首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Plantation is an important strategy for forest restoration and carbon (C) storage. Plantations with different tree species could significantly affect soil properties, including soil pH, soil nutrient content, soil microbial activities, and soil dissolved organic C. Changes in these abiotic and biotic factors could regulate mineralization of soil organic C (SOC). However, it remains unclear to what extent these factors affect the mineralization of SOC under different tree species plantations.

Materials and methods

Soil was collected at 0–10 cm depth from plantations with Pinus elliottii Engelm. var. elliottii, Araucaria cunninghamii, and Agathis australis, respectively, in southeast Queensland, Australia. Soil samples were assayed for soil organic C; organic N and mineralization of SOC; soil particle size; total C, N, and P; and pH. In addition, a 42-day laboratory incubation with substrate additions was done to examine the influence of different substrates and their combinations on bio-available organic C.

Results and discussion

Our results suggested that SOC mineralization was mainly determined by soil pH and soil C content among plantations with different tree species, whereas SOC mineralization was not correlated with soil N and P contents. These results were further confirmed by the substrate addition experiments. SOC mineralization of soils from slash pine showed greater response to C (glucose) addition than soils from other two plantations, which suggested significant differences in SOC mineralization among plantations with different tree species. However, neither N addition nor P addition had significant effects on SOC mineralization.

Conclusions

Our results indicated that plantations with different tree species substantially affect the mineralization and stability of soil organic C pool mainly by soil pH and soil C content.
  相似文献   

2.

Purpose

The objective of this review is to survey critically the results obtained by the application of laser-induced fluorescence spectroscopy (LIFS) and laser-induced breakdown spectroscopy (LIBS) to the evaluation of the humification degree (HD) of soil organic matter (SOM) directly in untreated, intact whole soils.

Materials and methods

A large number of soils of various origin and nature, either native or under various cultivations, land use, and management, at various depths, have been studied to evaluate the HD of their SOM directly in intact whole samples. The LIFS spectra were obtained by either a bench or a portable argon laser apparatus that emits UV-VIS light of high power, whereas the LIBS spectra were obtained using a Q-switched Nd:YAG laser at 1064 nm.

Results and discussion

The close correlations found by comparing HLIF values of whole soil samples with values of earlier proposed humification indexes confirmed the applicability of LIFS to assess the HD of SOM in whole soils. The high correlation found between HDLIBS values and HLIF values showed the promising potential of LIBS for the evaluation HD of SOM.

Conclusions

The LIFS technique shows to be a valuable alternative to evaluate the HD of SOM by probing directly the whole solid soil sample, thus avoiding the use of any previous chemical and/or physical treatments or separation procedures of SOM from the mineral soil matrix. The emerging application of LIBS to evaluate the HD of SOM in whole soils appears promising and appealing due to its sensitivity, selectivity, accuracy, and precision.
  相似文献   

3.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   

4.

Purpose

Biochemical protection is an important mechanism for maintaining the long-term stability of the soil carbon (C) pool. The labile and recalcitrant pools of soil organic matter (SOM) play different roles in regulating C and N dynamics; however, few studies have characterized the capacity of soil C sequestration while considering the biochemical quality of SOM. The aim of the present study was to assess the changes in the soil organic carbon (SOC) and nitrogen (N) pools during a traditional rotation period (25 years) of a Chinese fir (Cunninghamia lanceolata) plantation with an emphasis on SOM biochemical quality.

Materials and methods

Three different forest stand development stages—young (6 years old), middle-aged (16 years old) and mature (25 years old)—were selected for soil sampling to a depth of 100 cm. Total C and total N of the soil was analysed to determine the changes in the SOC and N stocks among the three development stages using an equivalent soil mass (ESM) approach. Bulk soils were fractionated into labile and recalcitrant fractions using the acid hydrolysis method to identify the quality of SOM.

Results and discussion

The mineral soil organic carbon pool at a 1-m depth slightly decreased from the young stand to the middle-aged stand and rapidly increased by 28 % to reach a maximum in the mature stand. SOC accumulation in the surface soil predominated the changes in total SOC stocks in all three stands. The increased N was reflected in the entire depth, and the highest soil N accumulation was in the mature stand. The recalcitrant C concentration and SOC were positively correlated. The non-hydrolysable C proportion was lower in the middle-aged stand versus the young stand (8.69 % loss), while the labile C percentage was higher (13.89 % gain). In the mature stand, the recalcitrant C index increased to 39.84 %. The recalcitrant index of C decreased with an increasing soil depth, whereas the recalcitrant index of N dramatically increased.

Conclusions

These results highlighted the significant effect of the stand age and the soil depth on the storage and biochemical availability of SOM in Chinese fir plantations of southern China. The recalcitrant index of C changed with the change in SOC concentration, indicating that biochemical protection mechanism plays an important role in soil C sequestration. In addition, more attention should be paid to subsoil C protection in the management of Chinese fir plantations because of low biochemical stability.
  相似文献   

5.

Purpose

Both overharvesting and climate changes have greatly altered forest composition in northeastern China; however, forest-specific effects on soil organic carbon (SOC), N, and compositional features in different soil fractions have not yet been defined.

Materials and methods

By sampling from broad-leaved Korean pine forest (the climax vegetation) and aspen–birch forest (the secondary forest), five soil fractions were separated by a physicochemical soil fractionation method, and Fourier transform infrared spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectrometry were used for functional groups, mineral diffraction, and elemental composition determination together with SOC and N measurements.

Results and discussion

Aspen–birch forests tended to sequestrate more SOC in the slow fractions (sand and aggregate [SA] and easily oxidized fractions) and more N in the sensitive fractions (particulate and soluble fractions), indicating that in aspen–birch forests, high SOC sequestration (1.26-fold) coincided with the active and rapid N supply. Much higher percentages (13.1–40.5 %) of O–H and N–H stretching, O–H bending, and C=O, COO–, and C–H stretching, and also the much lower quartz grain size and mineral diffraction peaks in SA and acid-insoluble fraction (over 85 % of total soil mass), in aspen–birch forests were possibly associated with the 1.17- to 1.53-fold higher SOC compared to broad-leaved Korean pine forest. However, elemental composition on soil particles might marginally contribute to the SOC and N forest-dependent differences.

Conclusions

Considering the increase of aspen–birch forests and the decrease of broad-leaved Korean pine forests in historical and future scenarios in northeastern China, more SOC has been and also will sequestrate in intact soils and stable soil fractions, with more N in sensitive fractions, and these should be highlighted in evaluating forest C and N dynamics during forest successions in this region.
  相似文献   

6.

Purpose

Fire in mountainous areas can lead to increased variability of their soil organic matter (SOM) due to spatial inhomogeneity and pre-fire fuel distribution. Here, we elucidated if this was the case in our study area and how this affected the reliability of solid-state 13C NMR spectroscopy applied for the study of the medium-term impact of fire on SOM

Materials and methods

The study occurred in the Sierra de Aznalcóllar, Southern Spain, which experienced their last intense fire 7 years before sampling. In a first approach (method 1), the corners and the center of a randomly chosen square with a side length of 15 m were sampled and analyzed separately. For comparison, composite samples (method 2) were obtained from three soils. We characterized material from unburnt, burnt, and double burnt regions. Data describing the physical and chemical properties of the soils together with the NMR spectroscopic characterization were analyzed using ANOVA.

Results and discussion

Both sampling methods yielded comparable results with comparable standard errors. No major differences between the fire-affected and unburnt soils were observed with respect to physical and chemical properties and C and N contents, but solid-state 13C NMR spectroscopy indicated a small but significant elevation of aromaticity in the soils with fire history.

Conclusions

The analysis showed that sampling with reduced replicates (method 1) can still lead to representative NMR data. The more complex sampling of comparing three composite samples (method 2) did not decrease the standard error. Our results also indicate that in the study area typical properties of the soil and its SOM induced by former burnings will not persist beyond a few decades.
  相似文献   

7.

Purpose

Application of functional organisms in soil organic amendments has the potential to accelerate organic matter decomposition and stimulate C cycling. In this study, a short-term (a year) field experiment was conducted to investigate the collaborative effects of earthworms and phosphate-solubilizing bacteria on C accumulation in pig manure-amended soil.

Materials and methods

A field experiment was conducted with six treatments established. The first three treatments, including control (CK), pig manure (Pm), and pig manure?+?slurry (Pm?+?S), were set up to evaluate the influences of pig manure on soil C accumulation. The other three treatments, including manure?+?slurry?+?earthworms (Te), manure?+?slurry?+?phosphate-solubilizing bacteria (Tb), and manure?+?slurry?+?earthworms?+?bacteria (T(e?+?b)), were set up to investigate the collaborative effects of functional organisms on soil C cycling. The Pm?+?S treatment was chosen as the control (T) for this purpose.

Results and discussion

The results showed that the soil C pools did not increase significantly under the manure treatment. In contrast, an integrated application of manure, slurry, earthworms, and bacteria significantly increased the various C fractions, such as SOC and humin, indicating a rapid and positive effect of earthworms and bacteria on C accumulation. Besides, C sequestration by the integrated application was as high as 1.35 Mg C ha?1 soil, half of which was stabilized.

Conclusions

The T(e?+?b) was an efficient strategy to sequestrate and stabilize SOC in arid hillside soils. The bacteria increased the labile OC, especially microbial biomass C, while the earthworms were apparently essential for the increase in stable OC.
  相似文献   

8.

Purpose

Soil properties are highly heterogeneous in forest ecosystems, which poses difficulties in estimating soil carbon (C) and nitrogen (N) pools. However, little is known about the relative contributions of environmental factors and vegetation to spatial variations in soil C and N, especially in highly diverse mixed forests. Here, we examined the spatial variations of soil organic carbon (SOC) and total nitrogen (TN) in a subtropical mixed forest in central China, and then quantified the main drivers.

Materials and methods

Soil samples (n = 972) were collected from a 25-ha forest dynamic plot in Badagonshan Nature Reserve, central China. All trees with diameter at breast height (DBH) ≥1 cm and topography data in the plot were surveyed in detail. Geostatistical analyses were used to characterize the spatial variability of SOC and TN, while variation partitioning combined with Mantel’s test were used to quantify the relative contribution of each type of factors.

Results and discussion

Both surface soil (0–10 cm) and subsurface soil (10–30 cm) exhibited moderate spatial autocorrelation with explainable fractions ranged from 31 to 47 %. The highest contribution to SOC and TN variation came from soil variables (including soil pH and available phosphorus), followed by vegetation and topographic variables. Although the effect of topography was weak, Mantel’s test still showed a significant relationship between topography and SOC. Strong interactions among these variables were discovered. Compared with surface soil, the explanatory power of environmental variables was much lower for subsurface soil.

Conclusions

The differences in relative contributions between surface and subsurface soils suggest that the dominating ecological process are likely different in the two soil depths. The large unexplained variation emphasized the importance of fine-scale variations and ecological processes. The large variations in soil C and N and their controlling mechanisms should be taken into account when evaluating how forest managements may affect C and N cycles.
  相似文献   

9.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   

10.

Purpose

Soil organic matter (SOM) plays an important role in terrestrial ecosystems and agroecosystems. Changes in the agricultural sector in the Czech Republic within the past 25 years have had a negative impact on SOM content and contribute to gradual soil degradation. The aim of this study is to estimate the effect of long-term application of different mineral fertilizers (NPK) and organic manures (manure, cattle slurry) on soil chemical properties (quality of humus, available nutrients, and soil reaction).

Materials and methods

Soil samples were collected from Luvisol during two selected periods 1994–2003 and 2014–2016 from long-term field experiment carried out in Prague-Ruzyně (Czech Republic). Average annual temperature is 8.5 °C, and annual precipitations are 485 mm. Different fertilization regimes have been applied for 62 years. The crop rotation was as follows: cereals (45%), root crops (33%) and legumes (22%). Soil analysis—soil organic carbon (SOC) was determined by oxidimetric titration method. Short fractionation method for evaluation of humic substance (HS), humic acid (HA) and fulvic acid (FA) content was used. Absorbance of HS in UV-VIS spectral range was measured by Varian Carry 50 Probe UV-VIS spectrometer. Degree of humification (DH) and color index (Q4/6) were calculated from fractional composition data. Soil reaction was measured by potentiometric method. Available nutrients (phosphorus, potassium, magnesium, calcium) were determined by Mehlich II and Mehlich I methods and by ICP-OES. For data analysis, the following are used: exploratory data analysis, ANOVA, and principal component analysis (PCA).

Results and discussion

PCA analysis differentiated fertilizers into two categories: (1) variant NPK (lower quality of humus)—higher acidity, lower SOC and HS content, predomination of FA, higher DH and lower content of available nutrients; (2) variants with organic manures (higher quality of humus)—lower acidity, higher SOC and HS content, predomination of HA, middle DH, and high content of available nutrients. The main result of presented study is to give a synthesis of effect of different type of fertilizers on a sustainable organic matter management in arable soils, with respect to yields, food security and adaptation to predict climate changes.

Conclusions

Long-term application of mineral fertilizers (NPK) without organic matter input can accelerate humus mineralization and soil quality degradation with all negative consequences such as (nitrogen leaching, higher availability of toxic element for plants, slow energy for soil microorganisms etc.). Application of organic fertilizers (manure and cattle slurry) helps to achieve the long-term stable yields while maintaining soil at optimum quality (long-term sustainable management with SOM). Principal component analysis is a useful tool for evaluation of soil quality changes.
  相似文献   

11.

Purpose

Soils of tidal marshes play an important role in regional carbon (C) cycles as they are able to store considerable amounts of organic carbon (OC). However, the C dynamics of marsh soils of the Elbe estuary have not been investigated so far. Therefore, the aim of this study was to identify the sources and distribution of soil organic carbon (SOC) and the factors influencing the SOC pools of tidal marshes of the study region.

Materials and methods

In this study, SOC pools were determined in different salinity zones and elevation classes of the estuarine marshes. The amount of initial allochthonous OC was derived from the OC content in fresh sediments. The difference to the recent OC content in the soils was interpreted as autochthonous accumulation or mineralization by microorganisms.

Results and discussion

Young, low marshes of the study sites seem to be predominantly influenced by allochthonous OC deposition whereas the older, high marshes show autochthonous OC accumulation in the topsoils (0–30 cm) and mineralization in the subsoils (30–70 cm). SOC pools of the whole profile depth (0–100 cm) did not significantly differ between elevation classes, but decreased significantly with increasing salinity from 28.3 kg m?2 in the most upstream site of the oligohaline zone to 9.7 kg m?2 in the most downstream site of the polyhaline zone. Even though the areal extent of the investigated salinity zones was similar, the SOC mass within 100 cm soil depth decreased from 0.62 Tg (1 Tg = 1012 g) in the oligohaline zone to 0.18 Tg in the polyhaline zone.

Conclusions

Elevation was found to be one factor influencing the SOC pools of tidal marshes. However, salinity seems to be an even stronger influencing factor reducing the above-ground biomass and, accordingly, the autochthonous OC input as well as the allochthonous input by enhanced mineralization of OC along the course of the estuary. An upstream shift of the salinity zones by sea level rise could, therefore, lead to a reduction of the SOC storage of the estuarine marshes.
  相似文献   

12.

Purpose

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important native tree species in China. Consecutive cropping traditionally occurs in Chinese fir plantations (CFPs), but this practice has resulted in productivity declines in subsequent rotations. This study was designed to better understand the change of soil properties in the continuous cropping CFPs.

Materials and methods

We investigated soil pH, soil organic matter (SOM), and nutrient contents in different soil layers and in rhizosphere soil (RS) and non-rhizosphere soil (NRS) under CFPs of different ages and in different rotations.

Results and discussion

In the upper (0–20 cm) soil layer, soil pH decreased, while SOM increased, beneath mature CFPs with consecutive rotations. Total nitrogen (TN), available potassium, and available phosphorus contents in the upper soil layers did not differ significantly with consecutive rotations. Soil pH in RS was significantly lower than in NRS under mature plantations of the third rotation. Soil organic matter, TN, and available nitrogen did not differ between RS and NRS. Available phosphorus in RS was consistently lower than in NRS, and was highly deficient in the third rotation.

Conclusions

We conclude that no severe soil nutrient degradation occurred in the continuous cropping CFPs examined in this study, with soil acidification and phosphorus deficiency being two primary problems observed.
  相似文献   

13.

Purpose

The main objectives of this research are to decipher the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) in soils from the alpine ecosystem and to obtain information about nutrient limitation on plants and microbes.

Materials and methods

The soils were sampled along an altitudinal gradient (2000 to 4300 m above sea level) from the eastern slope of Gongga Mountain in eastern Tibetan Plateau. In total of 102 soil samples in profiles and 27 soil microbial biomass (SMB) samples from five vegetation zones were collected to analyze the concentrations of C, N, and P as well as their ratios. The concentrations of C and N were measured using an automated C/N analyzer, total P was detected by inductively coupled plasma-atomic emission spectrometer, and the concentrations of microbial biomass C, N, and P were measured by the chloroform fumigation-extraction method. Soil P fractions were extracted by modified Hedley sequential extraction method.

Results and discussion

The concentrations of C, N, and P in the soils and SMB varied spatially, whereas the variation of their ratios was constrained. The C:N:P ratios were 556:22:1 for the O horizon, 343:16:1 for the A horizon, 154:7:1 for the B horizon, and 63:3:1 for the C horizon, indicating a significant decrease with depth. The mean ratio in the SMB was 51:6.6:1. Microbial biomass C, N, and P were important components of soil nutrients, especially the microbial biomass P which accounted for 40.8 % of soil available P. The C:P and N:P were higher in the soils of broadleaf-coniferous and coniferous forests, whereas the ratios in the SMB were higher in the broadleaf forest. The ratios of C and N to available P in the soils decreased significantly with altitude.

Conclusions

The local climate, vegetation succession, and soil development in the high mountain resulted in the soil nutrient cycling different from that in other terrestrial ecosystems. Among the different vegetation zones, the P-limitation of plants and microbial communities might be possible in the soils of lower land forests in the long term.
  相似文献   

14.

Purpose

This paper reviews chemical, physical, and biological problems of salt-affected soils and different reclamation methods applied to rehabilitate these soils.

Methods

Methods to increase C stocks in these lands are discussed with a focus on biochar application as a potential new approach to not only to increase the C content but also to improve soil properties. Gaps in research knowledge in this field are then identified.

Results

Given the concern on the continued worldwide expansion of salt-affected lands and the focus on C sequestration processes, this review has evaluated current knowledge on salt-affected soils and their remediation with organic materials and plants. The review of the published literature has highlighted important gaps in knowledge, which limit our current understanding of rehabilitation of salt-affected soils with organic amendments specially biochar and the associated carbon dynamic. Knowledge about application of biochar in salt-affected soils is scant, and to date, most studies have evaluated biochar use only in nonsalt-affected soils.
  相似文献   

15.

Purpose

The objectives of the study were (1) to quantify the long-term effects of nitrogen-phosphorus fertilizer (NP) and a combination of nitrogen-phosphorus with organic manure (NPM) on total soil organic carbon (SOC) and total soil inorganic carbon (SIC), (2) to identify the changes of SOC and SIC in soil particle-size fractions, and (3) to investigate the relationship between SOC and SIC.

Materials and methods

Two long-term field experiments (sites A and B) were performed in 1984 (site A) and 1979 (site B) in the North China Plain. The soil samples were collected in 2006 and separated for clay, silt and sand size particle fractions and then determined for SOC and SIC.

Results and discussion

The long-term fertilization significantly increased SOC in 0–20 cm soil layer by 9–68% but significantly decreased or had no effect on SIC. In total, soil carbon storage was little affected by NP, but significantly increased by NPM application (p < 0.05). Fertilization affected both SOC and SIC in sand- and silt-sized particles but not in clay-size fraction. Both NP and NPM increased SOC in sand- and silt-sized particles by 8.7–123.9% in the 0–20 cm layer but decreased SIC up to 80.4% in the 40–60 cm layer. The SOC concentration in the particle-size fractions was negatively correlated with SIC concentration, which may imply an antagonistic interaction between organic and inorganic carbon levels.

Conclusions

These results illustrate the importance of soil inorganic carbon pool in evaluating soil total carbon pool in semi-arid farmlands. Previous assessments of the effects of fertilizers on the soil carbon pool, using only SOC determinations, require re-evaluation with the inclusion of SIC determinations.
  相似文献   

16.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   

17.

Purpose

To better understand the effect of fertilizer practices on soil acidification and soil organic matter (SOM) stocks in a rice-wheat system, a field experiment was conducted to (i) investigate the influence of fertilizer practices on the Al forms in solid phases and the distribution of Al species in water extracts and (ii) explore the relationship between the Al forms, the quantity and composition of SOM, and soil acidity.

Materials and methods

Seven fertilizer treatments including CL (no fertilizer), NK, PK, NPK, N2PK (PK and 125 % of N), NP2K (NK and 125 % of P), and organic fertilizer (OF) were applied to induce various changes in pH and SOM composition (i.e., total C and N contents, C/N ratio, and SOM recalcitrant indices) in a rice-wheat system. After 6-year cultivation, different pools of Al forms (i.e., amorphous Al; organically bound Al of varying stability; exchangeable Al; water-soluble inorganic Al3+, Al-OH, Al-F, Al-SiO3, and Al-SO4; and organic Al monomers) were quantified and related with SOM composition and soil pH during the wheat phase.

Results and discussion

Fertilizer types significantly changed soil pH and SOM composition and which explained 84 % of the variance of Al forms using redundancy analysis. An interaction between soil pH and SOM quality on Al forms also existed but only accounted for a very small (6 %) portion of the variation. Compared to CL and chemical fertilizer, OF practice with relative low SOM stabilization is likely to favor the formation of amorphous Al in order to bind more SOM. The decrease in exchangeable acidity and water-extractable Al via hydroxyl-Al precipitation but not in the form of organo-aluminum complexes evidenced this phenomenon. In contrast, chemical fertilizer input increased exchangeable Al and water extract Al (especially Al3+), partly at the expense of organically bound Al. The destabilization of organic-aluminum complexes was a mechanism of pH buffering evidenced by the increased soluble Al-dissolved organic matter (DOM) as soil pH decreases. Further, the magnitude of this trend was much greater for elevated N input compared with P input.

Conclusions

Chemical fertilizer with relative high SOM stabilization favored the formation of exchangeable Al and soluble Al resulting in soil acidification, whereas OF with relative low SOM stabilization tended to transform exchangeable Al and soluble Al to amorphous Al, thereby alleviating soil acidification and enhancing C stocks in a rice-wheat system.
  相似文献   

18.

Purpose

Because the stability of soil aggregates is affected by many factors, we studied aggregates formed in forest and agricultural soils in different soil types (Cambisols, Luvisols, Chernozems). We evaluated: (1) the differences in water-stable aggregates (WSA) as related to soil type and land management and (2) the relationships between quantitative and qualitative parameters of soil organic matter (SOM), particle-size distribution and individual size classes of WSA.

Materials and methods

Soil samples were taken from three localities (Sobě?ice, Báb, Vieska nad ?itavou). Each study locality included both a forest and an agricultural soil-sampling area.

Results and discussion

We found that in forest soils, the proportion of water-stable macroaggregates (WSAma) relative to water-stable microaggregates (WSAmi) was greater than in agricultural soils. When all soils were assessed together, positive statistically significant correlations were observed between the size classes WSAma > 1 mm and organic carbon (Corg) content; however, the WSAmi content was negatively correlated with Corg content. Favorable humus quality positively influenced the stabilization of WSAma > 5 mm; however, we found it had a negative statistically significant effect on stabilization of WSAma 1–0.25 mm. In agricultural soils, the stabilization of WSAma was associated with humified, i.e., stable SOM. The WSAma content was highly positively influenced mainly by fulvic acids bound with clay and sesquioxides; therefore, we consider this humus fraction to be a key to macroaggregate stability in the studied agricultural soils. On the other side, all fractions of humic and fulvic acids participated on the formation of WSAma in forest soil, which is a major difference in organic stabilization agents of macroaggregates between studied forest and agricultural soils. Another considerable difference is that WSAmi in agricultural soils were stabilized primarily with humic acids and in forest soils by fulvic acids. Moreover, in forest soils, a higher content of labile carbon in WSA had a positive effect on formation of WSAmi.

Conclusions

The observed changes in individual size classes of WSA and interactions between SOM, particle-size distribution, and WSA have a negative impact on soil fertility and thereby endanger agricultural sustainability.
  相似文献   

19.

Purpose

Land use change and soil management are frequently associated to land degradation and soil organic matter (SOM) losses in tropical regions. In Brazil, in order to avoid this process, different management strategies have been applied, such as no-tillage and agricultural disposal of swine manure (SM). This study was carried out to evaluate the quantity and quality of SOM, as well as the occurrence of nutrient accumulation in soils of areas under contrasting management systems that have received consecutive applications of SM over the last decades in Brazil.

Materials and methods

Five land uses were sampled: native vegetation (NV), pasture with SM application (PA + SM), no-tillage with SM application (NT + SM), no-tillage (NT), and conventional tillage with SM application (CT + SM). Soil organic carbon (SOC), N, labile C, C management index (CMI), P, Ca2+, Mg2+, K+, Al3+, Fe, Zn, Mn, Cu, and H + Al were quantified.

Results and discussion

Except for PA + SM, the agricultural land uses caused decreases in SOC contents comparing to NV. PA + SM showed the highest C stocks, 138.9?±?3.4 Mg ha?1 down to 0.4 m. The application of SM can be associated to the greater C stocks in PA + SM, NT + SM, and CT + SM and to the higher N contents in all land uses under this practice. Land uses which receive higher rates of swine manure application (PA + SM and CT + SM) have shown CMI greater than 100. However, this practice is associated to the accumulation of P, Cu, Na, and Zn in these soils.

Conclusions

The SM application is associated to improvement on C stocks and SOM quality in area under pasture, no-tillage, and conventional tillage in Paraná State, Brazil. However, this practice is the main driver of nutrient accumulation in these areas.
  相似文献   

20.

Purpose

Process-based models such as CENTURY have been extensively validated for simulating soil organic carbon (SOC) dynamics at the homogeneous plot scale. However, considerable uncertainty may exist when upscaling a simulation from the plot scale to a larger scale because of variation in the model inputs. The objectives of this study were to assess the uncertainty of CENTURY-modeled SOC and to identify the most influential model inputs in various upland regions of China.

Materials and methods

Global sensitivity analysis was used to explore the sensitivity of CENTURY-modeled SOC to seven key model inputs. The uncertainties of the SOC simulated using various model inputs and climate-soil-management conditions were evaluated at 21 long-term monitoring sites located across upland areas in China.

Results and discussion

The identified sensitive model inputs differed among regions and periods due to diverse climate-soil-management conditions; nevertheless, initial SOC content (SOCi), soil clay content, and crop residue removal rate (Residuerr) were the most influential inputs. The site-to-region upscaling uncertainties remained moderately large (±42.7, ±49.4, and ±69.3 % at the 90, 95, and 100 % confidence levels, respectively) when currently available observation data were used. Therefore, the collection of detailed information on soil properties and crop residue removal, particularly legacy soil data such as the SOCi and clay content, is important for reducing the uncertainties in SOC modeling.

Conclusions

Data on SOCi, Residuerr, and clay content need to be collected prior to other input data to reduce input-related uncertainty and thus to provide more reliable SOC assessment at the regional or national scale in China.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号