首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chemotaxic response of zoospores of the plant pathogen, Phytophthora nicotianae, towards exudates from mycorrhizal and non-mycorrhizal transformed tomato roots was studied. A bi-compartmental in vitro system was used to grow Ri T-DNA-transformed tomato roots colonized or non-colonized with the arbuscular mycorrhizal fungus, Glomus intraradices, and to collect root and mycorrhizal exudates. The root and mycorrhizal growth dynamics were first characterized in order to determine two times of exudate sampling. Exudates collected from 16-wk-old mycorrhizal roots were significantly more attractive for P. nicotianae zoospores than exudates from non-inoculated roots. On the contrary, concentrated exudates harvested from 24-wk-old mycorrhizal roots were repulsive to zoospores compared to exudates from non-colonized roots and the water control. In exudates of G. intraradices-inoculated roots, HPLC–MS analyses revealed significantly higher concentrations of proline and isocitrate after 24 wk of growth, while after 16 wk of growth, proline concentration did not differ between exudate types, and the isocitrate concentration was lower in mycorrhizal root exudates. Mycorrhizal inoculation had no effect on the amounts of other amino acids and organic acids and on the sugars quantified within exudates. Our results suggest that modification in exudate composition of mature roots by mycorrhizal colonization may provoke the repulsion of P. nicotianae, and that their capacity to infect host roots may in this manner be reduced.  相似文献   

2.
A semi-hydroponic culture was used to compare growth and cation nutrition of mycorrhizal (Paxillus involutus) and non-mycorrhizal Scots pine seedlings. When roots and hyphae grew together, concentrations and contents of macronutrients in needles and roots were not significantly different between mycorrhizal and non-mycorrhizal plants. When grown in two separate compartments, root potassium (K) concentrations, concentrations and contents of calcium (Ca) in needles and roots, needle nitrogen (N) concentrations, total N content and contents of root K and Mg were significantly reduced in mycorrhizal plants. Whereas 15N abundance increased in roots of mycorrhizal plants. The results indicated that the extraradical mycelium of the fungus strain used was able to transport N to the plant but did not contribute to long-term cation uptake and growth of host plants. An insufficient supply of macro-elements [N, phosphorus (P)] may account for the reduced growth of mycorrhizal plants and the differences in cation uptake between mycorrhizal and non-mycorrhizal plants.  相似文献   

3.
Summary We selected two isolates of Rhizobium for cowpea (Vigna unguiculata) with sterilized soil tests and two different isolates by non-sterilized soil testing. The four rhizobia were then paired individually with either Glomus pallidum, Glomus aggregatum, or Sclerocystis microcarpa in separate, sterilized, or non-sterilized soil experiments. The purpose of the experiments was to determine the effect of soil sterilization on the selection of effective cowpea rhizobia, and to see whether these rhizobia differed in their effects on cowpea growth when paired with various vesicular-arbuscular mycorrhizal (VAM) fungi. Our experiments showed that the rhizobia selected in sterilized soil tests produced few growth responses in the cowpea compared to the other introduced rhizobia, irrespective of pairing with VAM fungi in sterilized or non-sterilized soil. In contrast, the two rhizobia initially selected by non-sterilized soil testing significantly improved cowpea growth in non-sterilized soil, especially when paired with G. pallidum. Our results suggest that it is important to select for effective rhizobia in non-sterilized soil, and that pairing these rhizobia with specific, coselected VAM fungi can significantly improve the legume growth response.  相似文献   

4.
An alkaline phosphatase in the intraradical hyphae of arbuscular mycorrhizal fungi was found to be closely related to an improvement of plant growth. To detect the phosphatase activity in a crude extract of mycorrhizal roots, phosphatase isozymes in mycorrhizal and non-mycorrhizal onion roots were compared with those in Gigaspora margarita by electrophoresis. A mycorrhiza-specific band was found when the phosphatase was stained under alkaline conditions. To clarify the origin of this phosphatase, the phosphatase extracted from intraradical hyphae was also compared with the phosphatase from mycorrhizal roots by electrophoresis. The intraradical hyphae was isolated from mycorrhizal roots by enzyme digestion followed by Percoll gradient centrifugation. The soluble protein was extracted from the hyphae by ultra-sonication after treatment with chitinase. A phosphatase in the hyphal soluble protein showed a similar, but slightly higher, relative mobility on the gel, compared with the mycorrhiza-specific phosphatase from roots. By adding the hyphal extract to the root extract, the relative mobility of the mycorrhiza-specific phosphatase was slightly changed and became identical to that of the phosphatase in the hyphae. This indicated that the specific band of phosphatase found in the crude extract from mycorrhizal roots was of intraradical hyphal origin. Received: 16 April 1997  相似文献   

5.
 The effect of the interaction between a vesicular-arbuscular (VA)-mycorrhiza (Glomus intraradices no. LAP8) and Streptomyces coelicolor strain no. 2389 on the growth response, nutrition and metabolic activities of sorghum (Sorghum bicolor) plants grown in non-sterilized soil amended with chitin waste was studied in a greenhouse over 8 weeks. Chitin amendment resulted in an increase in the microbial population and chitinase activity in soils. Growth of mycorrhizal G. intraradices no. LAP8 and non-mycorrhizal sorghum plants increased as compared with other treatments either in the presence or absence of S. coelicolor strain 2389. VA-mycorrhizal inoculation significantly increased the growth, photosynthetic pigments, total soluble protein and nutrient contents of sorghum compared to non-mycorrhizal sorghum. Such increases were related to increased mycorrhizal colonization. Inoculation with S. coelicolor 2389 significantly increased the intensity of mycorrhizal root colonization and arbuscular formation, but the levels of mycorrhizal infection and their beneficial effects were significantly reduced with the addition of chitin waste to the soil. Analysis of the content of total amino acids and ammonia in leaves on the basis of dry matter production showed that, in most instances, total amino acids of mycorrhizal plants were significantly higher than those of non-inoculated plants. The microflora of the rhizosphere was highly affected by mycorrhizal inoculation. Quantitative changes in acid and alkaline phosphatase activities of the roots in response to the mycorrhizal inoculation are discussed. Received: 11 August 1999  相似文献   

6.
The effects of arbuscular mycorrhizal (AM) fungi on water status and stomatal behaviour of cowpea, Vigna unguiculata (L.) Walp. cv. B89-504, under water-stressed conditions in the greenhouse were studied. The 3 × 2 experimental design included two levels of mycorrhizal colonisation (Glomus mosseae, Glomus versiforme) and non-mycorrhizal control treatment and two soil moisture levels (well-watered pots and pots allowed to dry). Relative water content and leaf water potential values were higher in well-watered mycorrhizal and non-mycorrhizal plants than in water-stressed mycorrhizal and non-mycorrhizal plants. AM species had no significant effect on leaf osmotic potential, stomatal conductance and leaf transpiration in both well watered and water-stressed plants. The values of stomatal conductance and leaf transpiration were high during the vegetative stage and low during the flowering stage. These responses which can be related to the age of the plant suggest that mycorrhizal colonisation did not affect stomatal closure of cowpea plants during water stress. The decrease in plant growth and dry matter production in both mycorrhizal and non-mycorrhizal plants shows that drought resistance in cowpea was unaffected by mycorrhiza in the vegetative phase.  相似文献   

7.
Summary Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [3H]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [3H]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal plants. At the bottom of the tubes, the [3H]-thymidine incorporation was significantly higher on root tips of mycorrhizal plants. Correspondingly, the bacterial biovolumes of rods with dimension 0.28–0.40×1.1–1.6 m, from the bulk soil in the center of tubes and from root segments in the center and top of tubes, and of cocci with a diameter of 0.55–0.78 m in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1–7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil. The incorporation of [3H]-thymidine was around one order of magnitude lower compared to other rhizosphere measurements, probably because pseudomonads that did not incorporate [3H]-thymidine dominated the bacterial population. The VAM probably decreased the amount of plant root-derived organic matter available for bacterial growth, and increased bacterial spatial variability by competition. Thus VAM plants seem to be better adapted to compete with the saprophytic soil microflora for common nutrients, e.g., N and P, compared to non-mycorrhizal plants.  相似文献   

8.
Summary Faidherbia albida (syn. Acacia albida) (Del.) A. Chev. and Acacia nilotica (L.) Willd. were grown for 18 weeks in sterile and non-sterile soils inoculated with Glomus clarum (Nicolson and Schenck). During this period, drought stress was imposed for the last 10 (F. albida) or 12 weeks (A. nilotica) at 2-week intervals. A greater number of leaves abscissed in drought-stressed mycorrhizal plants of A. nilotica than drought-stressed non-mycorrhizal and unstressed plants. In F. albida, the number of abscissed leaves was few and similar for all treatments. At the end of the drought stress, inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi in sterile soil increased the plant biomass of the two tree species compared to the control plants. In non-sterile soil, the mycorrhizal growth response of introduced G. clarum equalled the effect of indigenous VAM fungi. There were significant interactions between the mycorrhizal and drought stress treatments and between the mycorrhizal and soil treatments for plant biomass and P uptake in F. albida. The absence of these interactions except for that between the mycorrhizal and soil treatments in A. nilotica indicates that the increased plant biomass and nutrient uptake cannot be attributed directly to a mycorrhizal contribution to drought tolerance. F. albida tolerated the drought stress by producing long tap roots and similar weights of dry matter in shoots and roots. Whereas A. nilotica tolerated the drought stress by developing larger root systems able to explore a greater volume of soil, in addition to leaf abscission, for a favourable internal water status. The introduction of G. clarum increased nodulation by A. nilotica under unstressed conditions, but at the expense of a reduced P uptake in sterile soil.  相似文献   

9.
This study was carried out in a semiarid degraded area to assess the effectiveness of mycorrhizal inoculation with a mixture of native arbuscular mycorrhizal (AM) fungi or an allochthonous AM fungus (Glomus claroideum), on the establishment of Olea europaea subsp. sylvestris L. and Retama sphaerocarpa (L.) Boissier in this area. Associated changes in the soil microbiological properties and aggregate stability related to these AM inocula were also recorded. Eighteen months after planting, G. claroideum had increased available P in the rhizosphere of both shrub species. In general, both inoculation treatments increased water-soluble C and water-soluble and total carbohydrates, G. claroideum being the most effective inoculum, particularly in R. sphaerocarpa. The mixture of native AM fungi was the most effective treatment for increasing the aggregate stability of R. sphaerocarpa soil, while that of O. europaea was increased only by G. claroideum. Increased (dehydrogenase, urease, protease-BAA, acid phosphatase and -glucosidase) enzyme activities, in particular of dehydrogenase and acid phosphatase, were recorded in the rhizosphere of both mycorrhizal shrub species. The mixture of native AM fungi was the most effective treatment for stimulating the growth of O. europaea and R. sphaerocarpa (11.6-fold and 3.3-fold, respectively, greater than control plants). The establishment of mycorrhizal shrub species favoured the reactivation of soil microbial activity, which was linked to an increase in aggregate stability.  相似文献   

10.
Maize (Zea mays L.) and sorghum (Sorghum bicolor L.) Moench (local variety called Masakwat) plants were grown in a sterilized low-P soil in the greenhouse for 12 weeks. Each plant species was either mycorrhizal with vesicular-arbuscular mycorrhizal (VAM) fungi, non-mycorrhizal but minimally fertilized with soluble P, or non-mycorrhizal but highly fertilized with soluble P. Drought stress was imposed after 4 weeks at weekly intervals. Under unstressed conditions, leaf area, shoot dry weights, xylem pressure, and soil water potentials were similar for VAM and the two non-mycorrhizal P-fertilized treatments but each of the VAM-infected species had a greater total root length. Total P uptake was similar for the maize treatments but higher for VAM than non-mycorrhizal P-fertilized sorghum treatments. Under drought-stressed conditions, the growth parameters and soil water potential were similar for all maize treatments but they were reduced by mycorrhizal inoculation in sorghum. Greater water extraction occurred in drought-stressed mycorrhizal sorghum. In both plant species, total P uptake and P uptake per unit root length (including unstressed species) were significantly enhanced in non-mycorrhizal P-fertilized treatments compared with the mycorrhizal treatment. Except for the root dry weight of sorghum plants, there were no differences in the growth parameters and P uptake between minimally and highly P-fertilized non-mycorrhizal treatments for either maize or sorghum. The increased total root length in drought-stressed mycorrhizal sorghum plants and the similar infected root lengths in unstressed and drought-stressed sorghum plants may have caused high C partitioning to drought-stressed mycorrhizal roots and therefore caused the reduced growth parameters in mycorrhizal plants compared to the non-mycorrhizal P-fertilized counterparts. The results indicate that P fertilization in addition to mycorrhizal inoculation may improve the drought tolerance of maize and sorghum plants.  相似文献   

11.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

12.
The distribution of heterotrophic flagellates, naked amoebae, testate amoebae and ciliates was investigated in habitats created by Scots pine-Paxillus involutus and -Suillus bovinus ectomycorrhizospheres. The protozoa living on plant and fungal surfaces preferred the non-mycorrhizal pine roots over mycorrhizal roots or external mycelium. The testate amoebae were more abundant on external mycelium than on mycorrhizae regardless of the mycorrhizal fungal species. Numbers of protozoa were higher in the different habitats provided by S. bovinus mycorrhizospheres when compared with P. involutus mycorrhizospheres. Interestingly, the quality of the bacterial flora as food for the protozoa was affected by the mycorrhizal fungi even in the soils adjacent to non-mycorrhizal root tips of pine. These results demonstrate that mycorrhizal fungi create habitats differently suitable for protozoa living in boreal forest soil.  相似文献   

13.
Mycorrhizal (Lactarius rufus Fr.) and non-mycorrhizal Norway spruce seedlings (Picea abies Karst.) were grown in a sand culture and inoculated with protozoa (naked amoebae and flagellates) extracted from native forest soil or with protozoa grown on agar cultures. A soil suspension from which the protozoa were eliminated by filtration or chloroform fumigation was used as a control. After 19 weeks of growth in a climate chamber at 20–22°C, the seedlings were harvested. Protozoa reduced the number of bacterial colony-forming units extracted from the rhizoplane of both non-mycorrhizal and mycorrhizal seedlings and significantly increased seedling growth. However, concentrations of mineral nutrients in needles were not increased in seedlings with protozoan treatment. It is concluded that the increased growth of seedling was not caused by nutrients released during amoebal grazing on rhizosphere micro-organisms. The protozoa presumably affected plant physiological processes, either directly, via production of phytohormones, or indirectly, via modification of the structure and performance of the rhizosphere microflora and their impact on plant growth. Mycorrhizal colonization significantly increased the abundance of naked amoebae at the rhizoplane. Our observations indicate that protozoa in the rhizosphere interact significantly with mycorrhizae.  相似文献   

14.
Summary A lysimetric experiment was performed in a greenhouse to evalute root deposition and net release of soluble organic compounds after 1 and 2 years from pine and beech seedlings inoculated with an ectomycorrhizal fungus (Laccaria laccata) and/or rhizobacteria (Agrobacterium radiobacter for beech and Agrobacterium sp. for pine). Total C compounds released in the rhizosphere of both plants increased after inoculation with the bacteria or ectomycorrhizal fungus. The rhizobacteria increased root and plant growth and rhizodeposition, but the mycorrhizal fungi appeared to increase only root deposition. Soluble C compounds, collected after 2 years, represented only 0.1–0.3% of the total C compounds released into the rhizosphere, and were modified by inoculation with the microorganisms. After inoculation with the bacteria, levels of sugars and amino acids decreased in pine and beech rhizospheres, whereas organic acids increased, especially in the pine rhizosphere. In the rhizosphere of mycorrhizal beeches, sugar and amino acids increased, and organic acids differed from those released from non-mycorrhizal beeches. In the mycorrhizal pine rhizosphere, however, all compounds decreased. Following dual inoculations, mycorrhizal colonization increased, no effect on plant growth was observed, and virtually no organic acids were detected.  相似文献   

15.
运用发光酶基因标记及其发光强度检测,SDH酶活染色等技术,在根盒-土壤微宇宙及塑料盒栽系统中,研究了发光酶基因(luxAB)标记的荧光假单胞菌菌株Pf.X16L2与丛枝状菌根真菌摩西球孢囊霉Glomus mosseae两者在小麦根圈的相互关系。Gl.mosseae对Pf.X16L2的种群密度和生理活性都有着抑制作用。因而能降低小麦根圈对Pf.X16L2的富集作用,而Pf.X16L2在一定程度上能提高Gl.mosseae的菌根感染率,但会降低菌丝中琥珀酸氢酶(SDH)活性,两者可共同促进小麦中后期的生长。  相似文献   

16.
Summary The kinetics of Zn absorption were studied in mycorrhizal (Glomus macrocarpum) and non-mycorrhizal roots of corn (Zea mays L.) at pH 6.0 at Zn concentrations of 75 mol to 1.07 mol m-3. Five concentration-dependent phases of Zn absorption were recognized; phase 0 (1.5–4.0 mmol m-3) was linear but the other four phases (4.0 mmol to 1.07 mol m-3) obeyed Michaelis-Menten kinetics. At low concentrations (less than 4 mmol m-3), sigmoidal kinetics of Zn absorption were observed. The absorption of Zn by mycorrhizal maize was greater at low concentrations but decreased at higher levels. This appeared to be a result of a higher maximal uptake rate in phase 1 and lower K m values in the subsequent phases. Kinetic models yielding continuous isotherms could not account for the observed multiphasic pattern.Research paper no. 6820 through the Director, Experiment Station, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, UP, India  相似文献   

17.
Several ectomycorrhizal fungi, including Hebeloma cylindrosporum, actively release large quantities of phosphatase enzymes into their growth medium. We fractionated the phosphatase activity of the ectomycorrhizal association between H. cylindrosporum and its host plant, Pinus pinaster, with the aim to quantify its spatial and temporal variation in response to contrasting soil phosphorus conditions. Seedlings were grown in mini-rhizoboxes and the phosphomonoesterase activity of rhizosphere soil, released by roots, surface-bound to roots or mycelium was determined spectrophotometrically with the p-nitrophenyl phosphate method or microscopically with the ELF-method as a function of culture time. We showed that acid phosphatase activity of the soil and the root increased with mycorrhizal association. We also observed that the phosphatase activity associated with ectomycorrhizal plants was related to soil type. All phosphatase fractions decreased over culture time, except the proportion of hyphae exhibiting phosphatase activity in the extramatrical mycelium, which increased over time. The specific fractions of phosphatase activity associated with the mycorrhizal plants were clearly related to the soil phosphorus type and content. Soils showed an increase in acid phosphomonoesterase activity with mycorrhizal association, supporting a role for this enzyme in the degradation of soil bound phosphorus. The gradually increasing proportion of hyphae in the extramatrical mycelium exhibiting alkaline phosphatase activity, particularly under low phosphorus conditions, indicates an induction of alkaline phosphatase activity by phosphorus limitation.  相似文献   

18.
19.
We studied the persistence of an introduced vesicular-arbuscular mycorrhizal (VAM) fungus in the field under the influence of a mycorrhizal host, a non-mycorrhizal host, and when the field was left fallow. There was a significantly greater, build-up of the mycorrhizal fungus in plots cropped with mycorrhizal hosts (finger millet or field beans) compared to plots cropped with a nonmycorrhizal host (mustard) or left fallow. Glomus intraradices, the introduced fungus, was further monitored by the electrophoretic mobility of the isozymes of malate dehydrogenase extracted from the resting spores of the fungus. The zymogram from G. intraradices spores showed three distinct isozyme bands: 1,3 and 7. A zymogram of malate dehydrogenase spores isolated from plots inoculated with G. intraradices for three seasons exhibited similar bands. Spores isolated from plots inoculated with G. intraradices for one or two seasons showed only one weak band, corresponding to isozyme band 7. The results indicated that the introduced fungus persisted in the field for only one season.  相似文献   

20.
The effects of low temperature and reduced light on a Glycine-Bradyrhizobium-Glomus spp. symbiosis were examined in pot experiments. Soybean plants, Glycine max L. Merr. cv. Tachiyutaka, were grown with N fertilization or inoculation with Bradyrhizobium japonicum plus P fertilization or inoculation with Glomus mosseae in the glasshouse. After the flowering stage, half the pots with soybean plants were subjected to low temperature (15°C 14h/13°C 10 h) with light reduced by shading. At 0, 7, 16, and 28 days after the application of the treatments, the growth, nodulation, vesicular-arbuscular mycorrhizal (VAM) infection and the N and P contents of the soybean plants were measured. In all symbiont-fertilization combinations, the low-temperature treatment reduced the production of dry matter by the soybeans. Nodulation (weight and number) was slightly reduced by this treatment but the proportion of larger nodules was increased. The root length infected by the VAM fungus was little affected by the low-temperature treatment. Both the nodule weight and the infected root length were linearly related to shoot dry weight regardless of treatment and of the symbiont-fertilization combination used. These results suggest that the growth of the symbionts on the root was in balance with the shoot growth of the host, irrespective of climatic conditions, and imply a considerable degree of host control. P inflows to root systems were greatly affected by low-temperature treatment regardless of the symbiont-fertilization combination. This suggests that a simple comparison of P inflows between mycorrhizal and non-mycorrhizal plants may give misleading information on the effects of low temperature or reduced light conditions on P uptake by mycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号