首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper investigates the pollution load of selected trace elements in 32 soil samples collected around 21 different mining areas of the Iberian Pyrite Belt (Southwest Spain), integrating chemical data with soil parameters to help understand the partitioning and mobility of pollutants. The minesoils are depleted in acid neutralising minerals and show limiting physicochemical properties, including low pH values and very high anomalies of potentially hazardous metals. The total concentrations of As (up to 1,560 mg kg?1) and certain heavy metals (up to 2,874 mg kg?1 Cu, 6,500 mg kg?1 Pb, 6,890 mg kg?1 Zn, 62 mg kg?1 Hg and 22 mg kg?1 Cd) are two orders of magnitude above the soil background values. The close association of Cd and Zn with the carbonate content in lime-amended minesoils suggests metal immobilisation through adsorption and/or co-precipitation mechanisms, after acid neutralisation, whereas As and Pb are similarly partitioned into the soil and mostly associated with iron oxy-hydroxides.  相似文献   

2.
三峡库区土壤重金属背景值研究   总被引:33,自引:1,他引:33  
在大规模、系统采样的基础上,通过不同均值计算方法的比较,提出了三峡库区土壤重金属含量背景值:As为5.835mg·kg^-1,Cd为0.134mg·kg^-1,Cr为78.03mg·kg^-1,Cu为25.00mg·kg^-1,Hg为0.046mg·kg^-1,Ni为29.47mg·kg^-1,Pb为23.88mg·kg^-2,Zn为69.88mg·kg^-1。与全国土壤背景值比较,三峡库区As、Hg背景含量低于全国背景值,Pb、Zn含量略低于全国背景值,Cd、Cr含量高于全国土壤背景值,Cu、Ni含量略高于全国背景值。根据本研究成果进行三峡库区环境质量评价,将能更加真实地反映三峡库区的实际情况,有利于库区土壤环境质量管理。  相似文献   

3.
Abstract

Water extraction of trace elements can simulate the concentration of elements in the soil solution from where the plant takes up the elements. The objective of this investigation was to determine the water extractable concentration of seven trace elements (Fe, Mn, Ni, Co, Mo, Pb and Cd) and to assess their relationship with soil properties of the Danube basin in Croatia. Soil samples from the surface layer (0–25 cm) of 74 sites, having different land uses (forest and agricultural land), were collected. Samples were analysed for total and water extractable trace elements as well as for pH, DOC, SOC and CEC. The concentrations of water extractable fraction of trace elements were on average: 20.14 mg kg?1 for Fe, 3.61 mg kg?1 for Mn, 0.07 mg kg?1 for Ni, 0.016 mg kg?1 for Co, 0.01 mg kg?1 for Mo, 0.01 mg kg?1 for Pb and 0.0009 mg kg?1 for Cd. Soil properties were in the following range: pH 4.3–8 (Avg: 6.35), DOC 6.1–73 mg l?1 (Avg: 26 mg l?1), CEC 1.3–24 cmol kg?1 (Avg: 9 cmol kg?1) and SOC 0.5–5% (Avg: 1.7%). The concentration of water extractable fraction of trace elements was significantly correlated with pH (p <0.001), DOC (p <0.001 – p <0.05) and CEC (p <0.001) but their relationship with total content of trace element and SOC was rather weak, suggesting that total metal alone cannot be an indicator of toxicity or deficiency. Results show that pH, DOC and CEC are important soil quality parameters taking part in the solubility control of trace metals in the soil rather than their total concentration. The difference between land uses has been observed as well, suggesting that a change in land use can cause a change in trace element solubility.  相似文献   

4.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

5.
Abstract

Hydroponic culture is often used for screening plant tolerance or remediation efficacy to environmental pollutants. Field experiments are usually avoided because of soil and groundwater contamination; thus pot experiments are the next step. In this study, the effect of various levels of atrazine in corn and cadmium (Cd) in corn and sunflower on physiological traits was comparatively investigated in hydroponic and soil culture. Also, Cd absorption and transfer factor to shoots were determined in soil. Atrazine affected corn growth at about 20% at the rates of 2 mg L?1 and 20 mg kg?1. In both species, Cd was largely stored in the root (75–88%), and the transfer factor was higher in corn than sunflower (0.59 vs. 0.37, at 20 mg kg?1). Cadmium threshold of 20% reduction in shoot growth, leaf area, and chlorophyll in corn was observed at about 20, 40, and 80 mg kg?1, respectively. The ratio of hydroponic–soil pollutant rate that similarly affected plant growth was about 1:10 and 1:5 for atrazine and Cd, respectively. The linear correlation coefficient between traits was also studied.  相似文献   

6.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

7.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   

8.
《Journal of plant nutrition》2013,36(11):1663-1677
Micronutrient uptake and distribution within poppy plants (Papaver somniferum L.) were studied in two pot experiments using a loamy garden soil as substrate. In the first experiment a supplement of increasing cadmium (Cd) concentrations to the substrate and in the second the influence of cultivars and harvest time were studied. At the stage of seed ripening the taproots were already decaying, and the Cd concentration in the shoot reflected the Cd supply in the substrate. In the shoot the highest Cd concentrations were found in seeds. With 24 mg Cd per pot (6 mg kg?1), Cd concentration reached 1.7 mg kg?1.

The four poppy varieties (Edel-Weiss, Marianne, Soma, White Poppy) differed clearly in seed production but reached comparable Cd concentrations of about 1.3 mg kg?1 in the seeds at the second harvest. Seeds made up 2.5 to 12.9% of shoot biomass, but stored 15 to 42% of total Cd in the shoot, which indicates a preferential translocation of Cd into seeds in this plant species.

In addition, Cd supply had a marginal effect on the concentration of micronutrients in seeds and stems + leaves. At the highest Cd supply of 6 mg Cd kg?1 soil a growth reduction of about 25% could be observed.  相似文献   

9.
Abstract

This study was carried out to investigate whether an insoluble polyacrylate polymer could be used to remediate a sandy soil contaminated with cadmium (Cd) (30 and 60 mg Cd kg?1 of soil), nickel (Ni) (50 and 100 mg Ni kg?1 of soil), zinc (Zn) (250 and 400 mg Zn kg?1 of soil), or the three elements together (30 mg Cd, 50 mg Ni, and 250 mg Zn kg?1 of soil). Growth of perennial ryegrass was stimulated in the polymer‐amended soil contaminated with the greatest amounts of Ni or Zn, and when the three metals were present, compared with the unamended soil with the same levels of contamination. Shoots of plants cultivated in the amended soil had concentrations of the metals that were 24–67% of those in plants from the unamended contaminated soil. After ryegrass had been growing for 87 days, the amounts of water‐extractable metals present in the amended soil varied from 8 to 53% of those in the unamended soil. The results are consistent with soil remediation being achieved through removal of the metals from soil solution.  相似文献   

10.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

11.
Abstract

Pot studies were conducted to study effect of the boron (B) levels (0, 0.12, 0.25, 0.50, 0.75, 1.0, 2.0 3.0, 4.0, 5.0 and 10?mg?B?kg?1) and calcium carbonate (CaCO3) (0, 1.25, 2.5 and 5.0%) on cotton and wheat crops in cropping system. In absence of CaCO3, reduced growth of cotton and wheat were observed when B was applied @ 2.0?mg?kg?1 soil. Necrosis of leaves in cotton and purple coloration of plumule in wheat was observed @ 10.0?mg?B?kg?1. Irrespective of CaCO3, 0.57 and 7.67?mg?kg?1 Hot Water Soluble B (HWS-B), 62 and 940?mg?kg?1 B dry matter (DM) of leaves, 45 and 210?mg?B?kg?1 DM of petioles and 20 and 51?mg?B?kg?1 DM of sticks, produced 90 and 50%of the maximum dry matter yield (DMY) of cotton, respectively. The values for wheat were 0.66 and 6.71?mg HWS-B kg?1, 7.94 and 27.0?mg?B?kg?1 grain and 15.3 and 170?mg?B?kg?1 straw, respectively.  相似文献   

12.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

13.
ABSTRACT

To establish a critical limit in soils and plant, an experiment was conducted in red and lateritic soil (Alfisols) of farmer’s field in tribal-dominated Panchayat Kurum, Palkot block, Gumla district, Jharkhand, India. Based on the results of the field experiment, the critical limits were determined as 0.48, 0.50, 0.47, and 0.42 mg kg?1 in the soil, respectively, for hot water, hot calcium chloride, salicylic acid, and ammonium acetate-extractable B, while a critical limit of 12.00 mg kg?1 was observed in maize tissue using the graphical method. In an analysis of variance method, the critical limits of B in soils were found as 0.45, 0.54, 0.49, and 0.43 mg kg?1 using hot water, hot calcium chloride, salicylic acid, and ammonium acetate extractants, respectively. Maize plants were highly responsive to B application where soil B level was below the critical limit (0.50 mg kg?1). In a field experiment, grain yield of maize increased with increasing levels of B application, while soil application at 1.0 kg ha?1 + two foliar application (at the knee and pre-flowering stages) of borax at 0.2% were showed significantly higher grain yield of the maize crop. The hot water, hot calcium chloride, salicylic acid, and ammonium acetate-extractable B were significantly and positively correlated with organic carbon and negatively correlated with the electrical conductivity of soils.  相似文献   

14.
Water quality of Lake Okeechobee has been a major environmental concern for many years. Transport of dissolved organic matter (DOM) in runoff water from watershed is critical to the increased inputs of nutrients (N and P) and metals (Cu and Zn). In this study, 124 soil samples were collected with varying soil types, land uses, and soil depths in Lake Okeechobee watershed and analyzed for water-extractable C, N, P, and metals to examine the relationship between dissolved organic carbon (DOC) and water soluble nutrients (N and P) and metals in the soils. DOC in the soils was in 27.64?C400 mg kg?1 (69.30 mg kg?1 in average) and varied with soil types, land uses, and soil depth. The highest water-extractable DOC was found in soils collected in sugar cane and field crops (277 and 244 mg kg?1 in average, respectively). Water soluble concentrations of N and P were in the range of 6.46?C129 and 0.02?C60.79 mg kg?1, respectively. The ratios of water-extractable C/N and C/P in soils were in 0.68?C12.52 (3.23 in average) and 3.19?C2,329 (216 in average), and varied with land uses. The lowest water-extractable C/N was observed in the soils from dairy (1.66), resident (1.79), and coniferous forest (4.49), whereas the lowest water-extractable C/P was with the land uses of dairy (13.1) and citrus (33.7). Therefore, N and P in the soils under these land uses may have high availability and leaching potential. The concentrations of water soluble Co, Cr, Cu, Ni, and Zn were in the ranges of?<?method detection limit (MDL)?C0.33, <MDL?C0.53, 0.04?C2.42, <MDL?C0.71, and 0.09?C1.13 mg kg?1, with corresponding mean values of 0.02, 0.01, 0.50, 0.07, and 0.37 mg kg?1, respectively. The highest water soluble Co (0.10 mg kg?1), Cr (0.26 mg kg?1), Ni (0.31 mg kg?1), and Zn (0.80 mg kg?1) were observed in soils under the land use of sugar cane, whereas the highest Cu (1.50 mg kg?1) was with field crop. The concentration of DOC was positively correlated with total organic carbon (TOC) (P <0.01), water soluble N (P <0.01), electrical conductivity (EC, P <0.01), and water soluble Co, Cr, Ni, and Zn (P <0.01), and Cu (P <0.05), whereas water soluble N was positively correlated with water soluble P, Cu, and Zn (P <0.01) in soils. These results indicate that the transport of DOC from land to water bodies may correlate with the loss of macro-nutrients (N, P), micro-nutrients (Cu, Zn, and Ni), and contaminants (Cr and Co) as well.  相似文献   

15.
Abstract

The effect of cadmium (Cd) and sulphur (S) on dry weight, biochemical parameters and anatomical features of mustard (Brassica campestris L. cv. Pusa Bold) plant was investigated in a pot culture experiment using Cd (25, 50, and 100 mg kg?1 of soil), S (40 mg kg?1 of soil), and the combination of Cd+S (25+40 mg kg?1 of soil, 50+40 mg kg?1 of soil, and 100+40 mg kg?1 of soil). Sulphur treatment was given at sowing and Cd treatment was given when seedlings were fully established. Observations were recorded at the flowering stage. A significant and antagonistic interaction of Cd and S was observed. Compared to the control, leaf dry weight, total chlorophyll content, sugar content, nitrate reductase activity, and protein content decreased significantly with each Cd treatment, whereas the reverse was observed with S treatment. Combined treatments of Cd+S also reduced these parameters, but this reduction was less than the one observed with Cd treatments alone. However, nitrate accumulation in the leaves was 2.35 times higher with treatment of 100 mg Cd+40 mg S kg?1 of soil than in the controls, whereas it was 3.5 times higher with Cd (100 mg kg?1 of soil) alone. The relative proportion of vasculature in the stem, stoma length and width, and stomata length and width were inhibited with Cd treatments, whereas the combined treatments mitigated the adverse effect caused by Cd. Thus, S could alleviate the Cd induced impairment of biochemical and anatomical features of the plant and the enhancement of nitrate accumulation in the leaves.  相似文献   

16.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

17.
Riparian buffer strip guidelines are under scrutiny in the River Njoro Watershed in Kenya. This study investigated soil properties (bulk density, carbon, nitrogen, and phosphorus) in different land use types (small scale agriculture in recent settlements, mixed agriculture in established peri-urban settlements, large-scale commercial agriculture, and the gazetted forest reference condition) and their adjacent buffer strips. Bulk density, carbon, nitrogen, and phosphorus within 30-m riparian buffer strips adjacent to recent settlement land use areas were similar to those of the gazetted forest reference condition, but only bulk density of the buffer strips adjacent to peri-urban and commercial agriculture land use areas were similar to the gazetted forest reference condition. Phosphorus is a sensitive indicator of the impacts of human activity, as increased concentrations were observed with increasing scale of land use activity. For riparian buffers adjacent to recent settlements, soil phosphorus was significantly higher in buffers narrower than 30?m (5.01?mg?P?kg?1) than gazetted forest (3.40?mg?P?kg?1) but not significantly different for riparian buffers wider than 30?m (3.81?mg?P?kg?1) compared to gazetted forest. Based on the research, it is recommended that policies governing riparian buffer strips become (1) stricter, with the current ??maximum?? of 30?m considered a minimum; and (2) adaptive, with 30?m used in small-scale agricultural areas, and wider riparian buffer strips used in medium- and large-scale agricultural areas.  相似文献   

18.
A greenhouse experiment was designed to determine the cadmium (Cd) and lead (Pb) distribution and accumulation in parsley plants grown on soil amended with Cd and Pb. The soil was amended with 0, 5, 10 20, 40, 60, 80, and 100 mg Cd kg?1 in the form of cadmium nitrate [Cd(NO3)2] and 0, 5, 10, 50 and 100 mg Pb kg?1 in the form of lead nitrate [Pb(NO3)2]. The main soil properties; concentrations of the diethylenetriaminepentaacetic acid (DTPA)–extractable metals lead (Pb), Cd, copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) in soil; plant growth; and total contents of metals in shoots and roots were measured. The DTPA-extractable Cd was increased significantly by the addition of Cd. Despite the fact that Pb was not applied, its availability was significantly greater in treatments 40–100 mg Cd kg?1 compared with the control. Fresh biomass was increased significantly in treatments of 5 and 10 mg Cd kg?1 as compared to the control. Further addition of Cd reduced fresh weight but not significantly, although Cd concentration in shoots reached 26.5 mg kg?1. Although Pb was not applied with Cd, its concentration in parsley increased significantly in treatments with 60, 80, and 100 mg Cd g?1 compared with the others. Available soil Pb was increased significantly with Pb levels; nevertheless, the increase was small compared to the additions of Pb to soil. There were no significant differences in shoot and root fresh weights between treatments, although metal contents reached 20.0 mg Pb kg?1 and 16.4 mg Pb kg?1 respectively. Lead accumulation was enhanced by Pb treatments, but the positive effect on its uptake was not relative to the increase of Pb rates. Cadmium was not applied, and yet considerable uptake of Cd by control plants was evident. The interactive effects of Pb and Cd on their availability in soil and plants and their relation to other metals are also discussed.  相似文献   

19.

Purpose

Arid and hyper-arid zones worldwide are reservoirs of chemical compounds, among them are various trace elements. With climate change, abnormal precipitation is occurring in arid and hyper-arid mountainous zones, which in turn is increasing the displacement of trace elements from mountainous to populated areas. The objective of this study was to evaluate trace element displacement of a sediment-laden flood in the Copiapó River Basin on March 24–25, 2015.

Materials and methods

Sixty topsoil samples were taken from 20 agricultural fields. Soil organic matter content, pH, electrical conductivity, and particle size were determined according to accepted procedures in Chile. Samples were acid-digested to determine total Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn content by flame atomic absorption spectroscopy. Hydride generation AAS was used for As and Se determination, and Hg was quantified by cold vapor AAS. Detection limits were 0.2, 0.05, 0.1, and 5.0 mg kg?1 for Cd, Hg, Se, and Mo, respectively. Correlation and principal component analyses were made, and theoretical distribution functions were fitted to each element.

Results and discussion

Metal concentration showed a strong correlation between SOM and particle size, explaining the first component from the principal component analysis. All trace elements correlated well between each other except for Mo and Se. Mo values were consistently below detection levels (<5.0 mg kg?1). Expected values for the elements were (95% of probability): 13–37 g Al kg?1, 10–50 mg As kg?1, <0.2–0.6 mg Cd kg?1, 13–25 mg Cr kg?1, 27–281 mg Cu kg?1, 27–40 g Fe kg?1, <0.05–6.5 mg Hg kg?1, 516–1.080 mg Mn kg?1, 7–24 mg Ni kg?1, 13–50 mg Pb kg?1, 0.2–0.6 mg Se kg?1, and 61–172 mg Zn kg?1. Concentrations of As, Cu, and Hg were consistently above national standards.

Conclusions

The authors conclude that the trace element contents in sediments deposited by the event are within expected values based on soil data in Chile.
  相似文献   

20.
Bioaccumulation of trace metals in plant tissues can present a health risk to wildlife, and potentially to humans. The Passamaquoddy tribe in Maine was concerned about health risks of cadmium (Cd) because of a health advisory for moose liver and kidney consumption due to high Cd levels. This study found relatively low to moderate concentrations of Cd, nickel (Ni), lead (Pb), and zinc (Zn) concentrations in four common terrestrial moose browse species, associated forest soils, and two species of aquatic vegetation on Passamaquoddy tribal land in eastern Maine. Terrestrial plant tissue concentrations ranged from 0.1 to 1.97, 0.65 to 7.08, 0.29 to 2.0, and 42 to 431 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Deciduous species, particularly aspen and birch, may be a more significant source of Cd and Zn to wildlife compared to coniferous or aquatic species. Aquatic plant tissue concentrations ranged from 0.11 to 0.14, 0.46 to 1.01, 0.8 to 0.9, and 22 to 41 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Total O horizon concentration means for coniferous and deciduous were 0.50 and 1.00, 4.27 and 4.11, 55 and 21, and 55 and 167 mg kg?1 for Cd, Ni, Pb and Zn, respectively. The study provides baseline vegetation and soil trace metal concentrations for a remote region in Maine impacted by non-point sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号