首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Previous research conducted in the Marano and Grado lagoon (northern Adriatic Sea) has shown that this environment has been affected by trace metal contamination, especially by mercury (Hg), from both industrial (the chlor-alkali plant) and mining activities (Idrija mine, Slovenia). Sediment cores were collected from two different saltmarshes of this lagoon environment to evaluate the degree of the anthropogenic enrichments and the geochronology of Hg accumulation.

Materials and methods

Core subsampling was performed by cutting 1-cm thick slices at discrete intervals. Mercury determination was done differently from the other parameters in that the two long cores were subsampled at 1-cm intervals to obtain continuous concentration profiles. Samples were completely decomposed, using a mixture of mineral acids in a closed microwave system before being analysed for trace metal content using ICP-OES. Total Hg content in the solid phase was determined by DMA-80. 137Cs was measured via gamma spectrometry. 210Pb activity was measured via alpha-counting of its daughter, 210Po, assuming secular equilibrium between the two isotopes.

Results and discussion

In saltmarsh sediments, Fe, Co, Li, Sc and V show no enrichment at both sites thus suggesting that they are essentially lithogenic elements. Conversely, enrichments are minimal (EF = <2) for As, Cd, Cr, Ni, Pb and Zn and moderate (EF = 2–5) for Cu and Mn and also for Pb and Zn but only in some levels of the sedimentary sequences. An exception is Hg, as expected due to the long-term input proceeding from the historical mining activity which has especially affected the eastern sector of the lagoon.

Conclusions

The core collected from the saltmarsh in the eastern lagoon (Grado) displays a better time resolution during the last century although the Hg background level has not been reached. Conversely, the core collected in the western sector (Marano) has recorded a longer and more complete history of Hg contamination, from the beginning of the peak of Hg extraction activity at the Idrija mine (1850). Both saltmarshes still receive Hg inputs and the sediment accumulation rates in the upper section appear to have increased over the last 10–20 years (from 0.30 to 0.45 cm year?1 at Marano and from 0.30 to 0.74 cm year?1 at Grado). Many of these morphological structures suffer erosive processes thus representing a potential source of contaminants associated with sediments, in particular Hg. Conservation and monitoring of saltmarshes should be taken into consideration also from this environmental point of view.
  相似文献   

2.

Purpose

Many biotic and abiotic factors influence the structural and functional diversity of microbial communities in the rhizosphere. This study aimed to understand the dynamics of fungal community in the soybean rhizosphere during soybean growth and directly compare the influence of abiotic and biotic factors in shaping the fungal communities across different growth periods.

Materials and methods

High-throughput sequencing based on internal transcribed spacer (ITS) region, quantitative PCR, and statistical analysis approaches were used to measure the fungal community structure, abundance, and dynamic changes of 63 rhizosphere soil samples which were taken from different fertilization regimes and rhizobium inoculation treatments during three soybean growth stages.

Results and discussion

Among the taxa examined, more than 16 fungal classes were detected from the 21 soil samples. Sordariomycetes was the most abundant class, followed by Dothideomycetes, Agaricomycetes, and Eurotiomycetes. Soybean growth stage was the most important factor determining the diversity patterns of the fungal communities. Fungal community diversity was closely related to the base-fertilizer application, and fungal community richness was associated with rhizobium inoculation. Beta diversity of the fungal community based on the Bray-Curtis distance was significantly related to plant growth stage. Network analysis showed that mutual cooperation among fungal taxa became more intimate during the plant growth.

Conclusions

Compared with edaphic properties, plant growth stage was the dominant factor in determining soil fungal community dynamics. Base-fertilizer and rhizobium inoculation affected the alpha diversity of the soil fungi.
  相似文献   

3.

Purpose

The objective of this work was to identify hyperaccumulator plants and evaluate their capacity on copper mine tailings in the Antofagasta Region (Chile), considered one of the most arid in the world.

Materials and methods

Two native plant species, Gazania rigens and Pelargonium hortorum, were grown during 11 weeks on mine tailings. The physico-chemical characterization of the mine tailings under study indicated that the substrate required conditioning to support a phytoremediation system. In this respect, organic and inorganic amendments and mycorrizhal fungi were added to the substrate. Three treatments were designed to assess the effects of the amendments through an analysis of variance.

Results and discussion

Indicators of plant growth and development were measured weekly, and concentrations of Cd, Cu, Fe, Mn, Pb, Al, and Zn in roots of tailing-grown plants and substrate were measured at the end of the experiment.

Conclusions

The results were used to determine the bioconcentration factor (BCF), which demonstrated that both species act as excluders of Fe, Mn, Pb, Al, and Zn. In addition, it was found that both species present characteristics of potential accumulators of Cu.
  相似文献   

4.

Purpose

Nanoparticles (NPs) have received increased attention in recent past due to their unique distinct properties. Metal-based NPs are widely used in chemical and allied sector. Most of the research is directed to study the efficiency of NPs in medicine and agriculture. The aim of this review is to explore the possible threats posed by toxicity of various NPs on plants and microbial diversity.

Materials and methods

First, major sources of NPs to the environment were analyzed. The effects of metal-based NPs on the microbiota and plants are presented in this review. The results obtained by the authors during last 12 years of research are used.

Results and discussion

The exposure of soil to nanoparticles causes a decrease in soil microbial biomass and enzymatic activity, which impacts microbial community composition including yeasts, bacteria, fungi, and biological diversity. The effects of NPs on plants result in various types of abnormalities. Nanoparticles can also pose risks to human health.

Conclusions

Increased applications of NPs pose a threat to beneficial microbial communities as well as crops and soils. Thus, it is important to explore whether NPs could compromise crop yield, soil properties, soil organisms, and functional activities of soil.
  相似文献   

5.

Purpose

Bacteria able to extracelluar respiration, which could be enriched in the anode of microbial fuel cells (MFCs), play important roles in dissimilatory iron reduction and arsenic (As) desorption in paddy soils. However, the response of the bacteria to As pollution is unknown.

Materials and methods

Using soil MFCs to investigate the effects of As on anode respiring bacteria (ARB) communities in paddy soils exposed to As stress. The soil MFC performances were evaluated by electrochemical methods. The bacterial community compositions on anodes were studied using Illumina sequencing.

Results and discussion

In wet 1 phase, polarization curves of MFCs showed cathode potentials were enhanced at low As exposure but inhibited at high As exposure. In the meantime, anode potentials increased with As levels. The dry-wet alternation reduced As levels in porewater and their impacts on electrodes microorganisms. Arsenic addition significantly influenced the anode microbial communities. After dry-wet cycles, Deltaproteobacteria dominated in the anode with high As.

Conclusions

The dynamic changes of the communities on cathodes and anodes of soil MFCs in paddy soils with different As addition might be explained by their different mechanisms for As detoxification. These results provide new insights into the microbial evolution in As-contaminated paddy soils.
  相似文献   

6.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

7.

Purpose

Fungi are essential components of soil microbial communities and have a crucial role in biogeochemical processes. Alpine regions are sensitive to climate change, and the importance of changes in fungal community composition along altitudinal gradients in alpine regions is hotly debated.

Materials and methods

We used 454 pyrosequencing approaches to investigate the fungal communities at 1600, 2300, 2800, 3000, and 3900 m above sea level along an altitudinal gradient on Mount Gongga.

Results and discussion

The results showed that Agaricomycetes, Sordariomycetes, and Tremellomycetes are the dominant classes at all sampling sites. Operational taxonomic unit richness decreased with increasing altitude, and the fungal communities were clustered into three groups that corresponded to altitudes of, i.e., 1600, 2300, and above 2800 m. The evenness of fungi was not significantly correlated with altitude, whereas beta diversities were significantly correlated with altitude. The distance-based redundancy analysis and Mantel test indicated that the composition of fungal assemblages was mostly driven by altitude and temperature.

Conclusions

Our results indicated that ecological processes possibly related to altitude and temperature play an important role in structuring fungal biodiversity along the elevational gradient. Our results highlight that different microbes may respond differently to environmental gradients.
  相似文献   

8.

Purpose

Occlusion of carbon (C) within phytoliths, biogenic silica deposited in plant tissues and returned to the soil, is an important mechanism for long-term terrestrial biogeochemical C sequestration and might play a significant role in mitigating climate change.

Materials and methods

Subtropical and tropical soil profiles (to 100 cm depth) developed on granite and basalt were sampled using a mass-balance approach to explore the influence of climate and lithology on soil phytolith-occluded carbon (PhytOC) accumulation.

Results and discussion

Soil PhytOC storage in the subtropics was significantly greater than in the tropics, with the soil profiles developed on granite storing greater PhytOC than soils derived on basalt. Phytolith and PhytOC content decreased with depth in all soil profiles. Phytolith content showed a positive correlation with the soil bio-available silicon in the soil profiles developed on basalt, while a negative correlation was observed in soil profiles developed on granite.

Conclusions

Climate and lithology have a significant impact on soil PhytOC sequestration. The management of forests (e.g., afforestation and reforestation) and external silicon amendments (e.g., basalt powder amendment) in soils, especially those developed on granite, have the potential to enhance PhytOC accumulation in forest ecosystems.
  相似文献   

9.

Purpose

Rice paddy soils undergo pedogenesis driven by periodic flooding and drainage cycles that lead to accumulation of organic matter and the stratification of nutrients and oxygen in the soil profile. Here, we examined the effects of continuous rice cultivation on microbial community structures, enzyme activities, and chemical properties for paddy soils along a chronosequence representing 0–700 years of rice cropping in China.

Materials and methods

Changes in the abundance and composition of bacterial and fungal communities were characterized at three depths (0–5, 5–10, and 10–20 cm) in relation to organic carbon, total nitrogen, dissolved organic carbon, microbial biomass carbon/nitrogen, and activities of acid phosphatase, invertase, and urease.

Results and discussion

Both soil organic carbon and total nitrogen increased over time at all three depths, while pH generally decreased. Microbial abundance (bacteria and fungi) and invertase and urease activity significantly increased with the duration of rice cultivation, especially in the surface layer. Fungal abundance and acid phosphatase activity declined with depth, whereas bacterial abundance was highest at the 5–10-cm soil depth. Profiles of the microbial community based on PCR-DGGE of 16S rRNA indicated that the composition of fungal communities was strongly influenced by soil depth, whereas soil bacterial community structures were similar throughout the profile.

Conclusions

Soil bioactivity (microbial abundance and soil enzymes) gradually increased with organic carbon and total nitrogen accumulation under prolonged rice cultivation. Microbial activity decreased with depth, and soil microbial communities were stratified with soil depth. The fungal community was more sensitive than the bacterial community to cultivation age and soil depth. However, the mechanism of fungal community succession with rice cultivation needs further research.
  相似文献   

10.

Purpose

The objectives of this study were to investigate (i) how the changes in cultivation pattern of vegetable affect soil microbial communities and (ii) the relationships between soil physico-chemical properties and microbial community structure.

Materials and methods

Soil samples were collected from fields growing vegetable crops with various times of plastic-greenhouse cultivation (0, 1, 4, 7 and 15 years, respectively). Phospholipid fatty acid (PLFA) analysis was conducted to reveal the soil microbial community of the test soils.

Results and discussion

The open-field soil had the highest total PLFAs amount. Although the Shannon-Weaver index was also highest in the open-field soil, the difference was not significant. Plastic-greenhouse cultivation decreased PLFAs species diversity and richness. Cluster analysis and principal component analysis (PCA) of the PLFA profiles revealed distinct groupings at different times during plastic-greenhouse cultivation.

Conclusions

Ultimately, PLFA analyses showed that long-term plastic-greenhouse cultivation make the physiological status of soil microbial community worse and increased stress level of microorganisms. And soil microbial community was significantly affected by field water capacity and water-soluble organic carbon. The study highlights the potential risk of long-term plastic-greenhouse cultivation to soil microbial community.
  相似文献   

11.

Purpose

Understanding how archaeal communities are affected by water-table drawdown is essential for predicting soil functional responses to future climate change and the consequences of the responses on the soil carbon cycle.

Material and methods

We investigated the effect of water-table drawdown, warming, drought, and combinations thereof on archaeal communities using terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR.

Results and discussion

Methanosarcinales, Methanosaeta, Methanomicrobiales, Methanobacteriales, uncultured Rice Cluster II (RC-II), and uncultured Crenarchaeota were detected. Water-table drawdown and drought exhibited significant effects on the archaeal communities. When the water table was at or above 10 cm, the archaeal abundance at 10 cm remained high (approximately 109 cells per gram dry soil), whereas the archaeal abundance at 10 cm was reduced to approximately 108 cells per gram dry soil where the water table was lowered to 20 cm or below. When the water table kept constant, warming caused a significant reduction in the archaeal abundance, whereas drought only caused a decrease in archaeal abundance when the water table was higher than ?20 cm.

Conclusions

Results suggest that changes in water table may directly impact archaeal community abundance and assemblage which can in turn influence methane emissions, potentially on a large scale. Our results also indicate that archaeal communities response to water-table drawdowns that are dependent on the initial ecohydrology.
  相似文献   

12.

Purpose

Exoelectrogens are important microorganisms playing crucial roles in the biogeochemistry of elements in paddy soils. But it remains unclear how the soil properties and geographical distances affect the exoelectrogen communities of Chinese paddy soils. So the objectives of this study were to investigate the diversity and composition of these microbial communities which were enriched on the anodes of soil microbial fuel cells (SMFCs) and to elucidate the links between the microbial community compositions and their driving factors.

Materials and methods

We used Illumina HiSeq sequencing to determine the bacterial community structures which were enriched on the anodes of SMFCs. Variance partitioning analysis (VPA) was used to obtain the contribution of soil properties and geographical distance to the variations of bacterial communities.

Results and discussion

Active bacterial community on anodes of the closed circuit SMFCs differs significantly from the control open circuit SMFCs. Anodes of all the closed circuit SMFCs were characterized by the presence of high numbers of Nitrospira and Anaerolineae. Taxonomic similarities and phylogenetic similarities of bacterial communities from different paddy soil samples across North and South China were found to be significantly correlated with geographical distances. The relationship between the similarities and the geographic distance exhibited a distance-decay relationship. VPA showed that both geographical distances and soil properties affect the structure of bacterial communities detected on anodes.

Conclusions

Our study gives a foundation for understanding the distribution and diversity of exoelectrogens in paddy soils and elucidates the links between the distribution and the diversity of extracellular respiring bacteria and their driving factors. Furthermore, this study also identifies the crucial factors which should be used to evaluate the response of exoelectrogens to environmental perturbations in Chinese paddy soils.
  相似文献   

13.

Purpose

The purposes of this study were to identify the influence of a severe drought period on the impact of a subsequent heat–drought disturbance on the microbial community of a Mediterranean agricultural soil and particularly to highlight the long-term effects on the microbial catabolic profiles.

Materials and methods

We performed an experiment in microcosms and applied the MicroResp? method on soil microbial communities.

Results and discussion

A 21-day combined heat–drought disturbance had less impact on soil microbial communities pre-exposed to a 73-day severe drought than on those that were not pre-exposed. These differences were observed not only for biomass and physiological traits (basal respiration, qCO2), but also for catabolic microbial structure evolution during the recovery time.

Conclusions

These observations suggest that the physiological stress imposed by the initial severe drought changed the microbial catabolic structure or physiological state and favoured a portion of the microbial community best adapted to cope with the final heat–drought disturbance. Consequently, the initial severe drought may have induced a community tolerance to the subsequent heat wave. In this study, we also note that resilience was, more than resistance, an indicator of pre-exposure to stress. In the context of assessing the effects of extreme climatic events on soil microbial processes, these results suggest that future studies should take into account the historic stress of habitats and resilience parameters.
  相似文献   

14.

Purpose

The bacterial phylum Verrucomicrobia plays important roles in biogeochemical cycling processes, while the ecology of this phylum is still unclear. Previous elevational studies mainly focused on whole bacterial communities, while no study exclusively picked out Verrucomicrobia. Our objectives were to investigate the abundance, diversity and community composition of soil Verrucomicrobia across an elevation gradient on Changbai Mountain.

Materials and methods

In total, 24 soil samples representing six elevation gradients were collected. Primer set 515F/806R was used for PCR amplifications and sequencing was conducted on an Illumina HiSeq2000 platform. Data sets comprising of Verrucomicrobial phylum were culled from all quality sequences for the further analyses of Verrucomicrobial diversity and community composition.

Results and discussion

The relative abundance of Verrucomicrobia accounted for ~20% of the total bacterial communities, and Spartobacteria and DA101 were the most dominant class and genus, respectively. Verrucomicrobia community composition differed significantly among elevations, while the Verrucomicrobia diversity showed no apparent trend along elevation although the richness of some classes or genera significantly changed with elevation. The Verrucomicrobial community composition, diversity, and relative abundance of specific classes or genera were significantly correlated with soil pH and carbon/nitrogen ratio (C:N ratio).

Conclusions

These results indicated that Verrucomicrobia were abundant in Changbai Mountain soils, and Verrucomicrobial elevational distribution was strongly influenced by soil pH and C:N ratio. Our results also provide potential evidence that the dominant genus DA101 occupies different ecological niches and performs oligotrophic life history strategy in soil environment.
  相似文献   

15.

Purpose

This study aimed at investigating the rhizosphere effects of Populus euramericana Dorskamp on the mobility of Zn, Pb and Cd in contaminated technosols from a former smelting site.

Materials and methods

A rhizobox experiment was conducted with poplars, where the plant stem cuttings were grown in contaminated technosols for 2 months under glasshouse conditions. After plant growth, rhizosphere and bulk soil pore water (SPW) were sampled together. SPW properties such as pH, dissolved organic carbon (DOC) and total dissolved concentrations of Zn, Pb and Cd were determined. The concentrations of Zn, Pb and Cd in plant organs were also determined.

Results and discussion

Rhizosphere SPW pH increased for all studied soils by 0.3 to 0.6 units compared to bulk soils. A significant increase was also observed for DOC concentrations regardless of the soil type or total metal concentrations, which might be attributed to the plant root activity. For all studied soils, the rhizosphere SPW metal concentrations decreased significantly after plant growth compared to bulk soils which might be attributed to the increase in pH and effects of root exudates. Zn, Pb and Cd accumulated in plant organs and the higher metal concentrations were found in plant roots compared to plant shoots.

Conclusions

The restricted transfer of the studied metals to the plant shoots confirms the potential role of this species in the immobilization of these metals. Thus, P. euramericana Dorskamp can be used for phytostabilization of technosols.
  相似文献   

16.

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.
  相似文献   

17.

Purpose

Biochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation.

Materials and methods

In this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.

Results and discussion

Biochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties).

Conclusions

The long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.
  相似文献   

18.

Purpose

Soil microbes control the bioelement cycles and energy transformation in forest ecosystems, and are sensitive to environmental change. As yet, the effects of altitude and season on soil microbes remain unknown. A 560 m vertical transitional zone was selected along an altitude gradient from 3023, 3298 and 3582 m, to determine the potential effects of seasonal freeze-thaw on soil microbial community.

Materials and methods

Soil samples were collected from the three elevations in the growing season (GS), onset of freezing period (FP), deeply frozen period (FPD), thawing period (TP), and later thawing period (TPL), respectively. Real-time qPCR and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) were used to measure the abundance and structure of soil microbial community.

Results and discussion

The bacterial, archaeal, and fungal ribosomal DNA (rDNA) copy numbers decreased from GS to freezing stage (FP and FPD) and then increased in thawing stage (TP and TPL). Similarly, the diversity of microbial community varied with seasonal freeze-thaw processes. The diversity index (H) of the bacterial and archaeal communities decreased from GS to FP and then increased to TPL. The fungal community H index increased in the freezing process.

Conclusions

Our results suggested that abundance and structure of soil microbial community in the Tibetan coniferous forests varied by season and bacterial and archaeal communities respond more promptly to seasonal freeze-thaw processes relative to fungal community. This may have important implications for carbon and nutrient cycles in alpine forest ecosystems. Accordingly, future warming-induced changes in seasonal freeze-thaw patterns would affect soil nutrient cycles via altering soil microbial properties.
  相似文献   

19.

Purpose

Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy) phenol) an antimicrobial compound used in a range of household products, is an emerging hydrophobic organic contaminant, that may be incorporated into soil through the application of biosolids. The present study assessed the bioavailable fraction of TCS in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it was a reliable surrogate for this bioassay.

Materials and methods

Three soils were obtained from the central region of Chile (Cuesta Vieja, Polpaico, and Taqueral). Biosolid was obtained from a regional wastewater treatment plant. The soils were amended with biosolids at different rates (30, 60, 90, and 200 Mg ha-1). The TCS concentration was determined in biosolids, soil, and plant samples via gas chromatography coupled with mass spectrometry (GC-MS).

Results and discussion

The total TCS concentration in the biosolids was 5.45 mg kg-1. The results of the TCS extraction from the wheat plants (roots and shoots) indicated that TCS was primarily found in the roots. TCS uptake by the plant varied based on soil properties. The predictive capability of the HPCD extraction was assessed using a simple linear correlation test for TCS concentration in wheat plants.

Conclusions

The study yielded a linear relationship, which demonstrated the validity of the chemical method as a biosimulation technique.
  相似文献   

20.

Purpose

Rhizosphere bacteria play critical roles in soil nutrient cycling and plant growth during land reclamation. However, the impact of the type of capping material, used to provide functions such as preventing salt migration from saline groundwater to the cover soil, on rhizosphere bacterial community is unknown.

Materials and methods

We examined the influence of two capping materials: overburden (OB), a material excavated from below the top soil from oil sand mines, and tailings sand (TS), in comparison to the no capping layer (NC) control, on the composition, structure, and function of bacterial communities in the Pinus banksiana rhizosphere and bulk soil in the peat-mineral mix (PMM, the cover soil) in a 2-year column study simulating soil reconstruction in land reclamation in the oil sands. The bacterial community was determined through high-throughput sequencing the 16S ribosomal RNA (rRNA) gene amplicons, and the potential functional profiles were predicted from the 16S rRNA gene using PICRUSt.

Results and discussion

Difference in the relative abundance of operational taxonomic units (OTUs) between the rhizosphere and the bulk soil was lower in the NC and OB than in the TS treatment. Rhizosphere bacterial community structure in the cover soil was different among the NC, OB, and TS treatments. Difference in bacterial community structure between the rhizosphere and bulk soil was driven by soil pH and electric conductivity changes in the OB treatment and by water-soluble organic carbon in the TS treatment. The relative abundance of functional genes for nutrient metabolism in the rhizosphere increased in the TS treatment, but those for environmental adaption increased in the NC and OB treatments.

Conclusions

We conclude that the type of capping material used affects the structure, composition, and function of rhizosphere bacterial communities in cover soils used in land reclamation, and this has implications for ecosystem re-establishment in the disturbed landscape in the oil sands.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号