首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
BACKGROUND: The acetolactate synthase (ALS)-inhibiting herbicide sulfosulfuron is registered in Australia for the selective control of Hordeum leporinum Link. in wheat crops. This herbicide failed to control H. leporinum on two farms in Western Australia on its first use. This study aimed to determine the level of resistance of three H. leporinum biotypes, identify the biochemical and molecular basis and develop molecular markers for diagnostic analysis of the resistance. RESULTS: Dose-response studies revealed very high level (>340-fold) resistance to the sulfonylurea herbicides sulfosulfuron and sulfometuron. In vitro ALS assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to herbicide inhibition. This altered ALS sensitivity in the resistant biotypes was found to be due to a mutation in the ALS gene resulting in amino acid proline to serine substitution at position 197. In addition, two- to threefold higher ALS activities were consistently found in the resistant biotypes, compared with the known susceptible biotype. Two cleaved amplified polymorphic sequence (CAPS) markers were developed for diagnostic testing of the resistant populations. CONCLUSION: This study established the first documented case of evolved ALS inhibitor resistance in H. leporinum and revealed that the molecular basis of resistance is due to a Pro to Ser mutation in the ALS gene.  相似文献   

6.
7.
8.
9.
10.
Evolution of resistance to herbicides in weeds is becoming an increasing problem worldwide. To develop effective strategies for weed control, a thorough knowledge of the basis of resistance is required. Although non‐target‐site‐based resistance is widespread, target site resistance, often caused by a single nucleotide change in the gene encoding the target enzyme, is also a common factor affecting the efficacies of key herbicides. Therefore, fast and relatively simple high‐throughput screening methods to detect target site resistance mutations will represent important tools for monitoring the distribution and evolution of resistant alleles within weed populations. Here, we present a simple and quick method that can be used to simultaneously screen for up to 10 mutations from several target site resistance‐associated codons in a single reaction. As a proof of concept, this SNaPshot multiplex method was successfully applied to the genotyping of nine variable nucleotide positions in the CT domain of the chloroplastic ACCase gene from Lolium multiflorum plants from 54 populations. A total of 10 nucleotide substitutions at seven of these nine positions (namely codons 1781, 1999, 2027, 2041 2078, 2088 and 2096) are known to confer resistance to ACCase‐inhibiting herbicides. This assay has several advantages when compared with other methods currently in use in weed science. It can discriminate between different nucleotide changes at a single locus, as well as screening for SNPs from different target sites by pooling multiple PCR products within a single reaction. The method is scalable, allowing reactions to be carried out in either 96‐ or 384‐well plate formats, thus reducing work time and cost.  相似文献   

11.
Sagittaria trifolia L. is one of the most serious weeds in paddy fields in Japan. Since the late 1990s, severe infestations of S. trifolia have occurred following applications of sulfonylurea herbicides in Akita prefecture. In this study, two accessions of S. trifolia, R1 and R2, were collected from paddy fields with severe infestations and their resistance profiles were determined in comparison to a susceptible accession, S1. R1 and R2 were highly resistant to bensulfuron‐methyl. R1 was also highly resistant to pyrazosulfuron‐ethyl, but R2 was susceptible. Relative to S1, R1 had an amino acid substitution at the Pro197 residue of acetolactate synthase (ALS), a well‐known mutation that confers sulfonylurea resistance, suggesting that R1 has a target‐site‐based resistance (TSR) mechanism. The sequence of the ALS gene in R2 was identical to that in S1. A Southern blot analysis indicated that there was only one copy of the ALS gene in S1 and R2. These results suggest that R2 has a non‐target‐site‐based resistance (NTSR) mechanism. R2 was moderately resistant to imazosulfuron but susceptible to thifensulfuron‐methyl. R2 and S1 were susceptible to pretilachlor, benfuresate, MCPA‐ethyl and bentazon. The results reveal the occurrence of two sulfonylurea‐resistant biotypes of S. trifolia that show different mechanisms of cross‐resistance to sulfonylureas related to TSR in R1 and NTSR in R2.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号