首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
There have been increasing efforts to understand the dynamics of organic carbon (OC) associated with measurable fractions of bulk soil. We compared the decomposition of native OC (native C) with that of an added substrate (glucose) on physically separated fractions of a diverse suite of soils. Five soil orders were selected from four contrasting climate zones (Mollisol from temperate, Ultisol and Oxisol from tropics, Andisol from sub-arctic, and Gelisol from arctic region). Soils from the A horizon were fractionated into particulate OC (POC) and mineral-associated OC (MOC) by a size-based method. Fractions were incubated at 20 °C and 50 % water-holding capacity in the dark after the addition of unlabeled d-glucose (0.4 mg C g?1 fraction) and U–14C glucose (296 Bq g?1 fraction). Respiration of glucose 14C indicated 64 to 84 % of added glucose 14C which was respired from POC and 62 to 70 % from MOC within 150 days of incubation, with more than half of the cumulative respiration occurring within 4 days. Native C respiration varied widely across fractions: 12 to 46 % of native C was respired from POC and 3 to 10 % was respired from MOC fractions. This suggested that native C was more stabilized on the MOC than on the POC, but respiration from the added glucose was generally similar for MOC and POC fractions. Our study suggests a fundamental difference between the behavior of freshly added C and native C from MOC and POC fractions of soils.  相似文献   

2.
Yu  Qiaogang  Ye  Jing  Sun  Wanchun  Lin  Hui  Wang  Qiang  Ma  Junwei 《Journal of Soils and Sediments》2021,21(2):1079-1088
Purpose

The objectives of this study were to evaluate the effects of long-term organic materials incorporation on the soil aggregate and density-based fractions, and associated soil carbon (C) and nitrogen (N) conversion in the rice fields.

Materials and methods

A long-term located experiment was conducted to study the effects of continuous application of organic materials (milk vetch, rice straw, and poultry manure) on the distribution characteristics of soil aggregate and density-based fraction, as well as its organic C and N, in rice fields. The soil aggregate was classified using the wet-sieving method. Light fraction (LF) and heavy fraction (HF) were classified according to density fractionation. Aggregate organic C (AC) and total N (AN), LF organic C (LFC) and N (LFN), and HF organic C and N concentrations were measured by using the Elementar Vario ISOTOPE elemental analyzer.

Results and discussion

Application of organic materials increased the aggregate mass proportion of 2–0.25 mm (by 4.9–12.6%) and 0.25–0.053 mm (by 27.5–40.7%) fraction and its AC and AN concentration. The soil aggregate particulate organic C and total N were greatly improved with organic materials application. Furthermore, organic material had more obvious effect on the soil C and N in the LF than HF, which improved the LF particulate mass proportions by 75.1–177.0%, LFC by 51.7–68.4%, and LFN by 14.2–111.2%, respectively. Poultry manure had the greatest effect on increasing the AC, LFC, AN, and LFN, followed by milk vetch and rice straw.

Conclusions

Milk vetch, rice straw, and poultry manure could effectively increase the soil intermediate aggregate and LF proportion, and stimulate the stabilization and fixation of C and N in rice fields. It is an effective agricultural practice by applying organic material to improve soil fertility and sustaining high crop productivity. The increases of intermediate aggregate and associated C and N may be the main factor for soil C and N sequestration under continual application of organic materials.

  相似文献   

3.
Abstract

Yams (Dioscorea spp.) are known to be very demanding in terms of soil fertility. The influence of deleterious soil fertility on the growth of yams, however, has not yet been studied. A field study was carried out in Côte d'Ivoire, in a fertile forest site and in a low fertility savanna site, submitted to identical climatic conditions, to determine how soil fertility affects Leaf Area Index, Leaf Area Ratio, Crop Growth Rate, Tuber Bulking Rate, Radiation Interception, Radiation Use Efficiency and final tuber yields in D. alata and D. rotundata, grown in the presence of adequate fertilizers. While germination and establishment of both species were not affected by the site, growth parameters of D. alata were superior to those of D. rotundata. This resulted in higher yields of D. alata, when compared to D. rotundata. Only the radiation use efficiency was higher in D. rotundata than in D. alata. Both species reached higher Crop growth rate and Tuber bulking rate and produced higher fresh tuber yields at the forest site than at the savanna site, reflecting the known demand of yams for high fertility soil. Correlation analyses showed significant relationships between the mean Leaf Area Index measured over the entire growth period, Tuber Growth Rate calculated between tuber initiation and harvest, and fresh tuber yields, suggesting that the development of leaf area is determining the growth rate of the tuber which itself determines the fresh tuber yield. The decrease in D. alata tuber yields at the savanna site was explained by a decrease in Leaf Area Index, while the decrease in D. rotundata tuber yields at this site was explained by a decrease in Radiation Use Efficiency. Both effects might have been the consequence of a suboptimal nitrogen and potassium nutrition at the savanna site.  相似文献   

4.
This study is aimed at quantifying organic carbon (C) and total nitrogen (N) dynamics associated with physically separated soil fractions in a grassland-cultivation sequence in the Qinghai-Tibetan plateau. Concentrations of organic C and N of soil, free and occluded particulate organic matter (OM), and aggregate- and mineral-associated OM in different land uses are increased in the following order: 50 years cultivation < 12 years cultivation ≤ native grassland. The prolonged cropping of up to 50 years markedly affected the concentrations of free and occluded particulate OM and mineral-associated OM. After wet-sieving, 43% of native grassland soil mass was found in >1−10 mm water-stable aggregates that stored 40% of bulk soil organic C and N; only 16% and 7% of soil mass containing 16% and 7% of bulk soil organic C and N was >1−10 mm water-stable aggregates of soils cultivated for 12 years and 50 years, respectively. This indicated that losses of soil organic C and N following cultivation of native grassland would be largely related to disruption of >1–10 mm size aggregates and exposure of intra-aggregate OM to microbial attack. Organic C and N concentrations of soil aggregates were similar among aggregate size fractions (>0.05−10 mm) within each land use, suggesting that soil aggregation process of these soils did not follow the hierarchy model. The increase of the C-to-N ratio of free and occluded particulate fractions in the cultivated soils compared to the grassland soil indicated a greater loss of N than C.  相似文献   

5.
Although acid soils are common in forest ecosystems, and there is documented evidence of pH influencing transformations of organic matter in soil, there are surprisingly few studies on the influence of soil pH on the chemical structure of physically fractionated soil organic matter (SOM). The aim of this study was to characterize the influence of pH on the chemical and physical processes involved in SOM stabilization. Forest soils of different pH (4.4 and 7.8) sampled from two long‐term experiments at Rothamsted Research (UK) were physically fractionated. The free light fraction (FLF), the intra‐aggregate light fraction and the fine silt and clay (S + C, <25 µm) were characterized using elemental, isotopic (δ13C), thermogravimetric, differential thermal, diffuse reflectance infrared Fourier transform spectroscopy and high‐resolution magic angle spinning 1H nuclear magnetic resonance analyses. The quantitative distribution of carbon (C) between SOM fractions differed between the two soils. Carbon contents in the light fractions from the acid soil were significantly greater than in those of the alkaline soil. In contrast, in S + C fractions, C content was greater in the alkaline soil. FLF from the acid soil was characterized by a greater C:N ratio, smaller δ13C and greater content of thermo‐labile compounds compared with FLF from the alkaline soil. In contrast, there was only a weak effect of soil pH on the chemical composition of the organic matter in S + C fractions. Irrespective of soil pH, these latter fractions contained mainly aliphatic compounds such as carbohydrates, carboxylic acid, amide and peptide derivates. This suggested that physical mechanisms, involving the interactions between SOM and mineral surfaces, are of greater importance than the presence of chemically recalcitrant species in protecting SOM associated with the finest soil fractions.  相似文献   

6.
Particle size fractions, varying from 5 to 0.005 mm, were separated from samples of several peat types using a wet sieving technique. In all types, nitrogen content of fractions increased as particle size decreased, the fine fractions (0.15–0.005 mm) accounting for around 43–64% of the total nitrogen. During incubation, fractions from two blanket peats showed a net release of mineral nitrogen, whereas those from raised bog peats were characterized, for the most part, by net immobilization. Amounts of mineral nitrogen released in fractions from any one peat after 28 days incubation at 30°C did not always correlate with either total nitrogen content or C:N ratio. However, better correlations between mineral nitrogen production and total N were obtained for fractions of similar particle size. The proportion of the total nitrogen that was mineralized tended to be higher in coarse fractions > 0.15 mm, blanket peats giving much higher values than samples from raised bogs. Carbon dioxide release also varied with particle size, being highest in large particles and fibres and least in the size range 0.15–0.5 mm. Smaller particles < 0.15 mm, gave intermediate values that were higher in blanket than in raised bog peat.  相似文献   

7.
Extracellular enzymes degrade complex organic compounds and contribute to carbon turnover in soils. We used physical fractionation procedures to investigate whether soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay-sized fraction. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in particulate organic matter (POM) fractions than in bulk soil, consistent with the rapid turnover of POM fractions. Polyphenol oxidase activity in the clay-sized fraction was 3 times that in the bulk soil, despite a higher mean residence time for carbon in the clay-sized fraction. For most enzymes, differences in activity among fractions and across the restoration chronosequence diminished when adjusted for differences in carbon concentrations. However, glycine aminopeptidase activity per unit carbon increased four-fold across the chronosequence in the clay fraction, while polyphenol oxidase activity declined by 40%. These results suggest that enzyme production and carbon turnover occur rapidly in POM fractions, but slowly in mineral-dominated fractions where enzymes and their carbon substrates are immobilized on mineral surfaces. Soil carbon accumulation in mineral fractions and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular to micron scale, rather than exclusion of enzymes from entire soil fractions. Based on these mechanisms, land managers could increase soil C stocks by reducing the physical disruption of soil structure associated with cultivation.  相似文献   

8.
土壤粒径分布单重分形与孔隙单重分形   总被引:1,自引:1,他引:1       下载免费PDF全文
土壤颗粒大小的分布是重要的土壤物理性质,对土壤水、气、热传导特性有着显著的影响。鉴于土壤颗粒分形在分析和描述岩土介质多孔结构的优势,本文通过对5种不同质地的土样进行颗粒分析与水分特征曲线的测试。结果表明:土壤结构定量化表征的方法就是确定土壤结构的分形维数,针对不同地区的土壤,可以通过土壤粒径分布分形维数体现土壤粒径分布的情况,分形维数越大,颗粒粒径越小,细粒含量越高,质地越发呈现不均匀性;且可利用土壤粒径分形维数估算土壤孔隙分形维数。为建立土壤粒径分布模型提供数据支持,同时也为推进土壤结构的研究进展提供了新的方向。  相似文献   

9.
10.

Purpose

The objectives of the study were (1) to quantify the long-term effects of nitrogen-phosphorus fertilizer (NP) and a combination of nitrogen-phosphorus with organic manure (NPM) on total soil organic carbon (SOC) and total soil inorganic carbon (SIC), (2) to identify the changes of SOC and SIC in soil particle-size fractions, and (3) to investigate the relationship between SOC and SIC.

Materials and methods

Two long-term field experiments (sites A and B) were performed in 1984 (site A) and 1979 (site B) in the North China Plain. The soil samples were collected in 2006 and separated for clay, silt and sand size particle fractions and then determined for SOC and SIC.

Results and discussion

The long-term fertilization significantly increased SOC in 0–20 cm soil layer by 9–68% but significantly decreased or had no effect on SIC. In total, soil carbon storage was little affected by NP, but significantly increased by NPM application (p < 0.05). Fertilization affected both SOC and SIC in sand- and silt-sized particles but not in clay-size fraction. Both NP and NPM increased SOC in sand- and silt-sized particles by 8.7–123.9% in the 0–20 cm layer but decreased SIC up to 80.4% in the 40–60 cm layer. The SOC concentration in the particle-size fractions was negatively correlated with SIC concentration, which may imply an antagonistic interaction between organic and inorganic carbon levels.

Conclusions

These results illustrate the importance of soil inorganic carbon pool in evaluating soil total carbon pool in semi-arid farmlands. Previous assessments of the effects of fertilizers on the soil carbon pool, using only SOC determinations, require re-evaluation with the inclusion of SIC determinations.
  相似文献   

11.
Accrual of carbon (C) and nitrogen (N) in soil is a significant and realizable management option to mitigate climate change; thus, a clear understanding of the mechanisms controlling the persistence of C and N in soil organic matter (SOM) across different ecosystems has never been more needed. Here, we investigated SOM distribution between physically and chemically stabilized fractions in soils from a variety of ecosystems (i.e., coniferous and broadleaved forest soils, grassland soils, technosols, and agricultural soils). Using elemental and thermal analyses, we examined changes in the quantity and quality of physically fractionated SOM pools characterized by different mechanisms of protection from decomposition. Independently of the ecosystem type, most of the organic C and total N were found in the mineral-associated SOM pool, known to be protected mainly by chemical mechanisms. Indexes of thermal stability and C/N ratio of this heavy SOM fraction were lower (especially in agricultural soils) compared to light SOM fractions found free or occluded in aggregates, and suggested a marked presence of inherently labile compounds. Our results confirm that the association of labile organic molecules with soil minerals is a major stabilization mechanism of SOM, and demonstrate that this is a generalizable finding occurring across different mineral soils and ecosystems.  相似文献   

12.
The capture and storage of soil organic carbon (OC) should improve the soil's quality and function and help to offset the emissions of greenhouse gases. However, to measure, model or monitor changes in OC caused by changes in land use, land management or climate, we need cheaper and more practical methods to measure it and its composition. Conventional methods are complex and prohibitively expensive. Spectroscopy in the visible and near infrared (vis–NIR) is a practical and affordable alternative. We used samples from Australia's Soil Carbon Research Program (SCaRP) to create a vis–NIR database with accompanying data on soil OC and its composition, expressed as the particulate, humic and resistant organic carbon fractions, POC, HOC and ROC, respectively. Using this database, we derived vis–NIR transfer functions with a decision‐tree algorithm to predict the total soil OC and carbon fractions, which we modelled in units that describe their concentrations and stocks (or densities). Predictions of both carbon concentrations and stocks were reliable and unbiased with imprecision being the main contributor to the models' errors. We could predict the stocks because of the correlation between OC and bulk density. Generally, the uncertainty in the estimates of the carbon concentrations was smaller than, but not significantly different to, that of the stocks. Approximately half of the discriminating wavelengths were in the visible region, and those in the near infrared could be attributed to functional groups that occur in each of the different fractions. Visible–NIR spectroscopy with decision‐tree modelling can fairly accurately, and with small to moderate uncertainty, predict soil OC, POC, HOC and ROC. The consistency between the decision tree's use of wavelengths that characterize absorptions due to the chemistry of soil OC and the different fractions provides confidence that the approach is feasible. Measurement in the vis–NIR range needs little sample preparation and so is rapid, practical and cheap. A further advantage is that the technique can be used directly in the field.  相似文献   

13.
Soil porosity and water infiltration as influenced by tillage methods   总被引:4,自引:5,他引:4  
The relations between soil pore structure induced by tillage and infiltration play an important role in flow characteristics of water and solutes in soil. In this study, we assessed the effect of long-term use of various tillage systems on pore size distribution, areal porosity, stained (flow-active) porosity and infiltration of silt loam Eutric Fluvisol. Tillage treatments were: (1) ploughing to the depth of 20 cm (conventional tillage (CT)); (2) ploughing to 20 cm every 6 years and to 5 cm in the remaining years (S/CT); (3) harrowing to 5 cm each year (S); (4) sowing to the uncultivated soil (no tillage (NT)), all in a micro-plot experiment. Equivalent pore size distribution was derived from the water retention curve, areal porosity – from resin-impregnated blocks (8 cm × 9 cm × 4 cm) and stained porosity – from horizontal sections (every 2 cm) of column samples (diameter: 21.5 cm, height: 20 cm) taken after infiltration of methylene blue solution. The pore size distribution curves indicated that the textural peaks of the pore throat radius of approximately 1 μm were mostly defined under NT, whereas those in the structural domain of radii of 110 μm radius—under CT. The differences among the tillage treatments were more pronounced at depth 0–10 cm than 10–20 cm. At both depths, the differences in pore size distribution between the tillage treatments were relatively greater in structural than those in the matrix domain. CT soil had the greatest areal porosity and stained porosity. The stained porosity as a function of depth could be well described by logarithmic equations in all treatments. Cumulative infiltration (steady state) as measured by the double ring infiltrometer method was the highest under CT (94.5 cm) and it was reduced by 62, 36 and 61% in S/CT, S and NT soil, respectively. Irrespective of tillage method, cumulative infiltration rates throughout 3 h most closely correlated with stained porosity in top layers (0–6 cm). Overall, the results indicate that soil pore system under CT with higher contribution of large flow-active pores compared to reduced and no tillage treatments enhanced infiltration and water storage capacity.  相似文献   

14.
Understanding the different C pools and chemical composition of soil organic carbon (SOC) in cropping system is imperative for sustaining soil quality. This study examined the effects of tillage and straw returning practices on organic C fractions and chemical composition of SOC under a rice-rape system in central China. The field experiment consisted of conventional tillage (CT); conventional tillage with straw returning (CTS); no-tillage (NT); and no-tillage with straw returning (NTS) treatments. Compared to CT, NT significantly increased SOC stocks, SCMI and C fractions of 0–20 cm depth by 6–50%. The SOC, particulate organic carbon (POC), microbial biomass carbon (MBC), easily oxidizable carbon (EOC), dissolved organic carbon (DOC) contents of 0–20 cm depth were 16, 80, 24, 22 and 13%, respectively, higher under NTS treatment. Straw returning enhanced the relative contents of O-alkyl C, carbonyl C, alkyl C, A/O-A ratio, and aromaticity. The correlations of SOC with C fractions and SCMI were significant. O-alkyl C was positively correlated with C fractions and negatively correlated with carbonyl C and alkyl C. In conclusion, long-term tillage and straw returning significantly affected the fractions and chemical compositions of SOC, could be viable option for improving the soil quality in the rice-rape rotation system.  相似文献   

15.
Wine is an important source of dietary antioxidants because of its phenolic compound content. The antioxidant activity (AA) of pure monomer substances present in wines, such as phenolic acids, flavanols, and anthocyanins, has already been described, but the AA of polymeric phenols is still unknown. In this study, we have fractionated a red wine by countercurrent chromatography (CCC) into four fractions: fraction 1, made up of polymeric compounds; fraction 2, containing malvidin-3-glucoside; fraction 3, containing peonidin-3-glucoside; and fraction 4, containing vitisin A. The AA of these fractions was determined by oxygen radical absorbance capacity and ferric reducing ability assays. The weight of fraction 1 was the largest, so this was the largest contributor to the AA of the wine. However, the antioxidant powers (muM Trolox/g fraction) of fractions 2-4 were similar and higher than that of fraction 1. We also determined AA before and after in vitro gastric and intestinal digestions. After gastric digestion, the AA was 100-1000 times higher than the original fraction values. Gallic acid was determined in gastric and intestinal digested fractions. After intestinal digestion, the concentrations of simple phenols, such as caffeic acid, p-coumaric acid, and protocatechualdehyde, increased as they were released from the fractions under our conditions. Protocatechuic acid was determined in more intestinal digested fractions than in gastric digested fractions. These results partly explain the increase in AA after the digestion and indicate the relevance of polymeric polyphenolic compounds as precursors of smaller molecules with biological activity.  相似文献   

16.
Flocculation tests and permeability measurements were carried out for silt and clay fractions separated from surface and subsurface horizons of four paddy soils. There was not much difference in the flocculating power between A1(OH)2.2C10.8 and CaSO4. Their flocculation value, 0.3 to 3 mM, was attained by adding the reagents at the rate of 0.24 to 2.4 mmol/100 g of the silt and clay. The flocculation with A1(OH)2.2C10.8 or CaSO4 did not affect the sediment volume of the silt and clay. This sediment volume was smaller for the surface than for the subsurface horizons of each soil, suggesting that soil organic matter and repetition of wetting and drying contribute to the stable aggregation of the silt and clay in the surface horizon. The permeability was higher for the silt and clay fractions separated from the surface horizon than that from the subsurface horizon, and the addition of 2.5 to 4.2 mmol of A1(OH)2.2C10.8 or CaSO4/100g of the silt and clay increased its permeability by 1.5 to 4 times. The effect of A1(OH)2.2C10.8 was more lasting than that of CaSO4 and was recognized even after 200 ml of water passed through 1 g of the silt and clay. The effect of the flocculating reagent on the permeability was more or less enhanced by air-drying the treated silt and clay.  相似文献   

17.
有机碳是形成土壤团聚体的重要物质,植被群落通过有机残体的输入增加土壤有机碳含量,从而通过影响团聚体的形成而影响土壤结构。为探究不同植被群落对土壤结构改良的意义,对黄土丘陵区森林带和草原带的不同植被群落土壤团聚体中有机碳组分进行了研究。结果表明:(1)研究区域森林带土壤有机碳含量大于草原带,森林带植被群落土壤总有机碳含量大小顺序为:辽东栎群落>人工刺槐群落>狼牙刺群落,草原带植被群落土壤总有机碳含量大小顺序为:人工沙棘群落>达乌里胡枝子+茭蒿群落>铁杆蒿+达乌里胡枝子群落;(2)土壤活性有机碳和腐殖质碳占土壤总有机碳的比例在两种植被带之间基本相同,相同植被群落土壤活性有机碳占土壤总有机碳的比例高于腐殖质碳占总有机碳的比例;(3)森林带土壤>0.25 mm团聚体含量显著高于草原带土壤>0.25 mm团聚体含量,各种形态的有机碳随着土壤团聚体粒级的增大有机碳含量呈先增加后减少或者随着团聚体粒级的增大而增大的趋势,2~0.25 mm和<0.25 mm团聚体中有机碳含量最高;(4)草原带每种植被群落土壤活性有机碳含量空间差异性较大,辽东栎群落各种形态土壤有机碳含量的空间差异性都较大,<0.25 mm团聚体腐殖质碳含量大于其他粒径;(5)草原带人工沙棘群落土壤各种形态有机碳在土壤剖面上的含量差异很小,其他各植被群落0~10 cm土层土壤有机碳含量均大于10~20 cm土层。  相似文献   

18.
《Soil Use and Management》2018,34(2):266-275
The build‐up of topsoil phosphorus (P) through excess fertilizer application can increase P losses in run‐off leading to negative impacts on aquatic ecosystems. To better understand the risk of P losses, the fractions of soil P in four aggregate size classes were quantified for two vegetable production sites (<10 and >25 yrs) and a conservation buffer site (8 yrs) in southwestern China. Sequential extraction methods of inorganic P (Pi) and organic P (Po) were carried out on samples from Nitisol and Gleysol soils from 0 to 5 cm and 5 to 10 cm depths. On average, soil Pi concentrations exceeded Po concentrations threefold, primarily in the bioavailable Pi fractions (labile Pi, loosely bound Pi and non‐occluded Pi). Soil Po fractions and bioavailable Pi fractions were significantly greater under the >25 yrs field than in the <10 yrs field. The conversion of fields under vegetable production to forested buffer substantially decreased the levels of the bioavailable Pi and labile Po in the Gleysol after 8 yrs. Soil macro‐aggregates (>0.25 mm) had greater concentrations of bioavailable Pi fractions and of labile and moderately labile Po than did micro‐aggregates and silt and clay size components. Although more P was stored in recalcitrant P forms, a larger percentage of all P fractions was found in macro‐aggregates in these soils. Small active P‐enriched aggregates potentially intensify export of P from the vegetable soils by run‐off, and therefore, management practices must be optimized to enhance agricultural P efficiencies.  相似文献   

19.
20.
土壤矿物吸附和土壤团聚体对土壤有机碳含量的影响研究   总被引:2,自引:1,他引:2  
Soil organic carbon (SOC) can act as a sink or source of atmospheric carbon dioxide; therefore, it is important to understand the amount and composition of SOC in terrestrial ecosystems, the spatial variation in SOC, and the underlying mechanisms that stabilize SOC. In this study, density fractionation and acid hydrolysis were used to assess the spatial variation in SOC, the heavy fraction of organic carbon (HFOC), and the resistant organic carbon (ROC) in soils of the southern Hulunbeier region, northeastern China, and to identify the major factors that contribute to this variation. The results showed that as the contents of clay and silt particles (0--50 μm) increased, both methylene blue (MB) adsorption by soil minerals and microaggregate contents increased in the 0--20 and 20--40 cm soil layers (P < 0.05). Although varying with vegetation types, SOC, HFOC, and ROC contents increased significantly with the content of clay and silt particles, MB adsorption by soil minerals, and microaggregate content (P < 0.05), suggesting that soil texture, the MB adsorption by soil minerals and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulunbeier region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号