首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the determination of the pore-size distribution of untreated and thermally modified twin samples of Norway spruce (Picea abies (L.) Karst.) and sycamore maple (Acer pseudoplatanus L.) by means of mercury intrusion porosimetry. The investigations considered oven-dried and at 22 °C and 95 % relative humidity-conditioned samples. A special sample holder and a novel method for evacuation were developed for the measurements. This was necessary both to ensure that samples were positioned at a defined distance and the conditioned samples did not dry in an uncontrolled manner. The results clearly show that the climatic state influences the results. Thermal modification greatly alters the pore-size distribution of spruce. This can be largely attributed to the formation of intercellular spaces in the middle lamella as a result of cell-wall compression due to thermal modification. The alteration of the pore structure of maple due to thermal modification is not as pronounced as that of spruce.  相似文献   

2.
The pore size distribution and networks within the wood cell wall tend to decrease on drying wood from its green state having implications for water ingress and further processing such as in preservative treatment. Thermoporosity measurements using differential scanning calorimetry have been applied to determine the pore size distribution of green Pinus radiata wood and how well this pore network is retained on supercritical fluid (SCF) dewatering compared with kiln drying. Generally, in green sapwood, the majority of bound water was distributed in pore sizes less than 50 nm diameter with only a small proportion present in pore sizes between 50 and 200 nm. On SCF dewatering, most bound water was found to reside in pore sizes <20 nm, consistent with dewatered wood being at fibre saturation point (FSP). Generally, on rewetting dewatered, kiln- or oven-dried wood, proportionately less bound water was present compared with green wood, consistent with reduced pore sizes and network accessibility for water ingress. Furthermore, on rewetting, there were distinctions between earlywood and latewood (LW) sections with the LW sections having a statistically greater proportion of water occupying smaller-sized pores (<20 nm). There was also greater variability of pore size distributions on sample rewetting, inferring drying does not uniformly reduce pore size volumes. Analysis suggests the extent of variability was generally less in the rewetted dewatered wood sample compared to kiln- or oven-dried samples, which may be a consequence of SCF drying only to FSP.  相似文献   

3.
Thermal modification of wood is an environment-friendly alternative method for improving several properties of wood without the use of chemicals. This paper deals with the examination of color and chemical changes in spruce (Picea abies L.) and oak wood (Quercus robur F.) that occur due to thermal treatment. The thermal modification was performed at 160, 180, and 210 °C according to thermowood process. The color changes were measured by the spectrophotometer and described in the L*a*b* color system. Chemical changes were examined by wet chemistry methods, infrared spectroscopy and liquid chromatography. During the experiment, oak samples showed smaller color changes than spruce samples at all temperature values. During thermal modification, the content of cellulose, lignin, and extractives increases; however, the hemicellulose content drops by 58.85% (oak) and by 37.40% (spruce). In addition to deacetylation, new carbonyl and carboxyl groups are formed as a result of oxidation. Bonds in lignin (mainly β-O-4) and methoxyl groups are cleaved, and lignin is condensed at higher temperatures.  相似文献   

4.
The main objective of this study was to evaluate the effect of sample preparation on cell-wall density and porosity using gas pycnometry. Native and thermally modified twin samples of Norway spruce (Picea abies (L.) Karst.), sycamore maple (Acer pseudoplatanus L.), and European ash (Fraxinus excelsior L.) were analyzed. The samples differed in terms of shape, geometry, and climatic state. On the one hand, the samples were oven dry as usual and, on the other hand, conditioned at 22 °C and 95 % relative humidity. Furthermore, the samples were processed using solvent exchange drying. In addition to helium, nitrogen was used as a displacement gas. The tests show i.a. how this can lead to misinterpretation of the cell-wall density or porosity of wood determined by gas pycnometry. The results show that native spruce has a lower cell-wall density and higher porosity compared with native maple and ash. Due to thermal modification, the cell-wall densities are decreased. The investigations show that the determined cell-wall density and porosity of the wood are strongly dependent on the sample geometry and climatic state. The cell-wall densities of all investigated wood species in the conditioned state at 22 °C and 95 % relative humidity are significantly higher compared with the oven-dry cell-wall densities.  相似文献   

5.
The aim of this experiment was to impregnate thermally modified wood using an easy and cost-effective method. Industrially processed thermally modified European aspen (Populus tremula L.) and birch (Betula pubescens Ehrh.) were collected and secondarily treated at the laboratory scale with the preservatives tung oil, pine tar and Elit Träskydd (Beckers) using a simple and effective method. Preservative uptake and distribution in sample boards were evaluated using computed tomography (CT) and scanning electron microscopy (SEM) techniques. Preservative uptake and treatability in terms of void volume filled were found the highest in Beckers and the lowest in tung oil-treated samples. Thermally modified samples had lower treatability than their counterpart control samples. More structural changes after thermal modification, especially in birch, significantly reduced the preservative uptake and distribution. The differences of preservatives uptake near the end grain were high and then decreased near the mid position of the samples length as compared with similar type of wood sample. Non-destructive evaluation by CT scanning provided a very useful method to locate the preservative gradients throughout the sample length. SEM analysis enabled the visualization of the preservative deposits in wood cells at the microstructural level.  相似文献   

6.
Summary A new method for determining the fibre saturation point (FSP) of whole never-dried wood is described. Enthalpy of melting values from differential scanning calorimetry (DSC) experiments are used to calculate the proportion of non-freezing water. Two methods for calculating the FSP from the enthalpy data are described. FSP determinations were carried out on the commercially important West Australian eucalypt species, Eucalyptus marginata and Eucalyptus diversicolor and a plantation softwood, Pinus radiata. Results are reproducible and are corroborated by the traditional volumetric shrinkage method for determining the FSP. On all samples below 10 mg a low temperature endothermic peak is observed as a shoulder on the main peak. It is postulated that this is due to an intermediate layer of water between the freezing and non-freezing water.Use of the DSC at Curtin University of Technology, and the help of Mr. I. Sills is greatly appreciated. This and related work is supported by the Australian Govt. Department of Primary Industry and Energy (Forestry)  相似文献   

7.
The purpose of this study was to determine the effective refractive index of thermally modified Scots pine (Pinus sylvestris L.) wood specimens as a quantitative measure regarding the change of wood density which is due to the thermal modification. The refractive index of thermally modified Scots pine wood was obtained by introducing pine wood powder into an immersion liquid and measuring light backscattering with a homebuilt multifunction spectrophotometer. The present method provides useful information that in principle can be applied, for example, in the optimization of the thermal modification process and inspection of the quality of thermally modified wood.  相似文献   

8.
The fracture toughness of thermally modified beech (Fagus sylvatica L) and ash (Fraxinus excelsior L) wood under Mode I loading was quantified using Compact Tension (CT) specimens, loaded under steady-state crack propagation conditions. The influence of three heat-treatment levels and three moisture contents, as well as two crack propagation systems (RL and TL) was studied. Complete load–displacement records were analysed, and the initial slope, k init, critical stress intensity factor, K Ic, and specific fracture energy, G f, evaluated. In the case of both species, thermal modification was found to be significantly affect the material behaviour; the more severe the thermal treatment, the lower the values of K Ic and G f, with less difference being observed between the most severe treatments. Moisture content was also found to influence fracture toughness, but had a much less significant effect than the heat treatment.  相似文献   

9.
纤维饱和点概念的演变、测试方法及其应用   总被引:1,自引:0,他引:1  
纤维饱和点(FSP)是木材科学中早期提出的概念,距今已超过1个世纪,在木材-水分关系、物理力学性能等木材科学研究各领域均发挥了重要作用。相较于FSP概念的最初形式,其无论从定义形式还是从物理含义等方面都有了变化,从最初以木材内水分状态及其存在位置的定性描述朝着水分与木材结合形式差异、木材内水分势能边界方向发展。目前国内关于FSP的研究相对滞后,也未见系统的FSP测试原理和方法介绍。本研究对FSP概念演变与发展、测试方法及其优缺点进行系统分析,并在此基础上总结FSP在木材-水分关系、木材干燥技术、改性效果评价中的应用及其进一步发展方向。根据木材-水分关系研究的不同阶段,FSP概念可归纳为4种类型:第1类概念强调以物理力学性质转折点及水分存在位置定义FSP;第2类概念以木材细胞壁容纳水分极限作为FSP,简化了限制条件;第3类概念强调水分与木材结合形式差异,从吸、放热的热物理角度等进行阐述;第4类概念引入溶液热力学概念,将FSP视为木材内不同状态水分的相态边界,给出了FSP明确的物理含义。FSP测试方法可归纳为7类,包括外推法、溶剂排出法、压力板法、示差量热法、离心脱水法、核磁共振法和溶液热力学计算法,除外推法、溶液热力学计算法获得的FSP为计算值外,其他方法都可获得细胞壁内吸着水真实含量,测定的FSP明显高于传统引用的FSP平均值30%,但具体应用时应根据实际需求而定。FSP可进一步在木材干缩湿胀特性分析、木材干燥基准制定等方面发挥作用,同时在木材改性效果评价及改性处理后微观构造分析等领域均可应用。在FSP热力学概念基础上衍生的全含水率区间木材-水分关系的化学势表达方式,以及在此基础上发展而来的木材-水分相态图,将成为今后建立木材-水分关系的科学评价体系机制,并进一步服务于科研与生产。  相似文献   

10.
The kinetics of color changes in keyaki (Zelkova serrata Makino) and sugi (Cryptomeria japonica D. Don) wood during heat treatment were examined. The color of wood specimens treated at 90, 120, 150, and 180 °C was measured by an imaging spectrophotometer and expressed using CIELAB color parameters. At any treatment temperature, values for L* and $ \Updelta E_{ab}^{*} $ decreased and increased in both wood species, respectively, with increased treatment time. Changes in a* and b* varied depending on wood species and treatment temperature. The color changes were successfully analyzed using the kinetic approach applying time–temperature superposition method. This approach elucidated and accurately predicted color changes during heat treatment.  相似文献   

11.
Studying the impregnation and distribution of oil-based preservative in dried wood is complicated as wood is a nonhomogeneous, hygroscopic and porous material, and especially of anisotropic nature. However, this study is important since it has influence on the durability of wood. To enhance the durability of thermally modified wood, a new method for preservative impregnation is introduced, avoiding the need for external pressure or vacuum. This article presents a study on preservative distribution in thermally treated Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) sapwood using computed tomography scanning, light microscopy, and scanning electron microscopy. Secondary treatment of thermally modified wood was performed on a laboratory scale by impregnation with two types of preservatives, viz. Elit Träskydd (Beckers) and pine tar (tar), to evaluate their distribution in the wood cells. Preservative solutions were impregnated in the wood using a simple and effective method. Samples were preheated to 170 °C in a drying oven and immediately submerged in preservative solutions for simultaneous impregnation and cooling. Tar penetration was found higher than Beckers, and their distribution decreased with increasing sample length. Owing to some anatomical properties, uptake of preservatives was low in spruce. Besides, dry-induced interstitial spaces, which are proven important flow paths for seasoned wood, were not observed in this species.  相似文献   

12.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

13.
The effect of heat treatment on the surface colour and hygroscopic properties of pine wood were investigated in this study. Boards of Scots pine wood (Pinus sylvestris L.) were subjected to thermal treatment at 200°C, for 4, 6, and 8 h. The change of equilibrium moisture content and density values of the specimens in order to facilitate the understanding of the treated material behavior. The colour parameters L*, a* and b*, used to depict the total colour change (Δ E) of wood surface, were shown to change proportionally to the treatment intensity. Moreover, swelling in the tangential and radial directions and absorption of the specimens appeared to be enhanced in great extent by the thermal treatment process. The mean value of swelling percentage in the tangential direction decreased 10.26%, 17.22%, and 19.60% for specimens treated for 4, 6, and 8 h, respectively, referring to the final measurement after 72 h of immersion. In radial direction, mean value of swelling percentage decreased 19.56%, 32.75%, and 34.65% for treated for 4, 6 and 8 h, respectively, after 72 h immersion, which attests the decrease in swelling and improvement in the hygroscopic behavior of Scots pine wood.  相似文献   

14.
Abstract

Samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected for moisture sorption and swelling tests at 25°C. These tests evaluated the fiber saturation point (FSP) by two methods: following adsorption over distilled water, and from the volumetric swelling intersection point. Cold-water and hot-water extractives, sequential cyclohexane, acetone and methanol extracts, ash content, wood density and interlocked grain were also determined on matched samples. The results indicated that adsorption tests over distilled water were not applicable for determining FSP in all wood species. Condensation of water vapor apparently occurred, even though temperature during adsorption was controlled to the nearest 0.01°C. The volumetric swelling intersection point method was judged more appropriate. FSP ranged from 15 to 25% for tropical hardwoods and was 30% for sugar maple wood. FSP was negatively correlated with wood density, acetone extracted fraction, interlocked grain and ash content. These parameters each exerted similar effects on variability in FSP.  相似文献   

15.
Abstract

Mercury intrusion porosimetry (MIP) was used to evaluate the impregnation mechanisms of wood by methyl methacrylate (MMA) through examining the changes in porosity, pore volume, pore size distribution and bulk density of solid wood before and after MMA impregnation. Porosities of MMA-impregnated (hardened) wood samples were lower than those of solid wood samples for six studied species, five hardwoods and one softwood. Densities of hardened wood were enhanced from 45 to 130% depending on the species. The pore volume available for mercury intrusion was shifted from pore d>0.1 µm for solid wood to pore d≤0.1 µm for hardened wood. A pore diameter of 0.1 µm was used as the transition point for MMA impregnation and the increased mercury penetration below this point was attributed to the MMA polymer pore structure. Porosity as an intrinsic property of wood appears to be the main determinant of impregnation rate and polymer retention, especially for porosity with pore diameter >0.1 µm. The results indicate that the MIP technique is an effective tool with which to study the impregnation process.  相似文献   

16.
Changes in physical and mechanical properties of wood were analyzed using sorption tests combined with dimensional measurements and perpendicular-to-the-grain tangential compression tests. In order to determine the influence of wood structure on these changes, three hardwood species (Fagus grandifolia, Brosimum alicastrum and Cariniana domestica) presenting different anatomical structures were studied. Two experimental techniques were used to perform moisture sorption tests at 25°C. The first technique used saturated salt solutions (from 33 to 90% relative humidity) and the second used the pressure membrane method (above 96% relative humidity). Special attention was given to the “fiber saturation region”, where changes in wood properties started to take place. Results showed that at equilibrium moisture content (EMC), radial, tangential and volumetric shrinkage, as well as changes in transverse strength occurred above the fiber saturation point (FSP). This behavior can be explained by the effect of hysteresis at saturation on wood properties. This hysteresis indicates that loss of bound water takes place in the presence of liquid or capillary water, which contradicts the concept of FSP. The initial EMC at which bound water starts to be removed varied largely among the wood species.  相似文献   

17.
Limited scientific information is currently available regarding saproxylic fungal communities in the boreal forest of North America. We aimed to characterize the community development, richness and activity of saproxylic fungi on fresh wood in harvested and unmanaged boreal mixedwood stands of northwestern Québec (Canada). Fresh wood blocks (n = 480) of balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) were placed on the forest floor in a range of stand conditions (n = 24). Blocks were harvested every 6 months for up to 30 months and characterized for species composition and richness (PCR–DGGE, DNA sequencing), respiration, wood density and lignin and cellulose content. Colonization by a wide range of functional groups proceeded rapidly under different stand conditions. We detected a total of 35 different fungal operational taxonomic units, with the highest species richness at the wood block level being observed within the first 12 months. No differences in community composition were found between wood host species or among stand conditions. However, the variability in fungal communities among blocks (β diversity) was lower on trembling aspen wood compared with balsam fir and decreased over time on trembling aspen wood. Also, fungal activity (respiration and wood decomposition) increased on trembling aspen wood blocks and species richness decreased on balsam fir wood over time in partial-cut sites. The overlap in tree composition among stands, the high volume of logs and the recent management history of these stands may have contributed to the similarity of the saproxylic fungal community among stand types and disturbances.  相似文献   

18.
Specimens of Scots pine sapwood (Pinus sylvestris L.) and beech wood (Fagus sylvatica L.) were treated with an amino-alkyl-functional oligomeric siloxane, a sodium water glass solution and 1,3-dimethylol-4,5-dihydroxyethylene urea (DMDHEU). Treated and untreated wood specimens were exposed outdoors without ground contact. After 9?months of outside exposure, all specimens showed discolouration caused by infestations of mould and staining fungi on the exposed wood surface. Fungi grown on the sample surface were isolated and identified by microscopic technique and sequencing of PCR-amplified DNA from the ITS region. Primarily, an infestation by ascomycetes and related deuteromycetes was found. The most dominant fungi were Trichoderma sp. and Epicoccum sp.. An infestation of Aureobasidium pullulans was only detected on untreated and DMDHEU-treated samples. There were only marginal differences of fungal infestation between the two wood species.  相似文献   

19.
The objective of this study was to investigate the moisture absorption process for wood-based composites subjected to over-saturated moisture conditions. Two stages are comprised in the moisture transfer process at the over-saturated moisture conditions, an initial stage which is the moisture transfer process mainly under fiber saturation point (FSP), and a second stage which is the moisture transfer process beyond the FSP. A model was developed based on two-part equations to describe the process, from which three coefficients (k 1 , k 21 , and k 22) can be used to quantitatively describe the moisture transfer process under the conditions. Two different wood-based composites, wood fiberboard and wood fiber/polymer composites (polymer content: 30%), were used to test the model at four different ambient temperatures (30, 45, 62, and 80°C). It was shown that the two-part equation can accurately describe the moisture absorption process under over-saturated moisture conditions. The moisture absorption rate in the initial stage was about 30–60% greater than that in the second stage for most of the cases evaluated in this study. The higher the temperature, the greater moisture absorption parameters were obtained. At both moisture absorption stages (below FSP and above FSP), the calculated activation energy for the moisture absorption rate of wood fiberboard was very close to that of wood fiber/polymer composites.  相似文献   

20.
Quality assessment of thermally modified spruce (Picea abies (L.) Karst) and beech (Fagus sylvatica L.) wood and of the corresponding reference samples was carried out by means of non-destructive FT-NIR spectroscopic measurements and PLS regression. Oven-dry and basic density as well as MOE and MOR determined by 3-point bending tests were evaluated. The focus was put on specimens produced from material that had been thermally modified in an industrial scale kiln. Modelling results range from poor to very good. The results of the spectra taken from the spruce samples resulted in better prediction results than the spectra of the beech samples. This could be due to different proveniences or variation in the industrial modification process. The results indicate that FT-NIR surface measurements of sound thermally modified wood samples could be applied to evaluate several characteristics before and after the modification process. The method could be used for screening during pre-sorting of thermally modified wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号