were 1, 3 and 6 kg at 30, 90 and 120 days old, respectively. The highest muscle depth for males was reached at day 180 and the lowest fat depth was recorded between 180 and 200 days. Average loin scores became greater for males than females from 240 days of age. Male lambs had greater tail scores at all ages, from 150 to 520 days old. Differences became greater for ages more than 180 days, showing that males have a tendency to store more fat in their tails than females. Phenotypic correlation was 0.70 between muscle depth and loin scores, indicating that, at 180 days old, the Barbarine breed has more muscle and less fat. The optimum slaughter age was defined between 180 and 200 days old, producing carcasses with more muscle and less fat. Regression equations estimating carcass traits (UMD, UFD) at 180 and 240 days old were computed.  相似文献   

19.
1. A genome scan was performed to locate genomic regions associated with traits that are known to vary in birds (most commonly broilers) suffering from heart, lung or muscular dysfunction and for weight of the dressed carcass and some internal organs. 2. The F2 population studied was derived from a cross between a broiler and a layer line and consisted of over 460 birds that were genotyped for 101 markers. 3. There was strong support for segregation of quantitative trait loci (QTL) for carcass and organ weights and blood variables. We identified 11 genome-wide significant QTL (most of them for dressed carcass weight) and several genome-wide suggestive QTL. 4. The results point to some genome regions that may be associated with health-related traits and merit further study, with the final aim of identifying linked genetic markers that could be used in commercial breeding programmes to decrease the incidence of muscular and metabolic disorders in broiler populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号