首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
An incubation experiment was conducted on chestnut soil microcosms to assess the impact of long and short cold shock on the rate of nitrification of ammonium-oxidizing bacteria and archaea. Significant reduction of nitrifying activity was observed after 2 weeks of cold shock, while 24-hour incubation at a low temperature did not affect the rate of nitrification of microorganisms. We assume that the prevalence of psychrophiles or mesophiles with a broad range of adaptation in the chestnut soil helps maintain a high level of nitrification in conditions of frequent fluctuations of high and low temperatures. Decreasing nitrifying activity after long freezing points to the death of a small pool of the least resistant organisms, which is associated with the peculiarities of the geographical location of chestnut soils and lack of long periods of soil freezing. The composition of communities of bacteria and archaea in the course of the experiments did not change, which was determined by denaturing gel electrophoresis (DGGE).  相似文献   

2.
Field data have shown that soil nitrifying communities gradually adapt to zinc (Zn) after a single contamination event with reported adaptation times exceeding 1 year. It was hypothesized that this relatively slow adaptation relates to the restricted microbial diversity and low growth rate of the soil nitrifying community. This hypothesis was tested experimentally by recording adaptation rates under varying nitrification activities (assumed to affect growth rates) and by monitoring shifts in community composition. Soils were spiked at various Zn concentrations (0-4000 mg Zn kg−1) and two NH4+-N doses (N1, N2) were applied to stimulate growth. A control series receiving no extra NH4+-N was also included. Soils were incubated in pots under field conditions with free drainage. The pore water Zn concentration at which nitrification was halved (EC50, mg Zn l−1) did not change significantly during 12 months in the control series (without NH4+-N applications), although nitrification recovered after 12 months at the highest Zn dose only. The EC50 after 12 months incubation increased by more than a factor 10 with increasing NH4+-N dose (p < 0.05) illustrating that increased activity accelerates adaptation to Zn. Zinc tolerance tests confirmed the role of Zn exposure, time and NH4+-N dose on adaptation. Zinc tolerance development was ascribed to the AOB community since the AOB/AOA ratio (AOB = ammonia oxidizing bacteria; AOA = ammonia oxidizing archaea) increased from 0.4 in the control to 1.4 in the most tolerant community. Moreover, the AOB amoA DGGE profile changed during Zn adaptation whereas the AOA amoA DGGE profile remained unaffected. These data confirm the slow but pronounced adaptation of nitrifiers to Zn contamination. We showed that adaptation to Zn was accelerated at higher activity and was associated with a shift in soil AOB community that gradually dominated the nitrifying community.  相似文献   

3.
The herbicide, glyphosate [N-(phosphonomethyl) glycine] is extensively used worldwide. Long-term use of glyphosate can cause micronutrient deficiency but little is known about potassium (K) interactions with glyphosate. The repeated use of glyphosate may create a selection pressure in soil microbial communities that could affect the nutrient dynamics such as K. The objective of this study was to determine the effect of single or repeated glyphosate applications on microbial and K properties of soils. A 54 day incubation study (Exp I) had a 3 × 5 factorial design with 3 soils (silt loam: fine, illitic, mesic Aeric Epiaqualf) of similar physical and chemical characteristics, that varied in long-term glyphosate applications (no, low, and high glyphosate field treatments) and five glyphosate rates (0, 0.5×, 1×, 2×, and 3× recommended field rates applied once at time zero). A second 6 month incubation study (Exp II) had a 3 × 3 factorial design with three soils (as described above) and three rates of glyphosate (0, 1×, and 2× recommended field application rates applied monthly). For each study microbial properties [respiration; community structure measured by ester linked fatty acid methyl ester (EL-FAME) analysis and microbial biomass K] and K fractions (exchangeable and non-exchangeable) were measured periodically. For Exp I, glyphosate significantly increased microbial respiration that was closely related to glyphosate application rate, most notably in soils with a history of receiving glyphosate. For Exp II, there was no significant effect of repeated glyphosate application on soil microbial structure (EL-FAME) or biomass K. We conclude that glyphosate: (1) stimulates microbial respiration particularly on soils with a history of glyphosate application; (2) has no significant effect on functional diversity (EL-FAME) or microbial biomass K; and (3) does not reduce the exchangeable K (putatively available to plants) or affect non-exchangeable K. The respiration response in soils with a long-term glyphosate response would suggest there was a shift in the microbial community that could readily degrade glyphosate but this shift was not detected by EL-FAME.  相似文献   

4.
Zhao  Fengyan  Zhang  Yongyong  Li  Zhijun  Shi  Jinwei  Zhang  Guoxian  Zhang  Hui  Yang  Lijuan 《Journal of Soils and Sediments》2020,20(1):380-391
Purpose

At present, the improvement of soil microbial function by the application of vermicompost in long-term monoculture system is rarely reported. We took advantage of a greenhouse pot experiment that examined the effects of vermicompost on soil microbial properties, enzyme activities, and tomato yield.

Materials and methods

Three soils subjected to 0, 5, and 20 years of continuous tomato cropping in a greenhouse were collected for a pot experiment. Treatments include chemical fertilizer (CF), vermicompost (VM), and poultry manure compost (PM). No fertilization was established as a control (CK). Biolog Eco microplates were used to measure soil microbial function.

Results and discussion

The results showed that compared to the CF and PM treatments, the VM treatment increased the abundances of bacteria (Bac, average 41% and 103%, respectively) and actinomycetes (Act, average 8.59% and 16.36%, respectively), while decreased the abundance of fungi (Fun, average 39% and 29%, respectively), and had the highest ratio of bacteria to fungi. Soil microbial activity, which was represented as the average well color development (AWCD), and microbial functional diversity were higher in the VM treatment than in the CF and PM treatments. The VM treatment led to greater improvement in soil health than the PM treatment, which expressed as the higher utilization of carboxylic acids and phenolic compounds in each type of soil. Catalase (Cat) and polyphenoloxidase (Ppo) activities in the VM treatment were significantly higher than those in the CF and PM treatments. We also found that the soil Cat activity, pH, available P, acid phosphatase (Pac) activity, and Ppo activity were important contributors to variation in the microbial population. Moreover, compared to CK, fruit yield in the VM treatment increased by 74%, 43%, and 28% in soils subjected to 0, 5, and 20 years of planting, respectively.

Conclusions

Our findings indicated that vermicompost can replace poultry manure compost to improve soil quality in greenhouse due to the ability of vermicompost to improve soil microbial functions.

  相似文献   

5.

Purpose

Irrigation and fertilization can change soil environment, which thereby influence soil microbial metabolic activity (MMA). How to alleviate the adverse effects by taking judicious saline water irrigation and fertilization regimes is mainly concerned in this research.

Materials and methods

Here, we conducted a field orthogonal designed test under different saline water irrigation amount, water salinity, and nitrogen fertilizer application. The metabolic profiles of soil microbial communities were analyzed by using the Biolog method.

Results and discussion

The results demonstrated that irrigation amount and fertilizer application could significantly change MMA while irrigation water salinity had no significant effect on it. Medium irrigation amount (30 mm), least (50 kg ha?1) or medium (350 kg ha?1) N fertilizer application, and whatever irrigation water salinity could obtain the optimal MMA. Different utilization rates of carbohydrates, amino acids, carboxylic acids, and polymers by soil microbial communities caused the differences of the effects, and D-galactonic acid γ-lactone, L-arginine, L-asparagine, D-glucosaminic acid, Tween 80, L-threonine, and D-galacturonic acid were the indicator for distinguishing the effects.

Conclusions

The results presented here demonstrated that by regulating irrigation water amount and fertilizer application, the effects of irrigation salinity on MMA could be alleviated, which offered an efficient approach for guiding saline water irrigation.
  相似文献   

6.
Tong  Lihong  Zhu  Ling  Lv  Yizhong  Zhu  Kun  Liu  Xiayan  Zhao  Rui 《Journal of Soils and Sediments》2020,20(2):641-652
Journal of Soils and Sediments - Soil organic carbon (SOC) content and stability, which are regulated by microbial communities, vary depending on aggregate size. The objectives of this study were...  相似文献   

7.

Purpose

The application of organic and inorganic fertilizers to soil can result in increased gaseous emissions, such as NH3, N2O, CO2, and CH4, as well as nitrate leaching, contributing to climate warming and ground and surface water pollution, particularly in regions with hot climates, where high temperatures and high soil nitrification rates often occur. The use of nitrification inhibitors (NIs) has been shown to effectively decrease nitrogen (N) losses from the soil-plant system.

Materials and methods

Non-disruptive laboratory incubation experiments were conducted to assess the extent to which temperature (20 and 30 °C) and nutrient source (mineral and organic fertilizers) influence the rate of carbon (C)- and N-related microbial processes in soil in response to the NI 3,4-dimethylpyrazole phosphate (DMPP). Furthermore, short-term changes in the ability of microbes to degrade C substrates were evaluated in disruptive soil microcosms using microbial community-level physiological profiling and the abundance of the bacterial 16S rRNA gene as a measure of total bacterial population size.

Results and discussion

DMPP reduced net nitrification after 2 and 4 weeks of incubation at 30 and 20 °C by an average of 78.3 and 84.5 %, respectively, and with similar dynamics for mineral or organic fertilization. The addition of labile organic matter with cattle effluent led to a rapid increase in C mineralization that was significantly reduced by DMPP at both temperatures, whereas no changes could be detected after the addition of mineral fertilizer. The culturable heterotrophic microorganisms showed metabolic diversification in the oxidation of C sources, with organic fertilizer playing a major role in the substrate utilization patterns during the first week of incubation and the DMPP effects prevailing from day 14 until day 28. Furthermore, the copy number of the bacterial 16S rRNA gene was reduced by the application of DMPP and organic fertilizer after 28 days.

Conclusions

Our results show the marked efficiency of DMPP as an NI at elevated temperatures of incubation and when associated with both mineral and organic fertilization, providing support for its use as a tool to mitigate N losses in Mediterranean ecosystems. However, we also observed impaired C respiration rates and bacterial abundances, as well as shifts in community-level physiological profiles in soil, possibly indicating a short-term effect of DMPP and organic fertilizers on non-target C-related processes and microorganisms.
  相似文献   

8.
The scarcity of fresh water has forced farmers to use saline water (SW) for irrigation. It is important to understand the response of the soil microbial community and diversity to saline irrigation water. The objective of this study was to determine the effects of irrigation water salinity and nitrogen fertilization rates on soil physicochemical properties, microbial activity, microbial biomass, and microbial functional diversity. The field experiment consisted of a factorial design with three levels of irrigation water salinity (electrical conductivities (ECs) of 0.35, 4.61 or 8.04?dS?m?1) and two nitrogen rates (0 and 360?kg?N?ha?1). The results showed that the 4.61 and 8.04?dS?m?1 treatments both reduced soil microbial biomass C (MBC), microbial biomass N (MBN), basal respiration, total phospholipid fatty acid (PLFA), bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. In contrast, the SW treatments increased the MBC:MBN ratio. Nitrogen fertilization increased soil MBC, MBN, basal respiration, total PLFA, bacterial PLFA, and gram-negative bacterial PLFA. In contrast, N fertilization decreased gram-positive bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. Average well color development, Richness, and Shannon's Index were always lowest in the 8.04?dS?m?1 treatment. Carbon utilization patterns in the 8.04?dS?m?1 treatment were different from those in the 0.35?dS?m?1 treatment. In conclusion, five years of irrigation with brackish or SW reduced the soil microbial biomass, activity, and functional diversity, which may cause the deterioration of soil quality. Thus, the high-salinity water (EC?>?4.61?dS?m?1) is not appropriate as a single irrigation water resource. Proper N fertilizer input may overcome some of the negative effects of salinity on soil microbial.  相似文献   

9.
This study investigates microbial communities in soil from sites under different land use in Kenya. We sampled natural forest, forest plantations, agricultural fields of agroforestry farms, agricultural fields with traditional farming and eroded soil on the slopes of Mount Elgon, Kenya. We hypothesised that microbial decomposition capacity, biomass and diversity (1) decreases with intensified cultivation; and (2) can be restored by soil and land management in agroforestry. Functional capacity of soil microbial communities was estimated by degradation of 31 substrates on Biolog EcoPlates™. Microbial community composition and biomass were characterised by phospholipid fatty acid (PLFA) and microbial C and N analyses. All 31 substrates were metabolised in all studied soil types, i.e. functional diversity did not differ. However, both the substrate utilisation rates and the microbial biomass decreased with intensification of land use, and the biomass was positively correlated with organic matter content. Multivariate analysis of PLFA and Biolog EcoPlate™ data showed clear differences between land uses, also indicated by different relative abundance of PLFA markers for certain microorganism groups. In conclusion, our results show that vegetation and land use control the substrate utilisation capacity and microbial community composition and that functional capacity of depleted soils can be restored by active soil management, e.g. forest plantation. However, although 20–30 years of agroforestry farming practises did result in improved soil microbiological and chemical conditions of agricultural soil as compared to traditional agricultural fields, the change was not statistically significant.  相似文献   

10.
The changes in size, activity and structure of soil microbial community caused by N fertilization were studied in a laboratory incubation experiment. The rates of N fertiliser applied (KNO3) were 0 (control), 100 and 2,000 μg N g−1 soil. Despite no extra C sources added, a high percentage of N was immobilized. Whereas no significant increase of microbial C was revealed during incubation period, microbial growth kinetics as determined by the substrate-induced growth-response method demonstrated a significant decrease in the specific growth rate of microbial community in soil treated with 2,000 μg N g−1 soil. Additionally, a shift in microbial community structure resulting in an increase in fungal biomarkers, mainly in the treatment with 2,000 μg N g−1 soil was visible.  相似文献   

11.
Aggregate stability often exhibits a large inter-annual and seasonal variability which occurs regardless of residue treatments and is often larger than the differences between soils or cropping systems. Variations in soil moisture and seasonal stimulation of microbial activity are frequently cited as the major causes. The goal of this paper was to evaluate the effects of drying-rewetting cycles on aggregate stability and on its main microbially mediated agents from a mechanistic point of view. The 3-5 mm aggregates of a silty soil were incubated at 20 °C for 63 days with the following treatments and their combinations: (i) with or without straw input and (ii) with or without exposure to four dry-wet cycles. Microbial activity was followed by measuring the soil respiration. We estimated the microbial agents of aggregate stability measuring hot-water extractable carbohydrate-C, microbial biomass carbon and ergosterol content. We measured the water drop penetration time to estimate the hydrophobicity and aggregate stability according to Le Bissonnais [1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science 47, 425-437] to distinguish three breakdown mechanisms: slaking, mechanical breakdown and microcracking. The addition of straw stimulated microbial activity and increased the resistance to the three tests of aggregate stability, enhancing the internal cohesion and hydrophobicity of aggregates. All the estimated microbial agents of aggregate stability responded positively to the addition of organic matter and were highly correlated with aggregate stability. Fungal biomass correlated better with aggregate stability than total microbial biomass did, showing the prominent role of fungi by its triple contribution: physical entanglement, production of extracellular polysaccharides and of hydrophobic substances. Dry-wet cycles had less impact on aggregate stability than the addition of straw, but their effects were more pronounced when microbial activity was stimulated demonstrating a positive interaction.  相似文献   

12.

Purpose

Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

Materials and methods

Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

Results and discussion

The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

Conclusions

This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.
  相似文献   

13.

Purpose

Chlorothalonil (CTN) has received much attention due to its broad-spectrum antifungal function and repeated applications in agriculture production practice. An incubation experiment was conducted to study the accumulating effects of CTN repeated application on soil microbial activities, biomass, and community and to contrast the discrepancy of effects in contrasting soils.

Materials and methods

Different dosage CTN (5 mg kg?1, T1, and 25 mg kg?1, T5) was applied into two contrasting soils at 7-day intervals. Soil samples were taken 7 days after each application to assess soil enzyme activities and gene abundances. At the end of incubation, the soil samples were also taken to analyze microbial communities in the two test soils.

Results and discussion

Soil fluorescein diacetate hydrolysis (FDAH) and urease activities were inhibited by CTN repeated applications. After 28 days of incubation, bacterial 16S rRNA gene abundances in T1 and T5 treatments were significantly lower than those in the CK treatments (46.4 and 36.6 % of the CK treatment in acidic red soil, 53.6 and 37.9 % of the CK treatment in paddy soil). Archaeal 16S rRNA gene abundances of T1 and T5 treatments were observed the similar trends (56.1 and 40.8 % of the CK treatment in acidic red soil, 45.6 and 43.7 % of the CK treatment in paddy soil). Repeated applications at 25 mg kg?1 exerted significantly negative effects on the Shannon-Weaver, Simpson and McIntosh indices.

Conclusions

Microbial activity, biomass, and functional diversity were significantly inhibited by repeated CTN application at the higher dosage (25 mg kg?1), but the inhibitory effects by the application at the recommended dosage (5 mg kg?1) were erratic. More emphasis needs to be placed on the soil type and cumulative toxicity from repeated CTN application when assessing environmental risk.
  相似文献   

14.
In a field experiment, net nitrogen (N) mineralization and immobilization were studied in relation to: 1) population dynamics and activities of N-metabolizing soil microbial communities, 2) changes in substrate-induced respiration (SIR) and 3) potential urease acitvity. Nitrogen fertilization (80 kg NO3-N ha-1) without irrigation induced additional N mineralization up to 280 kg N ha-1. Net N-mineralization was weakly correlated to cell numbers of ammonifying and NH4+-oxidizing microorganisms. Potential urease activity, respiration activity, and substrate-induced respiration activity were not correlated with the amount of mineralized nitrogen. Irrigation significantly increased potential urease activity of the soil microflora. Substrate induced respiration activity and basal respiration activity of the soil microflora were highest in the unfertilized and non irrigated treatment. But greatest differences were detected between the two sampling dates. NO2--oxidizing and ammonifying microbial populations increased, while populations of NH4+-oxidizing and denitrifying microorganisms decreased with time. The results of this study demonstrate the interaction of nitrogen fertilizer application and irrigation on population dynamics of N-transforming soil microorganisms and microbial activities under field conditions. Detailed microbiological investigations of this type improve our understanding of nitrogen transformations in soil and suggest possible reasons of nitrogen losses, so that N fertilizer can be used more effectively and N losses be reduced.  相似文献   

15.
Nitrogen (N) from urine excreted by grazing animals can be transformed into N compounds that have detrimental effects on the environment. These include nitrate, which can cause eutrophication of waterways, and nitrous oxide, which is a greenhouse gas. Soil microbes mediate all of these N transformations, but the impact of urine on microbes and how initial soil conditions and urine chemical composition alter their responses to urine are not well understood. This study aimed to determine how soil inorganic N pools, nitrous oxide fluxes, soil microbial activity, biomass, and the community structure of bacteria containing amoA (nitrifiers), nirK, and nirS (denitrifiers) genes responded to the addition of urine over time. Bovine urine containing either a high (15.0 g K+ l?1) or low salt content (10.4 g K+ l?1) was added to soil cores at either low or high moisture content (hereafter termed dry and wet soil respectively; 35% or 70% water-filled pore space after the addition of urine). Changes in soil conditions, inorganic N pools, nitrous oxide fluxes, and the soil microbial community were then measured 1, 3, 8, 15, 29 and 44 days after urine addition. Urine addition increased soil ammonium concentrations by up to 2 mg g d.w.?1, soil pH by up to 2.7 units, and electrical conductivity (EC) by 1.0 and 1.6 dS m?1 in the low and high salt urine treatments respectively. In response, nitrate accumulation and nitrous oxide fluxes were lower in dry compared to wet urine-amended soils and slightly lower in high compared to low salt urine-amended soils. Nitrite concentrations were elevated (>3 μg g d.w.?1) for at least 15 days after urine addition in wet urine-amended soils, but were only this high in the dry urine-amended soils for 1 day after the addition of urine. Microbial biomass was reduced by up to half in the wet urine-amended soils, but was largely unaffected in the dry urine-amended soils. Urine addition affected the community structure of ammonia-oxidising and nitrite-reducing bacteria; this response was also stronger and more persistent in wet than in dry urine-amended soils. Overall, the changes in soil conditions caused by the addition of urine interacted to influence microbial responses, indicating that the effect of urine on soil microbes is likely to be context-dependent.  相似文献   

16.
Abstract

In our previous report (Yanai et al. 2004: Soil Sci. Plant Nutr., 50, 821–829), we demonstrated that soil freeze-thaw cycles caused a partial sterilization of the soil microbial communities and exerted limited effects on the potential of organic matter decomposition of soils. In the present study, the effects of soil freeze-thaw cycles on the nitrification potential of soils were examined and the impacts of the freeze-thaw cycles on the nitrifying communities were analyzed. Samples of surface soils (0 to 10 cm depth) were collected, from tropical arable land sites, temperate forest, and arable land sites~ Nitrification potential was assayed by the incubation of soils with or without the addition of 200 fig N of ammonium sulfate per g soil to reach a moisture content adjusted to 60% of maximum water-holding capacity at 27~wC following four successive soil freeze-thaw cycles (-13 and 4°C at 12 h-intervals). Nitrification potential of the soils, in which the decrease in the microbial biomass following the freeze-thaw cycles was less appreciable, was not inhibited by the soil freeze-thaw cycles. On the other hand, the nitrification potential of the soils, in which the decrease in the microbial biomass following the soil freeze-thaw cycles was relatively more appreciable, was clearly inhibited by the freeze-thaw cycles or was undetectable even in the unfrozen control. Surprisingly, nitrate production in the samples of an arable soil collected from Vietnam was inhibited by the addition of ammonium sulfate, and thus the effects of counter-anions of ammonium salts on the nitrification potential of the soils were examined. Since a much larger amount of nitrate was produced in the Vietnam soil with the addition of ammonium acetate and ammonium hydrogen carbonate than that in the soil with the addition of ammonium sulfate, it was considered that ammonium sulfate inhibited nitrification in the soil. These results indicated that ammonium sulfate may not always be a suitable substrate for estimating the nitrification potential of soils. Relationship between soil physicochemical properties and the effect of the soil freeze-thaw cycles on the nitrification potential was evaluated and it was considered that the soil pH(KCI) was likely to be responsible for the difference in the responses among soils, assuming that the pH values changed in unfrozen water under the frozen conditions of soils.  相似文献   

17.
As saline soils dry, the salt in the remaining solution phase is concentrated and the microbes are subjected to both water and osmotic stress. However, little is known about the interactive effect of matric potential (MP) and osmotic potential (OP) on microbial activity and community structure. We conducted an experiment in which two non-saline soils, a sand and a sandy loam, were pre-incubated at optimal water content (for microbial activity) but different osmotic potentials achieved by adding NaCl. The EC of the saturated paste (ECe) ranged between 1.6 and 11.6 dS m−1 in the sand and between 0.6 and 17.7 dS m−1 in the sandy loam. After the 14-day pre-incubation, the soils were dried to different water contents: 25-35 g kg−1 in the sand and 95-200 g kg−1 in the sandy loam. Water potential (WP, the sum of osmotic + matric potential) ranged from −0.7 to −6.8 MPa in the sand and from −0.1 to −4.4 MPa in the sandy loam. After addition of ground pea straw to increase the concentration of readily available substrate, respiration was measured over 14 days and microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) at the end of the experiment. In both soils, cumulative respiration at a given soil water content (WC) decreased with decreasing osmotic potential, but the effect of decreasing water content differed between the two soils. In the sand, cumulative respiration at the two lowest water contents (WC25 and WC28) was always significantly lower than that at the highest water content (WC35). In the sandy loam, cumulative respiration was significantly lower at the lowest water content (WC95) compared to the highest water content (WC200) only in treatments with added salt. The reduction of cumulative respiration at a given WP was similar in the two soils with a 50% reduction compared to the control (optimal water content, no salt added) at WP −3 MPa. In the sand at WP <−2 MPa, the reduction in fungal fatty acids was greater than that of bacterial fatty acids whereas in the sandy loam, the response of bacteria and fungi to decreasing WP was similar. In both soils, microbial biomass decreased by 35-50% as WP decreased to about −2 MPa but then remained stable with further decreases of WP. Microbial community composition changed with WP in both soils. Our results suggest that there are two strategies by which microbes respond to water potential. A decrease in WP up to −2 MPa kills a proportion of the microbial community, but the remaining microbes adapt and maintain their activity per unit biomass. At lower WP however, the adaptation mechanisms are not sufficient and although the microbes survive, their activity per unit biomass is reduced.  相似文献   

18.
Soil microbial communities can develop trace metal tolerance upon soil contamination with corresponding metals. A few studies have reported co-tolerance in such cases, i.e. tolerance to other metals than those to which the microbial community had been exposed to. This study was set-up to test for co-tolerance of nitrifying communities to zinc (Zn) and copper (Cu) and to relate tolerances to shifts in community structure using amoA AOB (ammonia oxidizing bacteria) DGGE. Seven sets of soils, each representing a Cu or Zn contamination gradient were sampled from four locations. At two locations, both Cu and Zn had been added as single contaminants. Increased Zn and Cu tolerance of the nitrifying communities was consistently observed in response to corresponding soil contamination. Co-tolerance to Zn was obtained in two of the three Cu gradients and that to Cu in one of the four Zn gradients. DGGE analysis and sequencing showed that contamination with either Zn or Cu selected for identical AOB phylotypes in soils at one location but not at the other location. The nitrifying community structures in soils from different locations did not become more similar upon Zn exposure than those in corresponding uncontaminated soils. Hence, trace metal tolerance development was not due to the emergence of specific AOB phylotypes, but due to the emergence of different AOB phylotypes bearing tolerance mechanisms for Zn, Cu or both metals.  相似文献   

19.
The impact of soil erosion on the nutrient dynamics in alpine grassland soils is still an essential problem. Selecting a grass-covered hillslope in eastern Tibet Plateau, the cesium-137 (137Cs) technique was used to determine the impacts of soil erosion on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK). The 137Cs data revealed that there were distinct soil redistribution patterns in different hillslope positions because of the influences of slope runoff, plant coverage and grazing activity. For the upper slope, soil erosion first decreased downward, followed by soil deposition in its lower part. In contrast, for middle and toe slopes, there was an increasing soil erosion along a downslope transect. Across the lower slope, soil erosion showed an irregular variation. Influenced by the selective transport of water erosion, SOC, TN and TP storage decreased with increasing soil erosion in upper, middle and toe slopes. In contrast, SOC, TN and TP storage varied little with soil erosion in the lower slope. On the whole hillslope, TK storage also varied little with soil erosion due to the large amount of potassium elements derived from soil parent materials. Particularly noteworthy was the greatest storage of SOC, TN and TP in the lower slope where most obvious net soil erosion occurred, which is closely related to the humus accumulation combined with gravel separation as well as weathering and pedogenesis of parent rocks induced by soil freeze-thaw.  相似文献   

20.
In the mountain rainforest region of the South Ecuadorian Andes natural forests have often been converted to pastures by slash-and-burn practice. With advanced pasture age the pasture grasses are increasingly replaced by the tropical bracken leading to the abandonment of the sites. To improve pasture productivity a fertilisation experiment with urea was established. The effects of urea on soil organic matter (SOM) mineralisation and microbial community structure in top soil (0–5 cm depth) of an active and abandoned pasture site have been investigated in laboratory incubation experiments. Either 14C- or 15N-labelled urea (74 mg urea-N kg−1 dw soil) was added to track the fate of 14C into CO2 or microbial biomass and that of 15N into the KCl-extractable NH4-N or NO3-N or microbial biomass pool. The soil microbial community structure was assessed using phospholipid fatty acid analysis (PLFA). In a second experiment two levels of 14C-labelled urea (74 and 110 mg urea-N kg−1 dw soil) were added to soil from 5 to 10 cm depth of the respective sites. Urea fertilisation accelerated the mineralisation of SOC directly after addition up to 17% compared to the non-fertilised control after 14 days of incubation. The larger the amount of N potentially available per unit of microbial biomass N the larger was the positive priming effect. Since in average 80% of the urea-C had been mineralised already 1 day after amendment, the priming effect was strong enough to cause a net loss of soil C. Although the structure of the microbial community was significantly different between sites, urea fertilisation induced the same alteration in microbial community composition: towards a relative lower abundance of PLFA marker characteristic of Gram-positive bacteria and a higher one of those typical of Gram-negative bacteria and fungi. This change was positively correlated with the increase in NH4, NO3 and DON availability. In addition to the activation of different microbial groups the abolishment of energy limitation of the microbes seemed to be an important mechanism for the enhanced mineralisation of SOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号