首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the effect of drought stress and elevated CO2 concentrations around the shoots on N rhizodeposition of young wheat plants. In a pot experiment, the plant N pool was labeled through 15NH3 application to shoots at nontoxic NH3 concentrations, and the impact of low water supply (40% field capacity), elevated CO2 (720 μmol mol−1 CO2), and the combination of both factors on the 15N distribution was studied. Total 15N rhizodeposition ranged from 5 to 11% of the total 15N recovered in the plant/soil system. Elevated CO2 concentration as well as drought stress increased the belowground transport of N and increased the relative portion of N rhizodeposition on total 15N in the plant/soil system. However, while the increased N rhizodeposition with elevated CO2 was the result of increased total belowground N transport, drought stress additionally increased the portion of 15N found in rhizodeposition vs roots. Elevated CO2 intensified the effect of drought stress. The percentage of water soluble 15N in the 15N rhizodeposition was very low under all treatments, and it was significantly decreased by the drought-stressed treatments.  相似文献   

2.

Purpose  

A potential means to diminish increasing levels of CO2 in the atmosphere is the use of pyrolysis to convert biomass into biochar, which stabilizes the carbon (C) that is then applied to soil. Before biochar can be used on a large scale, especially in agricultural soils, its effects on the soil system need to be assessed. This is especially important in rice paddy soils that release large amounts of greenhouse gases to the atmosphere.  相似文献   

3.
Impacts of biochar addition on nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy soils are not well documented. Here, we have hypothesized that N2O emissions from paddy soils could be depressed by biochar incorporation during the upland crop season without any effect on CO2 emissions. Therefore, we have carried out the 60-day aerobic incubation experiment to investigate the influences of rice husk biochar incorporation (50 t ha−1) into two typical paddy soils with or without nitrogen (N) fertilizer on N2O and CO2 evolution from soil. Biochar addition significantly decreased N2O emissions during the 60-day period by 73.1% as an average value while the inhibition ranged from 51.4% to 93.5% (P < 0.05–0.01) in terms of cumulative emissions. Significant interactions were observed between biochar, N fertilizer, and soil type indicating that the effect of biochar addition on N2O emissions was influenced by soil type. Moreover, biochar addition did not increase CO2 emissions from both paddy soils (P > 0.05) in terms of cumulative emissions. Therefore, biochar can be added to paddy fields during the upland crop growing season to mitigate N2O evolution and thus global warming.  相似文献   

4.
General concern about climate change has led to growing interest in the responses of terrestrial ecosystems to elevated concentrations of CO2 in the atmosphere. Experimentation during the last two to three decades using a large variety of approaches has provided sufficient information to conclude that enrichment of atmospheric CO2 may have severe impact on terrestrial ecosystems. This impact is mainly due to the changes in the organic C dynamics as a result of the effects of elevated CO2 on the primary source of organic C in soil, i.e., plant photosynthesis. As the majority of life in soil is heterotrophic and dependent on the input of plant-derived organic C, the activity and functioning of soil organisms will greatly be influenced by changes in the atmospheric CO2 concentration. In this review, we examine the current state of the art with respect to effects of elevated atmospheric CO2 on soil microbial communities, with a focus on microbial community structure. On the basis of the existing information, we conclude that the main effects of elevated atmospheric CO2 on soil microbiota occur via plant metabolism and root secretion, especially in C3 plants, thereby directly affecting the mycorrhizal, bacterial, and fungal communities in the close vicinity of the root. There is little or no direct effect on the microbial community of the bulk soil. In particular, we have explored the impact of these changes on rhizosphere interactions and ecosystem processes, including food web interactions.  相似文献   

5.
Seasonal changes of the soil CO2 concentration and the rate of CO2 fluxes emission from the soil formed on the sediments of the former Lake Texcoco, which occupied a significant part of the Mexico Valley until the mid-17th century, were studied. The soils (Fluvic Endogleyic Phaeozems) were characterized by a low CO2 fluxes rate, which is related to their high alkalinity. The mean values of soil respiration were 6.0–14.1 mg C/(m2 h) depending on vegetation type, which corresponds to 60–157 g C/(m2 yr). The contribution of plants to the CO2 fluxes insignificantly varied by seasons and depended on the species composition of vegetation. The soil CO2 concentration and soil respiration in eucalypt (Eucalyptus globulus Labill.) plantation were two times higher than those in the grass–subshrub area, the ground cover of which consisted of Distichlis spicata (L.) Greene and Suaeda nigra (Raf.) J.F. Macbr. species. This can be related to the significant volumes of gas production during the respiration of eucalypt roots and associated rhizosphere community. The contribution of the root systems of grass cover to the soil CO2 fluxes in eucalypt plantation slightly varied within the year and was equal to 24% on the average. In the grass–subshrub area, its value varied from 41% in the cold season to 60% in the warm season. The spatial variability of soil CO2 concentration and its flux rate to the atmosphere was due to the differences in plant species composition and hydrothermal conditions, and their temporal trend was closely related to the seasonal accumulation of plant biomass and soil temperature.  相似文献   

6.
Management of plant residues plays an important role in maintaining soil quality and nutrient availability for plants and microbes. However, there is considerable uncertainty regarding the factors controlling residue decomposition and their effects on greenhouse gas (GHG) emissions from the soil. This uncertainty is created both by the complexity of the processes involved and limitations in the methodologies commonly used to quantify GHG emissions. We therefore investigated the addition of two soil residues (durum wheat and faba bean) with similar C/N ratios but contrasting fibres, lignin and cellulose contents on nutrient dynamics and GHG emission from two contrasting soils: a low-soil organic carbon (SOC), high pH clay soil (Chromic Haploxerert) and a high-SOC, low pH sandy-loam soil (Eutric Cambisol). In addition, we compared the effectiveness of the use of an infrared gas analyser (IRGA) and a photoacoustic gas analyser (PGA) to measure GHG emissions with more conventional gas chromatography (GC). There was a strong correlation between the different measurement techniques which strengthens the case for the use of continuous measurement approaches involving IRGA and PGA analyses in studies of this type. The unamended Cambisol released 286% more CO2 and 30% more N2O than the Haploxerert. Addition of plant residues increased CO2 emissions more in the Haploxerert than Cambisol and N2O emission more in the Cambisol than in the Haploxerert. This may have been a consequence of the high N stabilization efficiency of the Haploxerert resulting from its high pH and the effect of the clay on mineralization of native organic matter. These results have implication management of plant residues in different soil types.  相似文献   

7.
A laboratory incubation experiment was conducted to demonstrate that reduced availability of CO2 may be an important factor limiting nitrification. Soil samples amended with wheat straw (0%, 0.1% and 0.2%) and (15NH4)2SO4 (200 mg N kg–1 soil, 2.213 atom% 15N excess) were incubated at 30±2°C for 20 days with or without the arrangement for trapping CO2 resulting from the decomposition of organic matter. Nitrification (as determined by the disappearance of NH4+ and accumulation of NO3) was found to be highly sensitive to available CO2 decreasing significantly when CO2 was trapped in alkali solution and increasing substantially when the amount of CO2 in the soil atmosphere increased due to the decomposition of added wheat straw. The co-efficient of correlation between NH4+-N and NO3-N content of soil was highly significant (r =0.99). During incubation, 0.1–78% of the applied NH4+ was recovered as NO3 at different incubation intervals. Amendment of soil with wheat straw significantly increased NH4+ immobilization. From 1.6% to 4.5% of the applied N was unaccounted for and was due to N losses. The results of the study suggest that decreased availability of CO2 will limit the process of nitrification during soil incubations involving trapping of CO2 (in closed vessels) or its removal from the stream of air passing over the incubated soil (in open-ended systems).  相似文献   

8.
The Japanese RiceFACE (Free-Air CO2 Enrichment) project was a three-year investigation into the effect of elevated CO2 on rice. Four rings were built to emit elevated levels of CO2. The aim of the FACE system is to provide a level of CO2 enrichment 200 ppm above tmbient throughout the plot, without changing any other aspect of the microclimate within the plot. However, there can be substantial spatial variation in the CO2 level from the center to the edges of the plots. One of our main objectives was to predict the seasonal mean levels of CO2 for multiple subregions within the plots. However, the dataset was very large and followed a nonnormal distribution. Furthermore, the mean and variance were nonstationary. To overcome these difficulties daily means were used rather than individual measurements, the mean was modeled with multiple covariates that varied over both time and space, and the variance was modeled as an increasing function of the square of the distance from the center of the plot. A separable space-time covariance structure was used, and estimation was performed using nonlinear methods, REML, and EGLS. Finally, cross-validation was used to assess the validity of the model.  相似文献   

9.
Even if it is less polluting than other farm sectors, grape growing management has to adopt measures to mitigate greenhouse gas (GHG) emissions and to preserve the quality of grapevine by-products. In viticulture, by land and crop management, GHG emissions can be reduced through adjusting methods of tillage, fertilizing, harvesting, irrigation, vineyard maintenance, electricity, natural gas, and transport until wine marketing, etc. Besides CO2, nitrous oxide (N2O) and methane (CH4), released from fertilizers and waste/wastewater management are produced in vineyards. As the main GHG in vineyards, N2O can have the same harmful action like large quantities of CO2. Carbon can be found in grape leaves, shoots, and even in fruit pulp, roots, canes, trunk, or soil organic matter. C sequestration in soil by using less tillage and tractor passing is one of the efficient methods to reduce GHG in vineyards, with the inconvenience that many years are needed for detectable changes. In the last decades, among other methods, cover crops have been used as one of the most efficient way to reduce GHG emissions and increase fertility in vineyards. Even if we analyze many references, there are still limited information on practical methods in reducing emissions of greenhouse gases in viticulture. The aim of the paper is to review the main GHG emissions produced in vineyards and the approached methods for their reduction, in order to maintain the quality of grapes and other by-products.  相似文献   

10.
Response of N2 fixation to elevated CO2 would be modified by changes in temperature and soil moisture because CO2 and temperature or water availability has generally opposing effects on N2 fixation. In this study, we assessed the impacts of elevated CO2 and temperature interactions on nitrogenase activities, readily mineralizable C (RMC), readily available N (NRN) contents in an alluvial and a laterite rice soil of tropical origin. Soil samples were incubated at ambient (370 μmol mol-1) and elevated (600 μmol mol-1) CO2 concentration at 25oC, 35oC, and 45oC under non-flooded and flooded conditions for 60 days. Elevated CO2 significantly increased nitrogenase activities and readily mineralizable C in both alluvial and laterite soils. All these activities were further stimulated at higher temperatures. Increases in nitrogenase activity as a result of CO2 enrichment effect over control were 16.2%, 31.2%, and 66.4% and those of NRN content were 2.0%, 1.8%, and 0.5% at 25oC, 35oC and 45oC, respectively. Increases in RMC contents were 7.7%, 10.0%, and 10.6% at 25°C, 35°C and 45°C, respectively. Soil flooding resulted in a more clear impact of CO2 enrichment than the non-flooded soil. The results suggest that in tropical rice soils, elevated CO2 increased readily available C content in the soil, which probably stimulates growth of diazotrophic bacteria with enhanced N2 fixation and thereby higher available N.  相似文献   

11.
12.
Modern light chestnut and chestnut soils and their analogues buried under steppe kurgans in the southeastern part of the Russian Plain were studied in order to determine the rates of the CO2 production by these soils under the native (with the natural moisture content) and moistened (60% of the total water capacity) conditions. It was found that the rates of the CO2 production by the soil samples in the native state are relatively close to one another and vary from 0.3 to 1.4 μg of C/100 g of soil/h. The rates of the CO2 production in the moistened state increased by two orders of magnitude for the modern surface soils and by an order of magnitude for the buried soils.  相似文献   

13.
The humus status and CO2 production have been assessed in soils of natural and anthropogenic landscapes in southern regions of the Far East with different types of redox conditions. A higher production of CO2 is typical of burozems and soddy-eluvial-metamorphic soils with oxidative and contrast redox conditions. These are soils with medium or high humus content, high potential humification capacity, and medium enrichment with catalase. A decrease in the content of humus in the plow horizons of soils in agrogenic landscapes is revealed compared to their natural analogues. The studied soils mainly have humus of the fulvate–humate type. The fractions strongly bound to the mineral soil component prevail in humic acids. In waterlogged mucky-humus gley soils, the anaerobic conditions hamper the biological activity and transformation of organic matter, which favors its accumulation. A low production of CO2 is observed in soils with reducing conditions. To determine the differences between the CO2 emission parameters in soils of agrogenic and natural landscapes, monitoring studies should be extended.  相似文献   

14.
The analysis of daily, seasonal, and annual dynamics of CO2 emission from soils under different stands of monsoon tropical tall-tree forest was performed on the basis of field observations conducted at the Russian-Vietnamese Tropical Research and Technology Center of the Russian Academy of Sciences. Under a tropical climate, the main factors responsible for the rate of carbon dioxide emission from the soils are shown to be the soil type and the topographic position of the area studied along with the type of vegetation. Depending on these factors, the rate of CO2 emission from the soils was 65–178 mg C/(m2 h) during the dry season and 123–259 mg C/(m2 h) during the wet season. The daily dynamics of CO2 emissions from the soils of the tropical zone was weakly pronounced in both the wet and the dry season owing to the insignificant diurnal fluctuations of soil temperature. The investigations carried out allowed making an expert evaluation of the annual CO2 fluxes from the soils under different stands of monsoon tropical tall-tree forest in southern Vietnam. They amounted to 900–2000 g C/(m2 yr) depending on the forest type.  相似文献   

15.
The abundance and diversity of soil bacterial and fungal communities in a wheat field under elevated atmospheric CO2 concentrations and increased air temperatures were investigated using qPCR and pyrosequencing. Elevated CO2 concentrations significantly increased the abundances of bacteria and fungi, and an increase of air temperatures significantly reduced fungal abundance. We found that Proteobacteria, Bacteroidetes, Chloroflexi, and Ascomycota were the most abundant bacterial and fungal phyla in the wheat field soil. Elevated CO2 concentrations and increased air temperatures had no significant effect on the bacterial alpha diversity, whereas fungal richness was reduced under warming treatments. Moreover, we note that certain bacterial and fungal groups responded differentially to elevated CO2 concentrations and increased air temperatures, and fungal species were highly sensitive to climatic changes.  相似文献   

16.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   

17.
Photocatalytic reduction of CO2 in seawater into chemical fuel, methanol (CH3OH), was achieved over Cu/C-co-doped TiO2 nanoparticles under UV and natural sunlight. Photocatalysts with different Cu loadings (0, 0.5, 1, 3, 5, and 7 wt%) were synthesized by the sol–gel method and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. Co-doping with C and Cu into TiO2 remarkably promoted the photocatalytic production of CH3OH. This improvement was attributed to lowering of bandgap energy, specific catalytic effect of Cu for CH3OH formation, and the minimization of photo-generated carrier recombination. Co-doped TiO2 with 3.0 wt% Cu was found to be the most active catalyst, giving a maximum methanol yield rate of 577 μmol g-cat?1 h?1 under illumination of UV light, which is 5.3-fold higher than the production rate over C-TiO2 and 7.4 times the amount produced using Degussa P25 TiO2. Under natural sunlight, the maximum rate of the photocatalytic production of CH3OH using 3.0 wt% Cu/C-TiO2 was found to be 188 μmol g-cat?1 h?1, which is 2.24 times higher than that of C-TiO2, whereas, no CH3OH was observed for P25.  相似文献   

18.
The participation of anionic aluminum hydroxo complexes in the binding of phosphate anions on the surface of gibbsite has been shown. The succession of changes in the anionic aluminum phosphate complexes under increasing concentration of phosphate solution has been studied. It has been found that aluminum polyphosphate complexes responsible for the intensive dissolution of gibbsite are formed, along with aluminum orthophosphate complexes, at phosphate solution concentrations of 1 and 2 mol P/L. The decisive role of polyphosphate (P–O–P) groups in the ligand structure of anionic complexes in the transformation of gibbsite to a phosphate mineral (ammonium taranakite) has been revealed. The role of hydrogen bonds with the participation of ligand P(O)OH groups in the formation of ammonium taranakite crystals has been discussed.  相似文献   

19.
Here, we investigated how root age and mode of death influenced their subsequent turnover and rate of C loss from soil. Young white-coloured and older pigmented roots of Cistus monspeliensis were excised (to simulate death by mechanical severance) or frozen (to simulate death by cell rupture) and immediately buried in soil. CO2 loss from soil was then measured over time. In a parallel experiment, the rate of CO2 loss from severed or ruptured roots in the absence of soil was determined. Our results revealed large differences in root chemistry related to age, with young roots having a lower C:N ratio and a greater nutrient content (soluble C, N, P and K). Both root age and mode of death resulted in very different temporal patterns of C release from soil. The amount of C lost from soil followed the series: severed white roots (42.6 ± 3.3 mg C) > ruptured pigmented roots (27.7 ± 0.4 mg C) = ruptured white roots (27.1 ± 0.5 mg C) > severed pigmented roots (10.1 ± 1.0 mg C) > soil only (3.0 ± 0.2 mg C). Therefore, depending on the treatment, 7 to 41% of the total root-derived C was lost as CO2 over the duration of the experiment. Comparison with soil-free treatments revealed that the CO2 release from the severed roots buried in soil was not associated with microbial breakdown but caused by root-induced autophagy in an attempt to keep themselves metabolically active. Ruptured roots also induced a rapid loss of CO2 which we ascribe to the diffusive loss of root solutes into the soil and subsequent microbial mineralization. Surprisingly, the rate of C loss from soil was greater from the severed root tips than those that were ruptured. Our results imply two distinct routes of C loss dependent on how roots die, one which bypasses the microbial community and one which flows through it.  相似文献   

20.
Background, Aims, and Scope  The genetic structure and the functionality of soil microbes are both important when studying the role of soil in the C cycle in elevated CO2 scenarios. The aim of this work was to investigate the genetic composition of the fungal community by means of PCR-DGGE and the functional diversity of soil micro-organisms in general with MicroResp-based community level physiological profiling (CLPP) in a poplar plantation (POPFACE) grown under elevated [CO2] with and without nitrogen fertilization. Materials and Methods  The POPFACE experimental plantation and FACE facility are located in central Italy, Tuscania (VT). Clones of Populus alba, Populus nigra and Populus x euramericana were grown, from 1999 to 2004, in six 314 m2 plots treated either with atmospheric (control) or enriched (550 μmol mol−1) CO2 with FACE (Free Air CO2 Enrichment) technology in each growing season. Each plot is divided into six triangular sectors, with two sectors per poplar genotype: three species × two nitrogen levels. After removal of the litter layer one soil core per genotype (10 cm wide, 20 cm depth) was taken inside each of the three sectors in each plot, for a total of 36 soil cores (3 replicates × 2 [CO2] × 2 fertilization × 3 species) in October 2004 and in July 2005. DNA was extracted with a bead beating procedure. 18S rDNA gene fragments were amplified with PCR using fungal primers (FR1 GC and FF390). Analysis of CLPP was performed using the MicroResp method. Carbon substrates were selected depending on their ecological relevance to soil and their solubility in water. In particular rhizospheric C sources (carboxylic acids and carbohydrates) were chosen considering the importance of root inputs for microbial metabolism. Results  The fertilization treatment differentiated the fungal community composition regardless of elevated [CO2] or the poplar species; moreover the number of fungal species was lower in fertilized soil. The effect of elevated [CO2] on the fungal community composition was evident only as interaction with the fertilization treatment as, in N-sufficient soils, the elevated [CO2] selected a different microbial community. For CLPP, the differ ent poplar species were the main factors of variation. The FACE treatment, on average, resulted in lower C utilization rates in un-fertilized soils and higher in fertilized soils. Discussion  Fungal biomass and fungal composition depend on different factors: from previous studies we know that the greater quantity and the higher C/N ratio of organic inputs under elevated [CO2] influenced positively the fungal biomass both in fertilized and in un-fertilized soil, whereas nitrogen availability resulted to be the main determinant of fungal community composition in this work. Whole active microbial community was directly influenced by the soil nutrient availability and the poplar species. Under elevated CO2 the competition for N with plants strongly affected the microbial communities, which were not able to benefit from added rhizospheric substrates. Under Nsufficient conditions, the increase of microbial activity due to [CO2] enrichment was related to a more active microbial community, favoured by the current availability of C and N. Conclusions  Different factors influenced the microbial community at different levels: poplar species and root exudates affected the functional properties of the microbial community, while the fungal specific composition (as seen with DGGE) remained unaffected. On the other hand, factors such as N and C availability had a strong impact on the community functionality and composition. Fungal community structure reflected the availability of N in soils and the effect of elevated [CO2] on community structure and function was evident only in N-sufficient soils. The simultaneous availability of C and N was therefore the main driving force for microbial structure and function in this plantation. Recommendations and Perspectives  Using the soil instead of soil extracts for CLPP determination provides a direct measurement of substrate catabolism by microbial communities and reflects activity rather than growth because more immediate responses to substrates are measured. Further applications of this approach could include selective inhibition of different microbial functional groups to investigate specific CLPPs. To combine the structural analysis and the catabolic responses of specific microbial communities (i.e. fungi or bacteria) could provide new outlooks on the role of microbes on SOM decomposition. ESS-Submission Editor: Dr. Kirk Semple (k.semple@lancaster.ac.uk)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号