首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A QTL study for carcass composition and meat quality traits was conducted on finisher pigs of a cross between a synthetic Piétrain/Large White boar line and a commercial sow cross. The mapping population comprised 715 individuals evaluated for a total of 30 traits related to growth and fatness (4 traits), carcass composition (11 traits), and meat quality (15 traits). Offspring of 8 sires (n = 715) were used for linkage analysis and genotyped for 73 microsatellite markers covering 14 chromosomal regions representing approximately 50% of the pig genome. The regions examined were selected based on previous studies suggesting the presence of QTL affecting carcass composition or meat quality traits. Thirty-two QTL exceeding the 5% chromosome-wise significance level were identified. Among these, 5 QTL affecting 5 different traits were significant at the 1% chromosome-wise level. The greatest significance levels were found for a QTL affecting loin weight on SSC11 and a QTL with an effect on the Japanese color scale score of the loin on SSC4. About one-third of the identified QTL were in agreement with QTL previously reported. Results showed that QTL affecting carcass composition and meat quality traits segregated within commercial lines. Use of these results for marker-assisted selection offers opportunities for improving pork quality by within-line selection.  相似文献   

2.
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.  相似文献   

3.
A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.  相似文献   

4.
A directed search for QTL affecting carcass traits was carried out in the region of growth differentiation factor 8 (GDF8, also known as myostatin) on ovine chromosome 2 in seven Texel-sired half-sib families totaling 927 progeny. Weights were recorded at birth, weaning, ultrasound scanning, and slaughter. Ultrasonic measures of LM cross-sectional dimensions and s.c. fat above the LM were made, with the same measurements made on the LM after slaughter. Following slaughter, linear measurements of carcass length and width were made on all carcasses, and legs and loins from 540 lambs were dissected. Genotyping was carried out using eight microsatellite markers from FCB128 to RM356 on OAR 2 and analyzed using Haley-Knott regression. There was no evidence for QTL for growth rates or linear carcass traits. There was some evidence for QTL affecting LM dimensions segregating in some sire families, although it was not consistent between ultrasound and carcass measures of the same traits. There was strong and consistent evidence for a QTL affecting muscle and fat traits in the leg that mapped between markers BM81124 and BULGE20 for the four sires that were heterozygous in this region, but not for the three sires that were homozygous. The size of the effect varied across the four sires, ranging from 0.5 to 0.9 of an adjusted SD for weight-adjusted leg muscle traits, and ranging from 0.6 to 1.2 of an adjusted SD for weight-adjusted leg fat traits. The clearest effect shown was for multivariate analysis combining all leg muscle and fat traits analyzed across sires, where the -log(10) probability was 14. Animals carrying the favorable haplotype had 3.3% more muscle and 9.9% less fat in the leg relative to animals carrying other haplotypes. There was evidence for a second peak in the region of marker TEXAN2 for one sire group. It seems that a QTL affecting muscle and fat traits exists within the New Zealand Texel population, and it maps to the region of GDF8 on OAR2.  相似文献   

5.
A genome scan to detect QTL influencing growth and carcass-related traits was conducted in a Charolais x Holstein crossbred cattle population. Phenotypic measurements related to growth and carcass traits were made on the 235 second-generation crossbred males of this herd (F2 and reciprocal backcrosses), which were born in 4 consecutive annual cohorts. Traits measured in vivo were related to birth dimensions, growth rates, and ultrasound measurements of fat and muscle depth. The animals were slaughtered near a target BW of 550 kg, and a wide range of postmortem traits were measured: visual assessment of carcass conformation and carcass fatness, estimated subcutaneous fat percentage, weights of kidney knob and channel fat, and weights of carcass components after commercial and full-tissue dissections. The whole population, including grandparents, parents, and the crossbred bulls, was genotyped initially for 139 genome-wide microsatellite markers. Twenty-six additional markers were subsequently analyzed to increase marker density on some of the chromosomes where QTL had been initially identified. The linear regression analyses based on the 165 markers revealed a total of 51 significant QTL at the suggestive level, 21 of which were highly significant (F-value >or=9; based on the genome-wide thresholds obtained in the initial scan). A large proportion of the highly significant associations were found on chromosomes 5 and 6. The most highly significant QTL was localized between markers DIK1054 and DIK082 on chromosome 6 and explained about 20% of the phenotypic variance for the total bone proportion estimated after the commercial dissection. In the adjacent marker interval on this chromosome, 2 other highly significant QTL were found that explain about 30% of the phenotypic variance for birth dimension traits (BW and body length at birth). On chromosome 5, the most significant association influenced the lean:bone ratio at the forerib joint and was flanked by markers DIK4782 and BR2936. Other highly significant associations were detected on chromosomes 10 (estimated subcutaneous fat percentage), 11 (total saleable meat proportion), 16 (prehousing growth rate), and 22 (bone proportion at the leg joint). These results provide a useful starting point for the identification of the genes associated with traits of direct interest to the beef industry, using fine mapping or positional candidate gene approaches.  相似文献   

6.
A whole genome scan to map quantitative trait loci (QTL) for persistency of milk yield (PMY), persistency of fat yield (PFY), persistency of protein yield (PPY) and persistency of milk energy yield (PEY) was performed in a granddaughter design in the German Holstein dairy cattle population. The analysis included 16 paternal half‐sib families with a total of 872 bulls. The analysis was carried out for the first lactation and for the first three lactations combined using univariate weighted multimarker regression. Controlling the false discovery rate across traits and data sets at a level of 0.15 and treating the four persistency traits as different traits revealed 27 significant QTL. A total of 12 chromosomes showed significant QTL effects on a chromosomewise basis. The DGAT1 effect was highly significant for PPY and protein yield. A haplotype analysis using results of previous studies of the same design revealed a co‐segregation of various persistency QTL and QTL affecting health traits like dystocia and stillbirth and functional traits like non‐return rate 90 and somatic cell score.  相似文献   

7.
In the present study 3 connected F(2) crosses were used to map QTL for classical fat traits as well as fat-related metabolic and cytological traits in pigs. The founder breeds were Chinese Meishan, European Wild Boar, and Pietrain with to some extent the same founder animals in the different crosses. The different selection history of the breeds for fatness traits as well as the connectedness of the crosses led to a high statistical power. The total number of F(2) animals varied between 694 and 966, depending on the trait. The animals were genotyped for around 250 genetic markers, mostly microsatellites. The statistical model was a multi-allele, multi-QTL model that accounted for imprinting. The model was previously introduced from plant breeding experiments. The traits investigated were backfat depth and fat area as well as relative number of fat cells with different sizes and 2 metabolic traits (i.e., soluble protein content as an indicator for the level of metabolic turnover and NADP-malate dehydrogenase as an indicator for enzyme activity). The results revealed in total 37 significant QTL on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 14, 17, and 18, with often an overlap of confidence intervals of several traits. These confidence intervals were in some cases remarkably small, which is due to the high statistical power of the design. In total, 18 QTL showed significant imprinting effects. The small and overlapping confidence intervals for the classical fatness traits as well as for the cytological and metabolic traits enabled positional and functional candidate gene identification for several mapped QTL.  相似文献   

8.
We constructed a pig F2 resource population by crossing a Meishan sow and a Duroc boar to locate economically important trait loci. The F2 generation was composed of 865 animals (450 males and 415 females) from four F1 males and 24 F1 females and was genotyped for 180 informative microsatellite markers spanning 2,263.6 cM of the whole pig genome. Results of the genome scan showed evidence for significant quantitative trait loci (<1% genomewise error rate) affecting weight at 30 d and average daily gain on Sus scrofa chromosome (SSC) 6, carcass yield on SSC 7, backfat thickness on SSC 7 and SSC X, vertebra number on SSC 1 and SSC 7, loin muscle area on SSC 1 and SSC 7, moisture on SSC 13, intramuscular fat content on SSC 7, and testicular weight on SSC 3 and SSC X. Moreover, 5% genomewise significant QTL were found for birth weight on SSC 7, average daily gain on SSC 4, carcass length on SSC 6, SSC 7, and SSC X and lightness (L value) on SSC 3. We identified 38 QTL for 28 traits at the 5% genomewise level. Of the 38 QTL, 24 QTL for 17 traits were significant at the 1% genomewise level. Analysis of marker genotypes supported the breed of origin results and provided further evidence that a suggestive QTL for circumference of cannon bone also was segregating within the Meishan parent. We identified genomic regions related with growth and meat quality traits. Fine mapping will be required for their application in introgression programs and gene cloning.  相似文献   

9.
The identification of QTL related to production traits that are relevant for the pig industry has been mostly performed by using divergent crosses. The main objective of the current study was to investigate whether these growth, fatness, and meat quality QTL, previously described in diverse experimental populations, were segregating in a Landrace commercial population selected for litter size, backfat thickness, and growth performance. We have found QTL for carcass weight (posterior P > 0.75), cutlet weight (posterior P > 0.99), weight of ham (posterior P > 0.75), shoulders weight (posterior probability > 0.99), and shear firm-ness (posterior P > 0.99) on pig Chromosome 2. Moreover, QTL with posterior P > 0.75 for fat thickness between the 3rd and 4th ribs (Chromosome 7), rib weights (Chromosome 8), backfat thickness (Chromosomes 8, 9, and 10), and b Minolta color component (Chromosome 7) were identified. These results indicate that commercial purebred populations retain a significant amount of genetic variation, even for traits that have been selected for many generations.  相似文献   

10.
The performance of several transmission disequilibrium tests (TDT) for detection of quantitative trait loci (QTL) in data structures typical of outbred livestock populations were investigated. Factorial mating designs were simulated with 10 sires mated to either 50 or 200 dams, each family having five or eight full sibs. A single marker and QTL, both bi‐allelic, were simulated using a disequilibrium coefficient based on complete initial disequilibrium and 50 generations of recombination [i.e. D = D0(1 ? θ)50], where θ is the recombination fraction between marker and QTL. The QTL explained either 10% (small QTL) or 30% (large QTL) of the genetic variance for a trait with heritability of 0.3. Methods were: TDT for QTL (Q‐TDT; both parents known), 1‐TDT (only one parent known) and sibling‐based TDT (S‐TDT; neither parent known, but sibs available). All were found to be effective tests for association and linkage between the QTL and a tightly linked marker (θ < 0.02) in these designs. For a large QTL, θ = 0.01, and five full sibs per family, the empirical power for Q‐TDT, 1‐TDT and S‐TDT was 0.966, 0.602 and 0.974, respectively, in a large population, versus 0.700, 0.414 and 0.654, respectively, in a small population. For a small QTL effect, θ = 0.01, large population the empirical power of these tests were 0.709, 0.287 and 0.634. The power of Q‐TDT, 1‐TDT and S‐TDT was satisfactory for large populations, for QTL with large effects and for five full sibs per family. The 1‐TDT based on a linear model was more powerful than the normal 1‐TDT. The empirical power for Q‐TDT and 1‐TDT with a linear model was 0.978 and 0.995 respectively. TDT based on analogous linear models, incorporating the polygenic covariance structure, provided only small increases in power compared with the usual TDT for QTL.  相似文献   

11.
A three-generation resource family was created by crossing two Berkshire grandsires with nine Yorkshire granddams to identify QTL affecting growth, body composition, and meat quality. A total of 512 F2 offspring were evaluated for 11 traits related to growth and body composition and 28 traits related to meat quality. All animals were initially genotyped for 125 markers across the genome. The objectives of this advanced phase of the project were to further identify and characterize QTL after genotyping for another 33 markers in special regions of interest, and to develop and apply methods for detecting QTL with parent-of-origin effects. New marker linkage maps were derived and used in QTL analysis based on line-cross least squares regression-interval mapping. A decision tree for identifying QTL with parent-of-origin effects was developed based on tests against the Mendelian mode of expression. Empirical significance thresholds were derived at chromosomewise and genomewise levels using specialized permutation strategies to create data under the null hypothesis appropriate for each test. Significance thresholds derived by the permutation tests were validated based on simulation of a pedigree and data structure similar to the Berkshire-Yorkshire population. The addition of 33 markers resulted in the discovery of 29 new QTL at the 5% chromosomewise level using the Mendelian model of analysis. Thirteen of the original QTL were no longer significant at the 5% chromosomewise level. A total of 33 QTL with parent-of-origin effects were identified, including QTL with paternal expression for backfat and loin muscle area on chromosome 2, near IGF2, and QTL with maternal expression for drip loss and reflectance on chromosome 9. Tests for imprinting against Mendelian expression identified much fewer QTL with parent-of-origin effects than tests based on significance of paternal and maternal alleles, which have been used in other studies. The detected QTL and their identified mode of expression will allow further research in these QTL regions and their utilization in marker-assisted improvement of meat quality.  相似文献   

12.
A genome-wide scan for QTL affecting economically important traits in beef production was performed using an F(2) resource family from a Japanese Black x Limousin cross, where 186 F(2) animals were measured for growth, carcass, and meat-quality traits. All family members were genotyped for 313 informative microsatellite markers that spanned 2,382 cM of bovine autosomes. The centromeric region of BTA2 contained significant QTL (i.e., exceeding the genome-wide 5% threshold) for 5 carcass grading traits [LM area, beef marbling standards (BMS) number, luster, quality grade, and firmness), 8 computer image analysis (CIA) traits [LM lean area, ratio of fat area (RFA) to LM area, LM area, RFA to musculus (M.) trapezius area, M. trapezius lean area, M. semispinalis lean area, RFA to M. semispinalis area, and RFA to M. semispinalis capitis area], and 5 meat quality traits (contents of CP, crude fat, moisture, C16:1, and C18:2 of LM). A significant QTL for withers height was detected at 80.3 cM on BTA5. We detected significant QTL for the C14:0 content in backfat and C14:0 and C14:1 content in intermuscular fat around the 62.3 to 71.0 cM region on BTA19 and for C14:0, C14:1, C18:1, and C16:0 content and ratio of total unsaturated fatty acid content to total SFA content in intramuscular fat at 2 different regions on BTA19 (41.1 cM for C14:1 and 62.3 cM for the other 4 traits). Overall, we identified 9 significant QTL regions controlling 27 traits with genome-wide significance of 5%; of these, 22 traits exceeded the 1% genome-wide threshold. Some of the QTL affecting meat quality traits detected in this study might be the same QTL as previously reported. The QTL we identified need to be validated in commercial Japanese Black cattle populations.  相似文献   

13.
This study presents a new method that combines QTL mapping and gene introgression. The effectiveness of this method for simultaneous detection and introgression of a desirable QTL from a donor line into a recipient line was evaluated by simulation. For evaluation, we used the fourth backcross generation of 2 inbred lines. The difference between the 2 lines for the trait of interest was described entirely by 1 QTL, with the donor line carrying the superior allele. Nine scenarios, combinations of 3 heritabilities (h(2) = 0.10, 0.05, or 0.01) and 3 population sizes (N = 100, 500, or 1,000) were considered in the simulation. Selection of parents for the next backcross was based solely upon the estimated probability of carrying the superior allele after a QTL analysis. Estimates of the QTL location and allele substitution effect in most scenarios were comparable to the true values. However (with either small h(2) or N) the QTL allele substitution effect was underestimated, and location was also biased. The SE of the estimates decreased with increasing N. The retained donor chromosome segment and linkage drag were close to the expected values from other published work. In general, combined detection and introgression of genes underlying desirable traits not only saves at least 1 generation, but also it ensures that the desirable QTL is introgressed where its function is simultaneously tested in a planned environment and recipient genome structure.  相似文献   

14.
We used a half-sib family of purebred Japanese Black (Wagyu) cattle to locate economically important quantitative trait loci. The family was composed of 348 fattened steers, 236 of which were genotyped for 342 microsatellite markers spanning 2,664 cM of 29 bovine autosomes. The genome scan revealed evidence of 15 significant QTL (<5% chromosome-wise level) affecting growth and carcass traits. Of the 15 QTL, six QTL were significant at the 5% experiment-wise level and were located in bovine chromosomes (BTA) 4, 5, and 14. We analyzed these three chromosomes in more detail in the 348 steers, with an average marker interval of 1.2 cM. The second scan revealed that the same haplotype of the BTA 4 region (52 to 67 cM) positively affected LM area and marbling. We confirmed the QTL for carcass yield estimate on BTA 5 in the region of 45 to 54 cM. Five growth-related QTL located on BTA 14, including slaughter and carcass weights, were positively affected by the same region of the haplotype of BTA 14 (29-51 cM). These data should provide a useful reference for further marker-assisted selection in the family and positional cloning research. The research indicates that progeny design with moderate genotyping efforts is a powerful method for detecting QTL in a purebred half-sib family.  相似文献   

15.
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 785 F2 animals with carcass information and their parents were typed for molecular markers covering the entire porcine genome. Linkage was studied between these markers and eight meat quality traits. Quantitative trait locus analyses were performed using interval mapping by regression under two genetic models: 1) the line-cross approach, where the founder lines were assumed to be fixed for different QTL alleles and 2) a half-sib model where a unique allele substitution effect was fitted within each of the 38 half-sib families. The line-cross approach included tests for genomic imprinting and sex-specific QTL effects. In total, three genome-wide significant and 26 suggestive QTL were detected. The significant QTL on chromosomes 3, 4, and 13, affecting meat color, were only detected under the half-sib model. Failure of the line-cross approach to detect the meat color QTL suggests that the founder lines have similar allele frequencies for these QTL. This study provides information on new QTL affecting meat quality traits. It also shows the benefit of analyzing experimental data under different genetic and statistical models.  相似文献   

16.
李凯年 《饲料广角》2001,(23):22-22
大豆异黄酮(ISF)是一种可能影响瘦肉和脂肪沉积的日粮添加剂。ISF是二酚化合物,是3种自然产生的植物雌激素之一。在结构和功能上与天然雌激素类似,能与雌激素受体微弱结合,引起与天然雌激素的竞争。由于这种雌激素样功能,ISF作为一种降低动物脂肪沉积的饲料添加剂可能有效。Cook(1998)报告,添加ISF(1.585g/kg日粮)可以提高生长速度和肌肉生长,而对6~32kg体重猪的胴体脂肪没有影响。Payne等(2001)报告,向玉米-大豆蛋白浓缩日粮(CSPC)中加ISF,可以提高胴体瘦肉率和减少胴体  相似文献   

17.
This study was conducted to detect quantitative trait loci (QTL) affecting growth and beef carcass fatness traits in an experimental population of Angus and Brahman crossbreds. The three-generation mapping population was generated with 602 progeny from 29 reciprocal backcross and three F2 full-sib families, and 417 genetic markers were used to produce a sex-averaged map of the 29 autosomes spanning 2,642.5 Kosambi cM. Alternative interval-mapping approaches were applied under line-cross (LC) and random infinite alleles (RA) models to detect QTL segregating between and within breeds. A total of 35 QTL (five with genomewide significant and 30 with suggestive evidence for linkage) were found on 19 chromosomes. One QTL affecting yearling weight was found with genomewide significant evidence for linkage in the interstitial region of bovine autosome (BTA) 1, and an additional 19 QTL were detected with suggestive evidence for linkage under the LC model. Many of these QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects the fact that heterosis for growth is known to be appreciable in crosses among Brahman and British breeds. Four QTL affecting growth were detected with genomewide significant evidence for linkage under the RA model on BTA 2 and BTA 6 for birth weight, BTA 5 for yearling weight, and BTA 23 for hot carcass weight. An additional 11 QTL were detected with suggestive evidence for linkage under the RA model. None of the QTL (except for yearling weight on BTA 5) detected under the RA model were found by the LC analyses, suggesting the segregation of alternate alleles within one or both of the parental breeds. Our results reveal the utility of implementing both the LC and RA models to detect dominant QTL and also QTL with similar allele frequency distributions within parental breeds.  相似文献   

18.
The objective of this study was to identify quantitative trait loci for economically important traits in two families segregating an inactive copy of the myostatin gene. Two half-sib families were developed from a Belgian Blue x MARC III (n = 246) and a Piedmontese x Angus (n = 209) sire. Traits analyzed were birth, weaning, and yearling weight (kg); preweaning average daily gain (kg/d); postweaning average daily gain (kg/d); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of the myostatin gene was removed using phase information from six microsatellite markers flanking the locus. Interactions of the myostatin gene with other loci throughout the genome were also evaluated: The objective was to use markers in each family, scanning the genome approximately every 25 to 30 centimorgans (cM) on 18 autosomal chromosomes, excluding 11 autosomal chromosomes previously analyzed. A total of 89 markers, informative in both families, were used to identify genomic regions potentially associated with each trait. In the family of Belgian Blue inheritance, a significant QTL (expected number of false-positives = 0.025) was identified for marbling score on chromosome 3. Suggestive QTL for the same family (expected number of false-positives = 0.5) were identified for retail product yield on chromosome 3, for hot carcass weight and postweaning average daily gain on chromosome 4, for fat depth and marbling score on chromosome 8, for 14-d Warner-Bratzler shear force on chromosome 9, and for marbling score on chromosome 10. Evidence suggesting the presence of an interaction for 3-d Warner-Bratzler shear force between the myostatin gene and a QTL on chromosome 4 was detected. In the family of Piedmontese and Angus inheritance, evidence indicates the presence of an interaction for fat depth between the myostatin gene and chromosome 8, in a similar position where the evidence suggests the presence of a QTL for fat depth in the family with Belgian Blue inheritance. Regions identified underlying QTL need to be assessed in other populations. Although the myostatin gene has a considerable effect, other loci with more subtle effects are involved in the expression of the phenotype.  相似文献   

19.
20.
The detection of quantitative trait loci (QTL) of behavioural traits has mainly been focussed on mouse and rat. With the rapid development of molecular genetics and the statistical tools, QTL mapping for behavioural traits in farm animals is developing. In chicken, a total of 30 QTL involved in pecking-related traits, open-field behaviour, tonic immobility, response to novel objects, and response to a restraint test were detected in different studies. In the search for a useful early predictor for feather pecking (FP) behaviour in adult laying hens, the following was found: FP in young animals is not a predictor for FP in adult animals, however, open-field behaviour in young animals is genetically correlated with FP in adult hens. Before the implementation of FP behaviour or open-field behaviour in breeding programmes, it is essential to know more about the correlation between these behavioural traits and also their relationship with production traits. Nevertheless, with the QTL for behavioural traits and the chicken genome sequence in progress, a better understanding of the underlying genetic mechanisms of behavioural traits will be feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号