首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forests accumulate much less carbon than the amount fixed through photosynthesis because of an almost equally large opposing flux of CO2 from the ecosystem. Most of the return flux to the atmosphere is through soil respiration, which has two major sources, one heterotrophic (organisms decomposing organic matter) and one autotrophic (roots, mycorrhizal fungi and other root-associated microbes dependent on recent photosynthate). We used tree-girdling to stop the flow of photosynthate to the belowground system, hence, blocking autotrophic soil activity in a 120-yr-old boreal Picea abies forest. We found that at the end of the summer, two months after girdling, the treatment had reduced soil respiration by up to 53%. This figure adds to a growing body of evidence indicating (t-test, d.f. = 7, p < 0.05) that autotrophic respiration may contribute more to total soil respiration in boreal (mean 53 ± 2%) as compared to temperate forests (mean 44 ± 3%). Our data also suggests that there is a seasonal hysteresis in the response of total soil respiration to changes in temperature. We propose that this reflects seasonality in the tree below-ground carbon allocation.  相似文献   

2.
If an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution. Seedlings were grown in chambers in elevated CO(2) (700 μmol mol(-1)) at three temperature conditions, ambient (tracking diurnal and seasonal variation in outdoor temperature), ambient +3 °C and ambient +6 °C, which produced mean growing season temperatures of 23, 26 and 29 °C, respectively. A group of seedlings was also grown in ambient [CO(2)] and ambient temperature as a check of the growth response to elevated [CO(2)]. Net photosynthesis and leaf respiration, photosynthetic capacity (V(cmax), J(max) and triose phosphate utilization (TPU)) and chlorophyll fluorescence, as well as seedling height, diameter and biomass, were measured during one growing season. Higher growth temperatures reduced net photosynthesis, increased respiration and reduced height, diameter and biomass production. Maximum net photosynthesis at saturating [CO(2)] and maximum rate of electron transport (J(max)) were lowest throughout the growing season in seedlings grown in the highest temperature regime. These parameters were also lower in June, but not in July or September, in seedlings grown at +3 °C above ambient, compared with those grown in ambient temperature, indicating no impairment of photosynthetic capacity with a moderate increase in air temperature. An unusual and potentially important observation was that foliar respiration did not acclimate to growth temperature, resulting in substantially higher leaf respiration at the higher growth temperatures. Lower net carbon assimilation was correlated with lower growth at higher temperatures. Total biomass at the end of the growing season decreased in direct proportion to the increase in growth temperature, declining by 6% per 1 °C increase in mean growing season temperature. Our observations suggest that increases in air temperature above current ambient conditions will be detrimental to Q. rubra seedlings growing near the southern limit of the species range.  相似文献   

3.
Characterization of soil respiration rates and delta(13)C values of soil-respired CO(2) are often based on measurements at a particular time of day. A study by Gower et al. (2001) in a boreal forest demonstrated diurnal patterns of soil CO(2) flux using transparent measurement chambers that included the understory vegetation. It is unclear whether these diurnal patterns were solely the result of photosynthetic CO(2) uptake during the day by the understory or whether there were underlying trends in soil respiration, perhaps driven by plant root allocation, as recently demonstrated in Mediterranean oak savannah. We undertook intensive sampling campaigns in a boreal Picea abies L. Karst. forest to investigate whether diurnal variations in soil respiration rate and stable carbon isotope ratio (delta(13)C) exist in this ecosystem when no understory vegetation is present in the measurement chamber. Soil respiration rates and delta(13)C were measured on plots in which trees were either girdled (to terminate the fraction of soil respiration directly dependent on recent photosynthate from the trees), or not girdled, every 4 h over two 48-hour cycles during the growth season of 2004. Shoot photosynthesis and environmental parameters were measured concurrently. No diurnal patterns in soil respiration rates and delta(13)C were observed in either treatment, despite substantial variations in climatic conditions and shoot photosynthetic rates in non-girdled trees. Consequently, assessment of daily soil respiration rates and delta(13)C in boreal forest systems by single, instantaneous daily measurements does not appear to be confounded by substantial diurnal variation.  相似文献   

4.
Biochemical models of photosynthesis suggest that rising temperatures will increase rates of net carbon dioxide assimilation and enhance plant responses to increasing atmospheric concentrations of CO(2). We tested this hypothesis by evaluating acclimation and ontogenetic drift in net photosynthesis in seedlings of five boreal tree species grown at 370 and 580 &mgr;mol mol(-1) CO(2) in combination with day/night temperatures of 18/12, 21/15, 24/18, 27/21, and 30/24 degrees C. Leaf-area-based rates of net photosynthesis increased between 13 and 36% among species in plants grown and measured in elevated CO(2) compared to ambient CO(2). These CO(2)-induced increases in net photosynthesis were greater for slower-growing Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb., and Larix laricina (Du Roi) K. Koch than for faster-growing Populus tremuloides Michx. and Betula papyrifera Marsh., paralleling longer-term growth differences between CO(2) treatments. Measures at common CO(2) concentrations revealed that net photosynthesis was down-regulated in plants grown at elevated CO(2). In situ leaf gas exchange rates varied minimally across temperature treatments and, contrary to predictions, increasing growth temperatures did not enhance the response of net photosynthesis to elevated CO(2) in four of the five species. Overall, the species exhibited declines in specific leaf area and leaf nitrogen concentration, and increases in total nonstructural carbohydrates in response to CO(2) enrichment. Consequently, the elevated CO(2) treatment enhanced rates of net photosynthesis much more when expressed on a leaf area basis (25%) than when expressed on a leaf mass basis (10%). In all species, rates of leaf net CO(2) exchange exhibited modest declines with increasing plant size through ontogeny. Among the conifers, enhancements of photosynthetic rates in elevated CO(2) were sustained through time across a wide range of plant sizes. In contrast, for Populus tremuloides and B. papyrifera, mass-based photosynthetic rates did not differ between CO(2) treatments. Overall, net photosynthetic rates were highly correlated with relative growth rate as it varied among species and treatment combinations through time. We conclude that interspecific variation may be a more important determinant of photosynthetic response to CO(2) than temperature.  相似文献   

5.
In the present experiment, the single and combined effects of elevated temperature and ozone (O(3)) on four silver birch genotypes (gt12, gt14, gt15 and gt25) were studied in an open-air field exposure design. Above- and below-ground biomass accumulation, stem growth and soil respiration were measured in 2008. In addition, a (13)C-labelling experiment was conducted with gt15 trees. After the second exposure season, elevated temperature increased silver birch above- and below-ground growth and soil respiration rates. However, some of these variables showed that the temperature effect was modified by tree genotype and prevailing O(3) level. For instance, in gt14 soil respiration was increased in elevated temperature alone (T) and in elevated O(3) and elevated temperature in combination (O(3) + T) treatments, but in other genotypes O(3) either partly (gt12) or totally nullified (gt25) temperature effects on soil respiration, or acted synergistically with temperature (gt15). Before leaf abscission, all genotypes had the largest leaf biomass in T and O(3) + T treatments, whereas at the end of the season temperature effects on leaf biomass depended on the prevailing O(3) level. Temperature increase thus delayed and O(3) accelerated leaf senescence, and in combination treatment O(3) reduced the temperature effect. Photosynthetic : non-photosynthetic tissue ratios (P : nP ratios) showed that elevated temperature increased foliage biomass relative to woody mass, particularly in gt14 and gt12, whereas O(3) and O(3) + T decreased it most clearly in gt25. O(3)-caused stem growth reductions were clearest in the fastest-growing gt14 and gt25, whereas mycorrhizal root growth and sporocarp production increased under O(3) in all genotypes. A labelling experiment showed that temperature increased tree total biomass and hence (13)C fixation in the foliage and roots and also label return was highest under elevated temperature. Ozone seemed to change tree (13)C allocation, as it decreased foliar (13)C excess amount, simultaneously increasing (13)C excess obtained from the soil. The present results suggest that warming has potential to increase silver birch growth and hence carbon (C) accumulation in tree biomass, but the final magnitude of this C sink strength is partly counteracted by temperature-induced increase in soil respiration rates and simultaneous O(3) stress. Silver birch populations' response to climate change will also largely depend on their genotype composition.  相似文献   

6.
We compared vertical gradients in leaf gas exchange, CO(2) concentrations, and refixation of respired CO(2) in stands of Populus tremuloides Michx., Pinus banksiana Lamb. and Picea mariana (Mill.) B.S.P. at the northern and southern boundaries of the central Canadian boreal forest. Midsummer gas exchange rates in Populus tremuloides were over twice those of the two conifer species, and Pinus banksiana rates were greater than Picea mariana rates. Gas exchange differences among the species were attributed to variation in leaf nitrogen concentration. Despite these differences, ratios of intercellular CO(2) to ambient CO(2) (c(i)/c(a)) were similar among species, indicating a common balance between photosynthesis and stomatal conductance in boreal trees. At night, CO(2) concentrations were high and vertically stratified within the canopy, with maximum concentrations near the soil surface. Daytime CO(2) gradients were reduced and concentrations throughout the canopy were similar to the CO(2) concentration in the well-mixed atmosphere above the canopy space. Photosynthesis had a diurnal pattern opposite to the CO(2) profile, with the highest rates of photosynthesis occurring when CO(2) concentrations and gradients were lowest. After accounting for this diurnal interaction, we determined that photosynthesizing leaves in the understory experienced greater daily CO(2) concentrations than leaves at the top of the canopy. These elevated CO(2) concentrations were the result of plant and soil respiration. We estimated that understory leaves in the Picea mariana and Pinus banksiana stands gained approximately 5 to 6% of their carbon from respired CO(2).  相似文献   

7.
Respiration of the rhizosphere in a beech (Fagus sylvatica L.) forest was calculated by subtracting microbial respiration associated with organic matter decomposition from daily mean soil CO2 efflux. We used a semi-mechanistic soil organic matter model to simulate microbial respiration, which was validated against "no roots" data from trenched subplots. Rhizosphere respiration exhibited pronounced seasonal variation from 0.2 g C m(-2) day(-1) in January to 2.3 g C m(-2) day(-1) in July. Rhizosphere respiration accounted for 30 to 60% of total soil CO2 efflux, with an annual mean of 52%. The high Q10 (3.9) for in situ rhizosphere respiration was ascribed to the confounding effects of temperature and changes in root biomass and root and shoot activities. When data were normalized to the same soil temperature based on a physiologically relevant Q10 value of 2.2, the lowest values of temperature-normalized rhizosphere respiration were observed from January to March, whereas the highest value was observed in early July when fine root growth is thought to be maximal.  相似文献   

8.
The two main components of soil respiration, i.e., root/rhizosphere and microbial respiration, respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter, respectively. To model the carbon cycle and predict the carbon source/sink of forest ecosystems, we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations. Root/rhizosphere and soil microbial respiration have been shown to increase, decrease and remain unchanged under elevated CO2 concentrations. A significantly positive relationship between root biomass and root/rhizosphere respiration has been found. Fine roots respond more strongly to elevated CO2 concentrations than coarse roots. Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations. Microbial biomass and activity are related or unrelated to rates of microbial respiration. Because substrate availability drives microbial metabolism in soils, it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production. Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 386–393 [译自: 植物生态学报]  相似文献   

9.
Wieser G 《Tree physiology》1997,17(7):473-477
Winter CO(2) gas exchange of the last three flushes of cembran pine (Pinus cembra L.) was studied under ambient conditions at the alpine timberline, an ecotone with strong seasonal changes in climate. During the coldest months of the year, December to March, gas exchange was almost completely suppressed and even the highest irradiances and temperatures did not cause a significant increase in net photosynthesis compared to spring and fall. In general, daily CO(2) balance was negative between December and March except during extended warm periods in late winter. However, because twig respiration was also reduced to a minimum during the December-March period, daily carbon losses were minimal. Total measured carbon loss during the winter months was small, equalling the photosynthetic production of one to two warm days in spring or summer when average air temperature was above 6 degrees C.  相似文献   

10.
Turbulent fluxes of carbon, water and energy were measured at the Wind River Canopy Crane, Washington, USA from 1999 to 2004 with eddy-covariance instrumentation above (67 m) and below (2.5 m) the forest canopy. Here we present the decomposition of net ecosystem exchange of carbon (NEE) into gross primary productivity (GPP), ecosystem respiration (R(eco)) and tree canopy net CO(2) exchange (DeltaC) for an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)-western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest. Significant amounts of carbon were recycled within the canopy because carbon flux measured at the below-canopy level was always upward. Maximum fluxes reached 4-6 micromol m(-2) s(-1) of CO(2) into the canopy air space during the summer months, often equaling the net downward fluxes measured at the above-canopy level. Ecosystem respiration rates deviated from the expected exponential relationship with temperature during the summer months. An empirical ecosystem stress term was derived from soil water content and understory flux data and was added to the R(eco) model to account for attenuated respiration during the summer drought. This attenuation term was not needed in 1999, a wet La Ni?a year. Years in which climate approximated the historical mean, were within the normal range in both NEE and R(eco), but enhanced or suppressed R(eco) had a significant influence on the carbon balance of the entire stand. In years with low respiration the forest acts as a strong carbon sink (-217 g C m(-2) year(-1)), whereas years in which respiration is high can turn the ecosystem into a weak to moderate carbon source (+100 g C m(-2) year(-1)).  相似文献   

11.
We studied effects of soil temperature on shoot and root extension growth and biomass and carbohydrate allocation in Scots pine (Pinus sylvestris L.) seedlings at the beginning of the growing season. One-year-old Scots pine seedlings were grown for 9 weeks at soil temperatures of 5, 9, 13 and 17 degrees C and an air temperature of 17 degrees C. Date of bud burst, and the elongation of shoots and roots were monitored. Biomass of current and previous season roots, stem and needles was determined at 3-week intervals. Starch, sucrose, glucose, fructose, sorbitol and inositol concentrations were determined in all plant parts except new roots. The timing of both bud burst and the onset of root elongation were unaffected by soil temperature. At Week 9, height growth was reduced and root extension growth was much less at a soil temperature of 5 degrees C than at higher soil temperatures. Total seedling biomass was lowest in the 5 degrees C soil temperature treatment and highest in the 13 degrees C treatment, but there was no statistically significant difference in total biomass between seedlings grown at 13 and 17 degrees C. In response to increasing soil temperature, below-ground biomass increased markedly, resulting in a slightly higher allocation of biomass to below-ground parts. Among treatments, root length was greatest at a soil temperature of 17 degrees C. The sugar content of old roots was unaffected by soil temperature, but the sugar content of new needles increased with increasing soil temperature. The starch content of all seedling parts was lowest in seedlings grown at 17 degrees C. Otherwise, soil temperature had no effect on seedling starch content.  相似文献   

12.
Jiang L  Shi F  Li B  Luo Y  Chen J  Chen J 《Tree physiology》2005,25(9):1187-1195
The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.  相似文献   

13.
Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

14.
We measured seasonal fine root respiration rate in situ while controlling chamber temperature and [CO(2)]. Atmospheric [CO(2)] ([CO(2)](a)) and measured soil [CO(2)] ([CO(2)](s)) were alternately delivered to a cuvette containing intact fine roots of eastern white pine (Pinus strobus L.). Respiration rates were consistently higher in [CO(2)](a) than in [CO(2)](s) and were almost three times higher during midsummer. Respiration rates were immediately reversed after returning to the alternate [CO(2)] (i.e., [CO(2)](a) --> [CO(2)](s) --> [CO(2)](a), and vice versa) suggesting a direct effect of elevated [CO(2)] on apparent respiration. Soil-[CO(2)]-based respiration rates decreased with increasing [CO(2)] on a dry mass and tissue [N] basis. We conclude that estimates of soil CO(2) flux and soil carbon budgets may be improved by more completely accounting for the rhizosphere microclimate (i.e., soil temperature and [CO(2)](s)) during measurement of fine root respiration.  相似文献   

15.
中亚热带天然林改造成人工林后土壤呼吸的变化特征   总被引:1,自引:0,他引:1  
【目的】研究中亚热带常绿阔叶林(天然林)改造成人工林后土壤碳排放量的变化及主要影响因子,为评估森林类型转换对土壤碳排放的影响提供科学依据。【方法】在福建农林大学西芹教学林场的常绿阔叶林及由其改造而来的38年生闽楠人工林与35年生杉木人工林中分别设置4块20 m×20 m样地,利用Li-8100土壤碳通量观测系统于2014年9月—2016年9月进行定点观测,并同期观测土壤温度、含水量、有机碳含量(SOC)、微生物生物量碳含量(MBC)、可溶性有机碳含量(DOC)、0~20 cm土层细根生物量和年凋落物量及凋落物碳氮比(C/N)。【结果】常绿阔叶林改造成闽楠(38年后)和杉木人工林(35年后),年均土壤碳排放通量由16. 22显著降为12. 71和4. 83 tC·hm-2a-1,分别减少21. 60%和70. 20%;各林分类型的土壤呼吸温度敏感性Q10值表现为常绿阔叶林(1. 97)<闽楠人工林(2. 03)<杉木人工林(2. 91),转换为杉木人工林后,Q10值显著升高(P<0. 05);土壤温度能分别解释常绿阔叶林、闽楠人工林与杉木人工林土壤呼吸速率变化的89. 70%、88. 50%和87. 90%,土壤呼吸速率和土壤含水量相关不显著(P>0. 05);土壤呼吸速率和SOC、MBC、DOC、年凋落物量及0~20 cm土层细根生物量均极显著正相关(P<0. 01);土壤呼吸温度敏感性指数Q10值和凋落物C/N极显著正相关(P<0. 01),而与年均土壤呼吸速率及MBC极显著负相关(P<0. 01);进一步分析发现土壤MBC和SOC含量是影响土壤呼吸速率的2个最重要因子,而凋落物C/N在影响土壤呼吸温度敏感性中的贡献最大。【结论】中亚热带地区常绿阔叶林改造成闽楠(38年)或杉木(35年)人工林后,土壤碳排放通量显著降低。林分类型转换后树种组成和林分结构发生改变,凋落物数量、质量及细根生物量显著降低,土壤SOC和MBC含量显著下降可共同导致土壤呼吸通量的下降。土壤温度是3种林分类型土壤呼吸季节变化的主导因素,而土壤总有机碳库和土壤微生物量碳库的差异是不同林分之间土壤呼吸差异的主导因素,凋落物C/N对土壤呼吸的Q10影响最大。为提高模型预测森林类型转换影响土壤碳排放的精度,应综合考虑土壤有机碳库、易变性有机碳库及底物质量的变化。  相似文献   

16.
We evaluated annual productivity and carbon fluxes over the Fontainebleau forest, a large heterogeneous forest region of 17,000 ha, in terms of species composition, canopy structure, stand age, soil type and water and mineral resources. The model is a physiological process-based forest ecosystem model coupled with an allocation model and a soil model. The simulations were done stand by stand, i.e., 2992 forest management units of simulation. Some input parameters that are spatially variable and to which the model is sensitive were calculated for each stand from forest inventory attributes, a network of 8800 soil pits, satellite data and field measurements. These parameters are: (1) vegetation attributes: species, age, height, maximal leaf area index of the year, aboveground biomass and foliar nitrogen content; and (2) soil attributes: available soil water capacity, soil depth and soil carbon content. Main outputs of the simulations are wood production and carbon fluxes on a daily to yearly basis. Results showed that the forest is a carbon sink, with a net ecosystem exchange of 371 g C m(-2) year(-1). Net primary productivity is estimated at 630 g C m(-2) year(-1) over the entire forest. Reasonably good agreement was found between simulated trunk relative growth rate (2.74%) and regional production estimated from the National Forest Inventory (IFN) (2.52%), as well as between simulated and measured annual wood production at the forest scale (about 71,000 and 68,000 m(3) year(-1), respectively). Results are discussed species by species.  相似文献   

17.
We estimated carbon allocation to belowground processes in unfertilized and fertilized red pine (Pinus resinosa Ait.) plantations in northern Wisconsin to determine how soil fertility affects belowground allocation patterns. We used soil CO(2) efflux and litterfall measurements to estimate total belowground carbon allocation (root production and root respiration) by the carbon balance method, established root-free trenched plots to examine treatment effects on microbial respiration, estimated fine root production by sequential coring, and developed allometric equations to estimate coarse root production. Fine root production ranged from 150 to 284 g m(-2) year(-1) and was significantly lower for fertilized plots than for unfertilized plots. Coarse root production ranged from 60 to 90 g m(-2) year(-1) and was significantly lower for fertilized plots than for unfertilized plots. Annual soil CO(2) fluxes ranged from 331 to 541 g C m(-2) year(-1) and were significantly lower for fertilized plots than for unfertilized plots. Annual foliage litterfall ranged from 110 to 187 g C m(-2) year(-1) and was significantly greater for fertilized plots than for unfertilized plots. Total belowground carbon allocation ranged from 188 to 395 g C m(-2) year(-1) and was significantly lower for fertilized than for unfertilized plots. Annual soil CO(2) flux was lower for trenched plots than for untrenched plots but did not differ between fertilized and unfertilized trenched plots. Collectively, these independent estimates suggest that fertilization decreased the relative allocation of carbon belowground.  相似文献   

18.
Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings were grown in a 2 x 2 factorial design in enclosed mesocosms at ambient temperature or 3.5 degrees C above ambient, and at ambient CO2 concentration ([CO2]) or 179 ppm above ambient. Two additional mesocosms were maintained as open controls. We measured the extent of mycorrhizal infection, foliar nitrogen (N) concentrations on both a weight basis (%N) and area basis (Narea), and foliar delta15N signatures (15N/14N ratios) from summer 1993 through summer 1997. Mycorrhizal fungi had colonized nearly all root tips across all treatments by spring 1994. Elevated [CO2] lowered foliar %N but did not affect N(area), whereas elevated temperature increased both foliar %N and Narea. Foliar delta15N was initially -1 per thousand and dropped by the final harvest to between -4 and -5 per thousand in the enclosed mesocosms, probably because of transfer of isotopically depleted N from mycorrhizal fungi. Based on the similarity in foliar delta15N among treatments, we conclude that mycorrhizal fungi had similar N allocation patterns across CO2 and temperature treatments. We combined isotopic and Narea data for 1993-94 to calculate fluxes of N for second- and third-year needles. Yearly N influxes were higher in second-year needles than in third-year needles (about 160 and 50% of initial leaf N, respectively), indicating greater sink strength in the younger needles. Influxes of N in second-year needles increased in response to elevated temperature, suggesting increased N supply from soil relative to plant N demands. In the elevated temperature treatments, N effluxes from third-year needles were higher in seedlings in elevated [CO2] than in ambient [CO2], probably because of increased N allocation below ground. We conclude that N allocation patterns shifted in response to the elevated temperature and [CO2] treatments in the seedlings but not in their fungal symbionts.  相似文献   

19.
Relatively little is known about the implications of atmospheric CO2 enrichment for tree responses to biotic disturbances such as folivory. We examined the combined effects of elevated CO2 concentration ([CO2]) and defoliation on growth and physiology of sugar maple (Acer saccharum Marsh.) and trembling aspen (Populus tremuloides Michx.). Seedlings were planted in the ground in eight open-top chambers. Four chambers were ventilated with CO2-enriched air (ambient + 283 micromol mol-1) and four chambers were supplied with ambient air. After 6 weeks of growth, half of the leaf area was removed on a subset of seedlings of each species in each CO2 treatment. We monitored subsequent biomass gain and allocation, along with leaf gas exchange and chemistry. Defoliation did not significantly affect final seedling biomass in either species or CO2 treatment. Growth recovery following defoliation was associated with increased allocation to leaf mass in maple and a slight enhancement of mean photosynthesis in aspen. Elevated [CO2] did not significantly affect aspen growth, and the observed stimulation of maple growth was significant only in mid-season. Correspondingly, simulated responses of whole-tree photosynthesis to elevated [CO2] were constrained by a decrease in photosynthetic capacity in maple, and were partially offset by reductions in specific leaf area and biomass allocation to foliage in aspen. There was a significant interaction between [CO2] and defoliation on only a few of the measured traits. Thus, the data do not support the hypothesis that atmospheric CO2 enrichment will substantially alter tree responses to folivory. However, our findings do provide further indication that regeneration-stage growth rates of certain temperate tree species may respond only moderately to a near doubling of atmospheric [CO2].  相似文献   

20.
The terrestrial biosphere is currently thought to be a significant sink for atmospheric carbon (C). However, the future course of this sink under rising [CO2] and temperature is uncertain. Some contrasting possibilities that have been suggested are: that the sink is currently increasing through CO2 fertilization of plant growth but will decline over the next few decades because of CO2 saturation and soil nutrient constraints; that the sink will continue to increase over the next century because rising temperature will stimulate the release of plant-available soil nitrogen (N) through increased soil decomposition; that, alternatively, the sink will not be sustained because the additional soil N released will be immobilized in the soil rather than taken up by plants; or that the sink will soon become negative because loss of soil C through temperature stimulation of soil respiration will override any CO2 or temperature stimulation of plant growth. Soil N immobilization is thus a key process; however, it remains poorly understood. In this paper we use a forest ecosystem model of plant-soil C and N dynamics to gauge the importance of this uncertainty for predictions of the future C sink of forests under rising [CO2] and temperature. We characterize soil N immobilization by the degree of variability of soil N:C ratios assumed in the model. We show that the modeled C sink of a stand of Norway spruce (Picea abies (L.) Karst.) in northern Sweden is highly sensitive to this assumption. Under increasing temperature, the model predicts a strong C sink when soil N:C is inflexible, but a greatly reduced C sink when soil N:C is allowed to vary. In complete contrast, increasing atmospheric [CO2] leads to a much stronger C sink when soil N:C is variable. When both temperature and [CO2] increase, the C sink strength is relatively insensitive to variability in soil N:C; significantly, however, with inflexible soil N:C the C sink is primarily a temperature response whereas with variable soil N:C, it is a combined temperature-CO2 response. Simulations with gradual increases of temperature and [CO2] indicate a sustained C sink over the next 100 years, in contrast to recent claims that the C sink will decline over the next few decades. Nevertheless, in using a relatively simple model, our primary aim is not to make precise predictions of the C sink over the next 100 years, but rather to highlight key areas of model uncertainty requiring further experimental clarification. Here we show that improved understanding of the processes underlying soil N immobilization is essential if we are to predict the future course of the forest carbon sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号