首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

2.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

3.
An 8‐week feeding trial was conducted to determine the effects of dietary methionine level on juvenile black sea bream Sparus macrocephalus. Fish (initial body weight: 14.21 ± 0.24 g) were reared in eighteen 350‐L indoors flow‐through circular fibreglass tanks (20 fish per tank). Isoenergetic and isonitrogenous diets contained six levels of L‐methionine ranging from 7.5 to 23.5 g kg−1 of dry diet in 3.0 g kg−1 increments at a constant dietary cystine level of 3.1 g kg−1. Growth performance and feed utilization were significantly influenced by dietary methionine levels (P < 0.05). Maximum weight gain (WG), specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value (PPV) occurred at 17.2 g methionine kg−1 diet, beyond which they showed declining tendency. Protein contents in whole fish body and dorsal muscle were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. Apparent digestibility coefficients (ADCs) of dietary nutrients were significantly affected by dietary treatments except for ADCs of crude lipid. Fish fed the grade level of methionine demonstrated a significant improvement in whole‐body methionine content, total essential amino acids (∑EAA), total non‐essential amino acids (∑NEAAs) and ∑EAA/∑NEAA ratio (P < 0.05). Regarding serum characteristics, significant differences were observed in total cholesterol, glucose and free methionine concentration (P > 0.05), while total protein level and triacylglycerol concentration kept relatively constant among treatments (P < 0.05). Analysis of dose response with second‐order polynomial regression on the basis of either SGR or PPV, the optimum dietary methionine requirements of juvenile black sea bream were estimated to be 17.1 g kg−1 of diet (45.0 g kg−1 methionine of protein) and 17.2 g kg−1 of diet (45.3 g kg−1 methionine of protein) in the presence of 3.1 g kg−1 cystine, respectively.  相似文献   

4.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

5.
An 8‐week feeding experiment was conducted to determine the effect of dietary betaine levels on the growth performance and hepatic intermediary metabolism of genetically improved farmed tilapia (GIFT) strain of Nile tilapia Oreochromis niloticus (mean initial body weight: 78.3 ± 1.3 g, means ± SD). Six practical diets were formulated with the incorporation of betaine at the levels of 0 (control), 5, 10, 15, 20 and 25 g kg−1. Survival showed no significant differences among the treatments (P > 0.05). The highest and lowest weight gain (WG) and specific growth rate (SGR) were observed for fish fed the diets containing 5 and 0 g kg−1 (control) betaine, respectively. Feed intake showed similar trend with WG and SGR. In contrast, feed conversion ratio was the lowest when dietary betaine level was 5 g kg−1. In general, dietary betaine supplementation showed no significant effect on hepatic composition of tilapia. Condition factor and viscerosomatic index tended to increase with increasing dietary betaine levels from 0 to 5 g kg−1 and then decline when dietary betaine levels further increased from 5 to 25 g kg−1. In contrast, hepatosomatic index declined with increasing dietary betaine levels (P < 0.05). Dietary betaine levels significantly influenced several hepatic enzymatic activities, including succinate dehydrogenase, lactate dehydrogenase, malic dehydrogenase, lipoprotein lipase and hepatic lipase, suggesting that dietary betaine addition had significant effects on nutrient metabolism in the liver. Based on the second‐order polynomial regression analysis of WG, 12.5 g kg−1 of dietary betaine level seemed optimal for genetically improved farmed tilapia strain of O. niloticus.  相似文献   

6.
Due to lack of information on the use of non‐protein energy sources in diets for pacu (Piaractus mesopotamicus), a 2 × 2 × 3 factorial experiment was conducted to evaluate the performance and digestibility of 12 diets containing approximately two crude protein (CP; 220 and 250 g kg−1), two lipid (40 and 80 g kg−1) and three carbohydrate levels (410, 460 and 500 g kg−1). The pacu juveniles‐fed diets containing 220 g kg−1 CP did not respond (P > 0.05) to increased dietary lipid and carbohydrate levels, but the fish‐fed diets containing 250 g kg−1 CP showed a better feed conversion ratio. There were interactions in weight gain (WG), specific growth rate (SGR), crude protein intake (CPI) and feed conversion rate (FCR) dependent on dietary carbohydrate and lipid levels, showing positive effects of increasing carbohydrate levels only for fish‐fed diets containing 80 g kg−1 lipid level. However, when the diets contained 40 g kg−1 lipid, the best energy productive value (EPV) results were obtained at 460 g kg−1 carbohydrate. A higher usage of lipids (80 g kg−1) reduced CPI and was detrimental to protein [apparent digestibility coefficient (ADC)CP] and energy (ADCGE), but did not affect growth. The ADCGE improved proportionally as dietary carbohydrate levels increased (P < 0.05), increasing the concentration of digestible energy. In addition, the WG, CPI, ADCGE results showed best use of the energy from carbohydrates when dietary protein level was 250 g kg−1 CP. The utilization of 250 g kg−1 CP in feeds for juvenile pacu for optimal growth is suggested. Therefore, the optimum dietary lipid and carbohydrate levels depend on their combinations. It can be stated that pacu uses carbohydrates as effectively as lipids in the maximization of protein usage, as long as it is not lower than 250 g kg−1 CP or approximately 230 g kg−1 digestible protein.  相似文献   

7.
A growth experiment was conducted to determine the optimal carbohydrate‐to‐lipid (CHO: L) ratio for juvenile yellowfin seabream cultured in 340‐L indoor recirculating tanks. Seven isonitrogenous (450 g kg−1 dietary protein) and isoenergetic (14.1 MJ kg−1) diets with increasing CHO: L ratios (0.03–5.09 g: g) were fed to triplicate groups of 30 fish with an initial weight of 4.91 g for 56 days. Fish were fed to satiation twice a day and the water temperature ranged between 28 and 31.7 °C during the experimental period. Survival was high in all the groups and was not affected by dietary treatments. Best weight gain (WG) and specific growth rate (SGR) were observed in fish fed diets with CHO: L ratios of 0.29 and 0.72, which were not significantly different from that of 0.03, 1.26 and 1.92, but apparently higher than that of 3.22 and 5.09. Feed efficiency (FE), protein efficiency ratio (PER) and protein production value (PPV) followed the same general pattern as WG and SGR. Highest level of energy production value (EPV) was found in fish fed diets with CHO: L ratio of 0.72. Proximate compositions of fish whole body and tissues were markedly affected by dietary CHO: L ratios. Whole body, muscle and liver lipid increased as CHO: L ratios decreased, whereas moisture contents were reduced. Dietary CHO: L ratios had no significant effect on protein content in whole body and muscle. Plasma total cholesterol levels of fish fed diets with CHO: L ratios less than 0.72 were significantly higher than those of the other groups. Triacylglyceride levels decreased linearly as dietary CHO: L ratios increased. Viscerosomatic index (VSI) significantly increased as dietary CHO: L ratios decreased. Intraperitoneal fat ratio (IPF) of fish fed diets with CHO: L ratios less than 1.92 were significantly higher than those fed CHO: L ratios of 3.22 and 5.09. Hepatosomatic index (HSI) did not vary between the test diets. Based on second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 84.1 g kg−1 of carbohydrate and 136.3 g kg−1 of lipid, corresponding to a CHO: L ratio of 0.62, in a diet holding 450 g kg−1 of crude protein and 14 KJ g−1 of metabolizable energy, proved to be optimal for juvenile yellowfin seabream.  相似文献   

8.
To evaluate isolated pea protein as feed ingredient for tilapia (Oreochromis niloticus) juveniles, triplicate groups were fed with four isonitrogenous [crude protein: 421.1–427.5 g kg−1 in dry matter (d.m.)] and isoenergetic (gross energy: 20.46–21.06 MJ kg−1 d.m.) diets with varying protein sources for 8 weeks. Fish meal-based protein content of diets was substituted with 0% (diet 100/0=control group), 30% (diet 70/30), 45% (diet 55/45) and 60% (diet 40/60) isolated pea protein. Tilapia juveniles with an initial body weight of 2.23–2.27 g were fed in average at a level of 5% of their body weight per day. Highest individual weight gain (WG: 21.39 g) and specific growth rate (SGR: 4.21% day−1) and best feed conversion ratio (FCR: 0.90) were observed in tilapia fed diet 100/0, followed by fish-fed diet 70/30 (WG: 19.09 g; SGR: 4.03% day−1; FCR: 0.98), diet 55/45 (WG: 16.69 g; SGR: 3.80% day−1; FCR: 1.06) and diet 40/60 (WG: 16.18 g; SGR: 3.74% day−1; FCR: 1.06). Although fish fed diet 100/0 showed the best performance, inclusion of 30% protein derived from pea protein isolate resulted in a growth performance (in terms of WG and SGR) that did not differ significantly from diet 100/0 in contrast to fish fed diet 55/45 and 40/60. Crude ash content in the final body composition of the experimental fish decreased with increasing dietary pea protein content, while crude protein and lipid content remained equal between the groups. Significant decreasing growth performance and body ash incorporation of tilapia at higher inclusion levels seem to be mainly related to the dietary amino acid profile and phytic acid contents.  相似文献   

9.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

10.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

11.
Six test diets with protein levels varying from 250 to 500 g kg?1 were fed to six triplicate groups of summerling (initial weight: 1.56 g) and seven test diets with protein levels varying from 200 to 500 g kg?1 were fed to seven triplicate groups of winterling (initial weight: 9.49 g) for 8 weeks. Weight gain (WG) and feed efficiency (FE) of summerling significantly increased with increasing dietary protein levels from 250 to 350 g kg?1 and slightly declined, but without statistical significance at a dietary protein level of 400 g kg?1, then further significantly decreased with increasing protein levels to 450 and 500 g kg?1; WG of winterling increased significantly with increasing dietary protein levels from 200 to 300 g kg?1 (P < 0.05), and above this level, WG had a tendency to decrease with increasing dietary protein levels. Winterling fed diets with 300 and 400 g kg?1 of dietary protein had significantly higher FE than those fed other diets. WG data analysis by quadratic regressions showed that the optimum dietary protein levels required for the maximum growth of summerling and winterling were 374 and 355 g kg?1 of dry diet respectively. Protein efficiency ratio of both summerling and winterling negatively correlated with levels of dietary protein. The whole body moisture, protein, lipid and ash of summerling after being fed various test diets for 8 weeks were significantly different among treatments (P < 0.05). The whole body moisture and fat of winterling were also significantly affected by dietary protein levels (P < 0.05), while the whole body protein and ash of winterling were not (P > 0.05).  相似文献   

12.
To determine the digestible lysine requirement for pacu juveniles, a dose–response feeding trial was carried out. The fish (8.66 ± 1.13 g) were fed six diets containing the digestible lysine levels: 6.8, 9.1, 11.4, 13.2, 16.1 and 19.6 g kg?1 dry diet. The gradual increase of dietary digestible lysine levels from 6.8 to 13.2 g kg?1 did not influence the average values of the parameters evaluated (P > 0.05). The increase of dietary digestible lysine level to 16.1 g kg?1 significantly improved weight gain (WG), specific growth rate (SGR), protein productive value (PPV), protein efficiency rate (PER), and apparent feed conversion rate (FCR), but was not different from fish fed diets containing 19.6 g kg?1 lysine. Fish fed diets containing 16.1 and 19.6 g kg?1 digestible lysine showed lower body lipid contents than fish in the other treatments. The digestible lysine requirement as determined by the broken‐line model, based on average WG values, was 16.4 g kg?1. The other essential amino acid requirements were estimated based on the ideal protein concept and the value determined for lysine.  相似文献   

13.
Six iso‐nitrogenous (410 g kg?1) diets with three levels of total phosphorus (P4, P10 and P18 g kg?1) and two levels of starch (S200 and S350 g kg?1) were fed to triplicate groups of 30 fish to evaluate whether the high level of dietary phosphorus could improve the utilization of starch. Over 8‐week‐growth trial, best weight gain (WG) and specific growth rate (SGR) (P < 0.05) were observed in fish fed the P10/S200 and P18/S200 diets. WG and SGR significantly decreased as starch levels increased whereas for P4, while lipid contents of liver and whole body, hepatosomatic index and intraperitoneal fat ratio (IPF) significantly increased. These results suggested that high dietary starch will depress the growth performance and cause lipid accumulation. Within both starch levels, fish fed diet with P4 tended to produce lower (P < 0.05) WG and SGR, and had higher (P < 0.05) values of IPF. The whole body lipid, ash, calcium, phosphorus and iron contents were significantly affected by dietary phosphorus levels. Supplied phosphorus could improve the growth and decrease the whole body lipid, but there is no more effect after the phosphorus requirement was met at 10 g kg?1.  相似文献   

14.
A 8‐week feeding experiment was conducted to evaluate the effect of different dietary protein and lipid levels on growth and energy productive value of juvenile Litopenaeus vannamei, at 30 and 2 ppt, respectively. Nine practical diets were formulated to contain three protein levels (380, 410 and 440 g kg?1) and three lipid levels (60, 80 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The effects of salinity and an interaction between dietary protein level and lipid level on growth and energy productive value of shrimp were observed under the experimental conditions of this study. At 30 ppt seawater, shrimp fed with 440 g kg?1protein diets had significantly higher weight gain (WG) than those fed with 380 g kg?1 protein diets at the same dietary lipid level, and the 60 g kg?1 lipid group showed higher growth than 80 g kg?1and 100 g kg?1 lipid groups at the same dietary protein level. At 2 ppt seawater, the growth of shrimp was little affected by dietary protein treatments when shrimp fed the 80 and 100 g kg?1 lipid, shrimp fed the 80 g kg?1 lipid diets had only slightly higher growth than that fed 60and 100 g kg?1 lipid diets when fed 380 and 410 g kg?1 dietary protein diets. A significant effect of salinity on growth of shrimp was detected with the growth responses at 30 ppt > 2ppt (P < 0.05). Final body lipid content, body protein content and energy productive value of shrimp was significantly higher in animals exposed to 30 ppt than in shrimp held at 2 ppt.  相似文献   

15.
This study was conducted to evaluate the dietary α‐tocopherol (vitamin E) requirement in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.48 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semi‐purified experimental diets with average protein and crude lipid levels (dry matter) of 29.7 ± 0.36% and 4.39 ± 0.23% (mean ± SD), respectively were formulated to contain 0 (E4), 15 (E12), 30 (E23), 60 (E44), 120 (E77) and 600 (E378) mg α‐tocopherol/kg diet, supplied as dl‐α‐tocopheryl acetate. Diets were analyzed for α‐tocopherol content by HPLC and the α‐tocopherol levels were 4.01, 12.4, 23.1, 44.3, 77.4 and 378 mg α‐tocopherol/kg diet for E4, E12, E23, E44, E77 and E378 diets, respectively. Casein and defatted fish meal were used as the protein sources in the diets while wheat flour was the carbohydrate source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of the 14‐week feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of sea cucumbers fed on E23, E44, E77 and E378 diets were significantly (P < 0.05) higher than those of animals fed on E4 and E12 diets. However, there were no significant differences in WG, SGR and FE among sea cucumbers fed on E23, E44, E77 and E378 diets or among those fed on E4 and E12 diets. Survival of sea cucumbers fed on E44, E77 and E378 diets were significantly higher than those of animals fed on E4, E12 and E23 diets. However, there were no significant differences among sea cucumbers fed on E4, E12 and E23 diets or among those fed on E44 and E77 diets. Whole‐body vitamin E concentration increased with α‐tocopherol content of the diets. Broken line analysis of WG showed an optimum dietary α‐tocopherol requirement of 41 mg α‐tocopherol/kg diet in sea cucumber. These results indicated that the optimum dietary α‐tocopherol requirement in sea cucumber in the form of dl‐α‐tocopheryl acetate could be higher than 23.1 mg α‐tocopherol/kg diet but lower than 44 mg α‐tocopherol/kg diet.  相似文献   

16.
In order to evaluate the effects of dietary protein and lipid levels on the growth, feed utilization and body composition of Heterotis niloticus fingerlings, a factorial experiment with three replicates was conducted. Six experimental diets containing three crude protein levels (28%, 32% and 36%) and two crude lipid levels (6% and 13%) were tested. Heterotis niloticus (2.34 g) were fed with the diets to apparent satiation, twice a day. For 56 days, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein retention (PR) were significantly affected by dietary protein and dietary lipid levels respectively (P<0.01). The highest WG, SGR and FE were observed for fingerlings fed the diet containing 36% protein and 6% lipid, but no significance difference was found between groups fed with the following diets: P28L13 (28% protein and 13% lipid), P32L6, P32L13 and P36L13. A significant interaction between dietary protein and lipid was observed for WG, SGR, FE and PR. The whole‐body protein, lipid, moisture and ash content were not significantly affected by dietary lipid levels, but body protein and lipid content were significantly affected by dietary protein. The dietary protein‐sparing effect was clearly demonstrated when the dietary energy of lipid increased from 17 to 19.6 kJ g?1 at 28% crude protein on H. niloticus.  相似文献   

17.
A feeding trial was conducted to determine the dietary methionine requirement of juvenile golden pompano (initial body weight 12.40 ± 0.02 g). Six diets were formulated with six graded levels of methionine (8.6, 9.2, 10.4, 11.5, 13.2 and 14.5 g kg−1). Each diet was randomly assigned to triplicate groups of 20 juvenile fish in seawater floating net cages (1.0 m × 1.0 m × 1.5 m). Fish were fed twice daily (08:30 and 16:30) to apparent satiation for 56 days. Weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), feed efficiency (FE), nitrogen retention efficiency (NRE), proximate body composition, morphometry and haematology were significantly (< 0.05) affected by the dietary methionine levels. WG, SGR and FE increased with increasing levels of methionine up to 13.2 g kg−1 diet (< 0.05) and remained nearly the same thereafter. NRE also increased with increasing levels of methionine up to 13.2 g kg−1 diet (< 0.05) and remained nearly the same thereafter. Linear regression analysis on WG and NRE indicated that the recommended optimum dietary methionine levels for optimal growth of juvenile pompano were 10.6 and 12.7 g kg−1 diet, respectively, corresponding to 24.6 and 29.5 g kg−1 dietary protein, respectively, so the level of dietary methionine should be between 10.6 and 12.7 g kg−1 diet, corresponding to 24.6–29.5 g kg−1 dietary protein. Additionally, the estimated requirements for the other essential amino acids were calculated from A/E ratios of whole‐body amino acid profile based on the methionine requirement determined from the present experiment.  相似文献   

18.
A 14‐wk feeding trial was carried out to evaluate the optimum dietary ascorbic acid (AA) level in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.49 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semipurified experimental diets were formulated to contain 0 (l ‐ascorbyl‐2‐monophosphate [AMP]; AMP0), 30 (AMP24), 60 (AMP48), 120 (AMP100), 240 (AMP206), and 1200 (AMP1045) mg AA/kg diet in the form of AMP using casein as the main protein source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of 14 wk of feeding trial, weight gain (WG), specific growth rate (SGR), and feed efficiency (FE) of sea cucumbers fed AMP100, AMP206, and AMP1045 were significantly (P < 0.05) higher than those of animals fed AMP0, AMP24, and AMP48. However, there were no significant differences in WG, SGR, and FE among sea cucumbers fed AMP100, AMP206, and AMP1045 and among animals fed AMP0, AMP24, and AMP48. Whole‐body vitamin C concentration increased with AA content of the diets. Broken‐line analysis of WG showed an optimum dietary AA level of 105.3 mg AA/kg diet in sea cucumber. These results indicated that the optimum dietary vitamin C level in sea cucumber in the form of AMP could be greater than 100 mg AA/kg diet but less than 105.3 mg AA/kg diet.  相似文献   

19.
To verify the potential of lipids and carbohydrates to spare dietary protein and to understand the intermediary metabolism of interaction of these nutrients in pacu juveniles, an experiment was carried out to evaluate pacu physiological and performance parameters. The experimental design was completely randomized with 12 treatments in a 2 × 2 × 3 factorial arrangement, consisting of diets containing two digestible protein levels (200 and 230 g kg−1 PD), two lipid levels (40 and 80 g kg−1) and three carbohydrate levels (410, 460 and 500 g kg−1). Fish‐fed 230 g kg−1 digestable protein (DP) showed increased glycaemia, decreased hepatic glycogen, as well as a smaller intake index and better feed conversion ratio. The higher dietary lipid level (80 g kg−1) reduced protein intake and serum protein concentration, increased liver and body fat content, but did not affect growth. At a lipid level of 80 g kg−1, the increase in dietary carbohydrate levels promoted greater weight gain (WG), crude protein intake (CPI) and better feed conversion ratio (FCR). For fish fed diets containing 40 g kg−1 lipid, the best energy‐productive values (EPV) were obtained at 460 g kg−1 carbohydrate. Increased levels of the main nutrients in the diets reduced the levels of serum triglycerides, while the increase in energy concentration increased the hepatosomatic (HSI) and glycaemia index values. Pacu used lipids as effectively as carbohydrates in the maximization of protein usage, as long as dietary protein was at a level of 230 g kg−1 DP. The physiological parameters indicated that the best balance between the DP, dietary lipid and carbohydrate levels within the ranged this trial was obtained at 230, 40 and 460 g kg−1, respectively, without lower growth.  相似文献   

20.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号