首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
土壤非均匀水流运动和溶质迁移显色示踪方法研究   总被引:2,自引:0,他引:2  
王康  张仁铎  周祖昊  周清 《土壤学报》2009,46(4):603-610
根据碘-淀粉显色原理示踪土壤非均匀流动,探讨非均匀水流运动和溶质迁移描述方法。在1.0m×1.0m尺度上开展试验,60mm碘离子溶液入渗后,在70cm深度内逐层开挖剖面,剖面中水流经过的区域喷洒淀粉溶液后显色,采用图像分析和率定的方法建立了土壤显色和碘离子浓度之间的关系。采用环状直方图,从浓度空间分布和信息量两个方面对流动非均匀性进行了描述。碘-淀粉显色示踪方法较好地显现了非均匀流动模式,环状直方图分析表明,浓度分布的离散程度随浓度值的减小而增加,描述流动的非均匀性需要考虑水平和垂直方向上流动非均匀特征,非均匀流动的相似性随着距离的增加而明显下降。  相似文献   

2.
农田水盐运移与作物生长模型耦合及验证   总被引:6,自引:3,他引:3  
合理定量描述土壤水盐动态及作物生长过程对于干旱灌区制定适宜的农业用水措施具有重要意义。该文以SWAP(soil water atmosphere plant)模型为基础,采用变活动节点法实现了对土壤融化期的水盐运移模拟,并在根系吸水计算中引入了基于S形函数的水盐胁迫计算方法,以修正原SWAP模型对根系吸水的模拟。进一步嵌入了参数与输入数据较少且可以模拟作物生长过程及实际产量的EPIC(environmental policy integrated calculator)作物生长模型,构建了改进的农田尺度土壤水盐动态与作物生长耦合模拟模型-SWAP-EPIC。分别采用宁夏惠农灌区春小麦和春玉米田间试验数据,对SWAP-EPIC模型田间适用性进行了检验。对比分析各层土壤水分与盐分浓度、作物生长指标(叶面积指数、地上部生物量)的模拟值与实测值,结果表明:春小麦和春玉米试验中土壤水分的平均相对误差MRE和均方根误差RMSE均接近于0且模型Nash效率系数NSE值趋近于1,水分模块模拟精度较高,盐分浓度模拟存在略微差异但总体上一致性较好,并且作物生长指标匹配良好;同时,模拟的产量和蒸散发均较为接近实际值,春小麦和春玉米产量模拟相对误差分别为4.9%和3.3%。综上,该文改进的SWAP-EPIC模型可良好地应用于寒旱区农田尺度土壤水盐运移与作物生长耦合模拟。  相似文献   

3.
4.
Zero-tension lysimeters are widely applied to study the fate of chemicals in the subsurface environment. However, conditions in lysimeters differ from the field situation, because local saturation is required at the lower boundary to collect leachate. The objective was to characterize the influence of the lower boundary on the flow and transport behaviour of bromide observed in six 1.2-m-long lysimeters and in the field by 30 suction plates installed at 1.2-m depth, which were operated with a time-variable suction equal to the ambient soil water potential. A bromide pulse was applied at the bare surface of a silty soil in autumn 1997 and monitored for 2.5 years. The mean leachate flux was 0.98 mm day−1 for the lysimeters versus 0.66 mm day−1 for the suction plates. The lysimeters had a slightly slower effective mean pore-water velocity, expressed as transport distance per unit of leaching depth, and exhibited more solute spreading than the suction plates. Numerical simulations revealed that the amount of water collected with the suction plates was sensitive to the hydraulic conductivity of the plates. The spatial variability in hydraulic properties in the model explained the observed variability in cumulative leachate, at least qualitatively. The arrival time and spreading of the breakthrough curves (BTCs) were well described by the simulations in the lysimeters, but were underestimated in the suction plates. Preferential flow through macropores, which is not an effective carrier for bromide, might be the reason for this discrepancy. Molecular diffusion contributed significantly to solute spreading and enhanced lateral mixing. Both the experiments and the simulations revealed that the dispersivity derived from BTCs is significantly influenced by the observation method and experimental conditions.  相似文献   

5.
区域尺度农田水盐动态模拟模型—GSWAP   总被引:5,自引:5,他引:0  
由于土壤和水文气象等因子的空间变异性,区域尺度的农田水盐动态难以应用小尺度-维模型进行模拟.该文将-维农田水文模型(soil-water-atmosphere-plant model,SWAP)与Arclnfo进行紧密结合,构建了区域尺度的农田水盐动态模拟模型-GSWAP.该模型利用GIS强大的空间数据分析与处理功能,可高效地进行模型数据的前后处理与分析.模型将研究区划分为多个均质单元进行模拟,并以RS反演的表土含水率和ETa为观测资料,运用遗传算法确定各单元等效土壤水力参数.该文以内蒙河套灌区永联试验区为背景,对GSWAP模型进行了应用分析.结果表明,应用GSWAP模型可高效地进行区域农田水盐动态模拟,实现数据输入输出、可视化显示与空间分析,且永联试验区的模拟结果具有合理性.  相似文献   

6.
地下水浅埋条件下包气带水和溶质运移数值模拟研究述评   总被引:10,自引:2,他引:8  
地下水浅埋条件下包气带水和溶质运移规律是解决土壤盐渍化、地下水污染等环境与生态问题的基本理论基础,基于多孔介质水和溶质运移基本方程的数值模型是研究包气带物质运移的重要手段。通过深入分析土壤水和地下水之间的相互关系,强调在地下水埋深小于其极限埋深的情况下应把地下水作用耦合到包气带水和溶质运移模型中。该文概括总结了现有研究把地下水作用与土壤水模型相耦合的方法,并分析了各种方法的优缺点。在回顾现有土壤水分运动参数和溶质运移参数确定方法的基础上,归纳了包气带水和溶质运移模型从“点”尺度向“田块”尺度扩展的途径,随机方法仍将是今后的研究热点,并有望应用于实践。  相似文献   

7.
沟灌地表水流与溶质动力学耦合模型可为沟灌施肥系统的优化设计与管理提供有力工具,然而已有相关模型无法考虑沟底相对高程随机分布,且存在溶质对流和弥散过程的分裂误差以及由此带来的不稳定性等缺陷。为此,该文采用守恒型全水动力学方程和对流-弥散方程描述沟灌地表水流与溶质运动过程,借助双时间步法和有限体积法,并在地表水位相对高程梯度向量离散式中引入额外项,以精确模拟考虑沟底相对高程随机分布下地表水流推进与消退过程,实现了无条件稳定性下对沟灌地表水流与溶质运动所有物理过程的动力学耦合模拟。借助全程、前半程和后半程施肥时机下9个典型沟灌施肥试验实测数据,验证了模型的模拟效果。结果表明,模型能以优良的拟合度模拟出考虑地表相对高程随机分布下沟灌地表水流推进与消退过程,以及地表溶质浓度演变过程,且水量与溶质量的质量守恒误差小于0.1%,有效克服了已有模型的缺陷,为沟灌施肥系统的优化设计与管理提供了优良的数值分析工具。  相似文献   

8.
Simulation of solute leaching in soils of differing permeabilities   总被引:1,自引:0,他引:1  
Abstract. The model described divides the soil into layers and considers two categories of water, mobile and immobile, in each layer. It has two main parameters, one a measure of the soil's capacity to hold water and thence to retain solutes against leaching, and the other a measure of the ease with which water can pass through the soil and carry solutes with it. These are, in effect, capacity and rate parameters, and the model is unusual in having both. They can be estimated from the percentages of clay and other soil components. The rate parameter varied appreciably between plots in the field but in a consistent manner. The model has been validated against field experiments following the vertical movement of solute applied to the soil surface and allowed to leach, and the paper includes one such test.  相似文献   

9.
The purpose of this study is to quantify solute transport parameters of fine‐textured soils in an irrigation district in southern Portugal and to investigate their prediction from basic soil properties and unsaturated hydraulic parameters. Solute displacement experiments were carried out on 24 undisturbed soil samples by applying a 0.05 m KCl pulse during steady flow. The chloride breakthrough curves (BTCs) were asymmetric, with early breakthrough and considerable tailing characteristic of non‐equilibrium transport. The retardation factor (R), dispersion coefficient (D), partitioning coefficient (β), and mass transfer coefficient (ω) were estimated by optimizing the solution of the non‐equilibrium convection–dispersion equation (CDE) to the breakthrough data. The solution could adequately describe the observed data as proved by a median of 0.972 for the coefficient of determination (r2) and a median for the mean squared error (MSE) of 5.1 × 10?6. The median value for R of 0.587 suggests that Cl was excluded from a substantial part of the liquid phase. The value for β was typically less than 0.5, but the non‐equilibrium effects were mitigated by a large mass transfer coefficient (ω > 1). Pedotransfer functions (PTFs) were developed with regression and neural network analyses to predict R, D, β and ω from basic soil properties and unsaturated hydraulic parameters. Fairly accurate predictions could be obtained for logD (r2 ≈ 0.9) and β (r2 ≈ 0.8). Prediction for R and logω were relatively poor (r2 ≈ 0.5). The artificial neural networks were all somewhat more accurate than the regression equations. The networks are also more suitable for predicting transport parameters because they require only three input variables, whereas the regression equations contain many predictor variables.  相似文献   

10.
11.
A simple predictive approach to solute transport in layered soils   总被引:1,自引:0,他引:1  
Solute transport through layered columns (repacked aggregates overlying sand) was studied under steady flow conditions. Predictions of transport were simplified by assuming that the distribution of solute travel times in one layer was not correlated with that in the other. The implications of this assumption were developed for the transfer function model (TFM) and the convection-dispersion model (CDM) of solute transport. The parameter values in each model were obtained from experiments carried out on columns containing only aggregates or sand.
The solutes used were nitrate (surface-applied) and chloride (previously distributed); predictions of the chloride movement were made using the parameter values for the nitrate. The predictions were tested against experimental values of drainage effluent concentration and solute concentration with depths in the columns (measured at the end of the experiments). The TFM (with an assumed lognormal distribution of travel times) and the CDM did not differ significantly, mainly because the spatial scale of the experiments was small.
Because the parameter values for the columns of aggregates or sand were determined from the drainage effluent data, they were average values for whole columns. These parameters were satisfactory for predicting drainage effluent concentration from the two-layer columns. However, they were not satisfactory for predicting the depth distribution of solute, particularly in the sand, because the water content of the sand increased with depth, unlike that of the aggregates, which was approximately constant with depth. The overall results of this study on materials of differing transport characteristics suggest that the assumption of uncorrelated travel times between layers has a potentially wide application. The approach taken here needs to be tested on undisturbed layered soils.  相似文献   

12.
A model of water and solute transport in macroporous soils (Jarvis et al., 1991) has been evaluated in column breakthrough experiments under field conditions. Hydraulic properties were first measured in replicate soil monolith lysimeters sampled from grass ley and continuous barley treatments in a clay soil. A pulse input of 0.05 M KCl was then supplied by drip irrigation and measurements made of the water discharge and chloride leaching resulting from the natural rainfall over a 1-month period. The results showed that the macropores constituted the dominant flow pathway (accounting for 80% of the total water outflow) and that diffusive exchange of chloride between the two flow domains was the main factor causing variability in leaching. Larger hydraulic conductivities and macroporosities in the lower topsoil and at plough depth in the grass ley monoliths were taken as evidence of structural amelioration. Less of the applied chloride was leached in the grass monoliths than in the barley (means of 20% and 31% respectively). This was mainly due to a smaller effective aggregate size and thus a more efficient diffusion-controlled retention.  相似文献   

13.
吕德鹏  张思毅  贺斌  张志华 《土壤通报》2023,18(6):1290-1298
  目的  土壤大孔隙是土壤水气迁移交换的主要通道,研究土壤大孔隙与水分入渗特征对探究水文连通时空变化强烈的山丘区坡地有重要意义,可为红壤丘陵区土地高效利用提供参考。  方法  研究通过电子计算机断层扫描技术和双水头渗透计法,定量研究了粤北红壤丘陵区不同土地利用方式土壤大孔隙与水分入渗特征。  结果  不同土地利用方式的土壤理化性质存在明显差异。林地为砂质黏壤土,园地为黏土,耕地为黏壤土,土壤容重随着土层深度的增加而变大,土壤有机质含量随土层深度的增加而减小。土壤大孔隙度、大孔隙总体积和总表面积表现为:林地 > 园地 > 耕地,大孔隙数量则表现为:园地 > 林地 > 耕地,随着土层深度的增加,土壤大孔隙度和大孔隙数量呈减少趋势;土壤大孔隙平均直径表现为:林地 > 耕地 > 园地,不同土地利用方式的土壤大孔隙直径都主要集中在0 ~ 3 mm。土壤大孔隙度与土壤容重呈显著负相关,与有机质和砂粒含量呈显著正相关性。土壤饱和导水率表现为:园地 > 林地 > 耕地,土壤饱和导水率除受容重影响外,还与有机质含量、大孔隙长度相关。  结论  不同土地利用方式会使大孔隙和饱和导水率等土壤理化性质产生显著差异。林地的大孔隙度和大孔隙总表面积最大,而园地的大孔隙数量和饱和导水率最大。  相似文献   

14.
15.
This review discusses the causes and consequences of ‘non‐equilibrium’ water flow and solute transport in large structural pores or macropores (root and earthworm channels, fissures and interaggregate voids). The experimental evidence suggests that pores larger than c. 0.3 mm in equivalent cylindrical diameter allow rapid non‐equilibrium flow. Apart from their large size and continuity, this is also due to the presence of impermeable linings and coatings that restrict lateral mass exchange. Macropores also represent microsites in soil that are more biologically active, and often more chemically reactive than the bulk soil. However, sorption retardation during transport through such pores is weaker than in the bulk soil, due to their small surface areas and significant kinetic effects, especially in larger macropores. The potential for non‐equilibrium water flow and solute transport at any site depends on the nature of the macropore network, which is determined by the factors of structure formation and degradation, including the abundance and activity of soil biota such as earthworms, soil properties (e.g. clay content), site factors (e.g. slope position, drying intensity, vegetation) and management (e.g. cropping, tillage, traffic). A conceptual model is proposed that summarizes these effects of site factors on the inherent potential for non‐equilibrium water flow and solute transport in macropores. Initial and boundary conditions determine the extent to which this potential is realized. High rain intensities clearly increase the strength of non‐equilibrium flow in macropores, but the effects of initial water content seem complex, due to the confounding effects of soil shrinkage and water repellency. The impacts of macropore flow on water quality are most significant for relatively immobile solutes that are foreign to the soil and whose effects on ecosystem and human health are pronounced even at small leached fractions (e.g. pesticides). The review concludes with a discussion of topics where process understanding is still lacking, and also suggests some potential applications of the considerable knowledge that has accumulated in recent decades.  相似文献   

16.
For many years lysimeters have been proven to be effective tools in assessing and predicting the effects of current land use and future land use changes in catchment areas on both water and solute balances. Although due to the diverse aspects of mass transport modelling, many different types of lysimeters exist, water and solute balances are by no means fully understood, especially in post‐mining areas. To tackle this problem, a new piece of equipment has been developed which enables the actual weight of a lysimeter to be precisely measured. The newly designed device, which has been used for one of the experiments described in this paper, permits the weighing of for example a 2 m3 lysimeter vessel with an accuracy down to 30 g. The second newly developed appliance presented here is the GAMS (Gas‐Migration‐Simulator). Basically comparable to a lysimeter, the difference is that the GAMS allows the detailed investigation of soil‐gas migration processes and their dependence on parameters like the diffusion coefficient and the gas permeability of the soil, alterations of the groundwater level and on various external influences such as changes of the actual meteorological conditions. These two newly developed techniques are described in this paper, and their respective suitability is demonstrated on the basis of data sets recorded during initial experiments.  相似文献   

17.
An experiment has been carried out in cultivated drainage lysimeters filled with reported soil in order to investigate on the disappearance and mobility of Metolachlor and Terbuthylazine as related to the nitrogen fertilization level. Two experimental units have been compared: in the O-N treatment the soil did not receive N fertilizers during the 7 years previous to the experiment, whereas in the H—N treatment the average application rate of nitrogen during the same period was 220 kg ha?1 year?1; a corn crop has been cultivated in the present experiment. The active ingredients have been analysed in the artificial soil profile (from 0 to 40 cm, by 10 cm soil layers) and in leachates. The disappearance rate of Terbuthylazine was affected by nitrogen fertilization level, as the half life resulted about 7 days higher in O—N (21.9 days) treatment than in H—N (14.6 days). On the contrary, N fertilization did not significantly modify the half life of Metolachlor (17.2 and 15.9 days at O—N and H—N, respectively). A N-dealkylated degradation product of Terbuthylazine has been found in the shallow soil layers. The distribution pattern of herbicides content in the soil profile showed that Terbuthylazine was less mobile than Metolachlor. Leachates did not contain Terbuthylazine at all, but amounts of Metolachlor close to the detection limits (25 μg L?1).  相似文献   

18.
咸淡水轮灌对棉花产量和土壤溶质迁移的影响   总被引:3,自引:2,他引:3  
为探讨不同咸淡水膜下滴灌方式对棉花根系、产量和土壤剖面溶质迁移的影响,于2012–2013年在巴州灌溉试验站开展大田试验,共设置全生育期微咸水、淡水和咸淡水轮灌(蕾期—花铃前期淡水、其余生育期微咸水)3个处理。对比不同咸淡水处理下,棉花根系发育、地上部生长和产量的差异,分析0~100 cm土壤中铜、铁、锰、钙、钾、钠6种溶质垂向分布与变化特点。结果表明:2012年,微咸水灌溉条件下,钠离子未发生表聚,40 cm以上土壤微量元素含量显著增高(P0.05),棉花总根长密度、最大根长密度呈咸水处理轮灌处理淡水处理,咸水和轮灌处理下,单株棉花地上部干物质、单位面积铃数和籽棉产量显著高于淡水处理,分别达32%、20%和22%。2012–2013年,咸水处理下棉花总根长密度骤减,导致该处理下单株棉花地上部干物质、单位面积铃数和籽棉产量显著降低(P0.05)。在土壤盐害离子增加,微量元素减少的情况下,采用蕾期至花铃前期淡水灌溉、其余生育期微咸水灌溉的方式,钠离子未发生表聚,2013年棉花总根长密度高于咸水处理达24%,地上部干物质、单位面积铃数和籽棉产量较咸水处理高出13%~24%。咸淡水轮灌一定程度上促进了棉花根系生长,缓解盐害离子对棉花造成的生长胁迫。另外,不同咸淡水灌溉处理下,土壤溶质迁移规律不同:2012–2013年,土壤中铜、铁、锰平均质量分数降低约40%,0~10 cm的表聚系数由0.14~0.17增长至超过0.20,3种处理下铜、铁、锰都表现出强烈的表聚性;钙、钾、钠平均质量分数增加33%~45%,3种处理下钙、钾未表现出明显的表聚性,而微咸水处理下钠由不表聚转变为显著表聚。该成果可为干旱地区合理利用微咸水,实现棉花优质稳产提供参考。  相似文献   

19.
This review discusses the causes and consequences of ‘non‐equilibrium’ water flow and solute transport in large structural pores or macropores (root and earthworm channels, fissures and interaggregate voids). The experimental evidence suggests that pores larger than c. 0.3 mm in equivalent cylindrical diameter allow rapid non‐equilibrium flow. Apart from their large size and continuity, this is also due to the presence of impermeable linings and coatings that restrict lateral mass exchange. Macropores also represent microsites in soil that are more biologically active, and often more chemically reactive than the bulk soil. However, sorption retardation during transport through such pores is weaker than in the bulk soil, due to their small surface areas and significant kinetic effects, especially in larger macropores. The potential for non‐equilibrium water flow and solute transport at any site depends on the nature of the macropore network, which is determined by the factors of structure formation and degradation, including the abundance and activity of soil biota such as earthworms, soil properties (e.g. clay content), site factors (e.g. slope position, drying intensity, vegetation) and management (e.g. cropping, tillage, traffic). A conceptual model is proposed that summarizes these effects of site factors on the inherent potential for non‐equilibrium water flow and solute transport in macropores. Initial and boundary conditions determine the extent to which this potential is realized. High rain intensities clearly increase the strength of non‐equilibrium flow in macropores, but the effects of initial water content seem complex, due to the confounding effects of soil shrinkage and water repellency. The impacts of macropore flow on water quality are most significant for relatively immobile solutes that are foreign to the soil and whose effects on ecosystem and human health are pronounced even at small leached fractions (e.g. pesticides). The review concludes with a discussion of topics where process understanding is still lacking, and also suggests some potential applications of the considerable knowledge that has accumulated in recent decades.  相似文献   

20.
黄土高原水土流失严重,生态环境脆弱,水资源短缺,地下水对保障区域社会经济发展和维持生态系统平衡具有重要意义,而该区的地下水转化和补给机制尚不明确。为探究黄土高原水蚀风蚀交错区土壤剖面深层水分运动及降水对浅层地下水补给的可能性,利用六道沟小流域分布的粗质地风沙土样地2013—2016年土壤剖面0~600 cm含水量数据,运用HYDRUS-1D模型对各土层水力参数进行反演和验证,并用于模拟样地土壤深剖面0~1 500 cm水分运移过程。结果显示,在平水年2014年(439 mm)和干旱年2015年(371 mm),0~600 cm土壤含水量生长季末与生长季初持平或略有亏缺;降水充沛年2013年(669 mm)和2016年(704 mm)土壤含水量生长季末远高于生长季初,降水入渗深度超过观测深度(600 cm)。深剖面水分运动模拟显示,2014年和2015年剖面含水量变化不明显,水分向深层运移微弱缓慢;但是,2013年和2016年降水可分别入渗运移至1 100 cm和1 200 cm深度,远超过样地上生长的旱柳根系区域,可能补给浅层地下水。在4年模拟期间,平均土壤蒸发为14.87 cm·a-1,平均植物蒸腾为33.70 cm·a-1,土壤水分主要以植物蒸腾形式损耗。在2个丰水年,得益于较充足的降水和粗质地风沙土壤的高入渗率,降水大量转化为土壤水快速向下入渗运移,模拟显示当年生长季末降水最深运移至1 200 cm,至年末已超过模拟深度(1 500 cm),水分继续运移可能补给浅层地下水。相关研究结果为黄土高原水蚀风蚀交错区地下水来源和补给机制提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号