首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biological conservation》1986,37(3):201-223
Intensive mark-recapture studies have become standard in attempts to elucidate the conservation status of butterfly populations. In order to test the usefulness of this approach, such mark-recapture studies were conducted with two Euphydryas species: E. editha, a highly endangered resident of grasslands on serpentine soils, and E. chalcedona, a ubiquitous resident of widespread coastal chaparral. Detailed statistical analysis of the resulting data revealed few differences between the two species in most adult population parameters that have been measured in previous studies, despite the two species' disparate conservation status. This suggests that standard mark-recapture statistics alone are insufficient to reveal adult population features that distinguish species susceptible to extinction from those that are comparatively more secure. New approaches both to mark-recapture analysis and the study of endangered species in general are needed to generate more useful information concerning the conservation status of invertebrate populations.  相似文献   

2.
Plant species effects on microbial communities are attributed to changes in microbial community composition and biomass, and may depend on plant species specific differences in the quality of resources (carbon) inputs. We examined the idea that plant-soil feedbacks can be explained by a chance effect, which is the probability of a highly productive or keystone plant species is present in the community and will influence the functions more than the number of species per se. A 13C pulse labelling technique was applied to three plant species and a species mixture in a greenhouse experiment to examine the carbon flow from plants to soil microbial communities. The 13C label was given as CO2 to shoots of a legume (Lotus corniculatus), a forb (Plantago lanceolata), a grass (Holcus lanatus) and a mixture of the three species. Microbial phospholipid fatty acids (PLFA) was analysed in order to determine the biomass and composition of the soil microbial community. The incorporation of the stable isotope into soil microorganisms was determined through GC-IRMS analyses of the microbial PLFAs. Plant species identity did not influence the microbial biomass when determined as total carbon of microbial phospholipid fatty acids. However, the labelled carbon showed that the grass monoculture (H. lanatus) and the plant mixture allocated more 13C into bacteria and actinomycete biomass than the other plant species. H. lanatus monocultures had also the highest amounts of 13C allocated to AM-fungi and saprophytic fungi. The carbon allocation from plants to soil microorganisms in a plant species mixture can thus be explained by the presence of a highly productive species that influence soil functions.  相似文献   

3.
Purpose

Phytoremediation is the most sustainable and economical strategy for reclamation of the salt-affected soils. In order to investigate the relationship between phytoremediation and rhizosphere acidification, two experiments (greenhouse and field) were conducted using two acacia species viz. Acacia ampliceps and Acacia nilotica.

Materials and methods

In greenhouse experiment, both the species were exposed to 100 and 200 mM NaCl concentrations in solution culture. The release of organic acids from plant roots was determined after 14 and 28 days of the salt treatment. Shoot and root ash alkalinity was determined after harvesting the plants. In field experiment, both the species were grown on a saline sodic soil for 2 years. After every 6 months, plant growth data were recorded and soil samples were collected from different soil depths for physicochemical analyses.

Results and discussion

The results of greenhouse study indicated higher rhizosphere acidification by A. ampliceps than A. nilotica in terms of release of citric acid, malic acid, and tartaric acid along with ash alkalinity. The comparison of both the species in the field indicated higher amelioration in the soil properties like pHs, ECe, SAR, bulk density, and infiltration rate by A. ampliceps than A. nilotica.

Conclusions

It is concluded from these studies that A. ampliceps is more suitable species than A. nilotica for the phytoremediation of the salt-affected soils due to its higher rhizosphere acidification potential.

  相似文献   

4.
We report the development of an oligonucleotide microarray for the simultaneous detection of six important cereal food plant species from the Poaceae based on the chloroplast trnL intron sequence. We used universal primers to amplify the trnL intron from wheat, rye, barley, oat, rice, and maize, followed by a cyclic labeling of oligonucleotides probes and subsequent hybridization to an oligonucleotide microarray. In single taxon analyses, positive signals were produced with a high signal-to-noise ratio. The assay also enabled the analysis of mixed samples. The results obtained for real food samples were in agreement with the ingredient labels, but positive results for grains not declared on the ingredients list were observed in three out of 10 samples, which indicates that the final products and/or the declared ingredients were probably botanically impure or contaminated. The combination of the sensitivity of a universal polymerase chain reaction with the specificity of the labeling reaction allows this protocol to be applied in routine analyses of food samples, as demonstrated by successful analysis of processed composite food products.  相似文献   

5.
In many ecological field contexts, accurately classifying closely related species based on phenotypic characteristics may be difficult. In such cases, definitive classification of species may require expensive genetic analysis of tissues or extensive quantitative measurements. If inexpensive phenotype-based species classifications are highly correlated with expensive but definitive classifications, however, then estimating the proportion of a target species in a mixed species complex using a two-phase ratio estimator may prove cost-efficient. In two-phase ratio estimation, a first-phase sample is randomly selected, and phenotype is used to classify all individuals in the sample. A smaller, second-phase sample is then randomly selected from the first-phase sample, and a definitive method is used to classify the individuals in this subsample. Net relative efficiency (i.e., cost-effectiveness) of the optimally allocated two-phase ratio estimator of a proportion depends on the relative costs of classification at the first and second phases, on the phenotypic classification accuracy for the target species (sensitivity) and nontarget species (specificity), and on the magnitude of the target species proportion. Results are presented that allow assessment of the circumstances in which this two-phase estimation approach can be recommended over an equal-cost single-phase approach based only on expensive but definitive classification. An illustrative application of these methods is provided using an example of two closely related, sympatric, anadromous salmonid species: steelhead (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki).  相似文献   

6.
The diversity of environmental mycobacteria was studied in water-logged acidic forest soil. Mycobacteria were assessed in upper and lower soil horizons and summer and winter seasons using T-RFLP and sequencing of 16S rRNA gene produced with Mycobacterium-specific primers. Mycobacteria diversity differed between both the two seasons and soil horizons. Cloning revealed the presence of mycobacteria belonging to three major clusters recognized within the genus, i.e. fast-growing, intermediate, and slow-growing species, with unprecedented abundance and diversity of the latter. Two novel clusters of sequences unrelated to the known mycobacteria were identified. This study raises the possibility that forest wetlands could serve as environmental reservoirs for an unexplored diversity of mycobacteria including those related to pathogenic species.  相似文献   

7.
《Applied soil ecology》2005,28(1):23-36
This study assessed the effect of mycorrhizal colonization by Glomus intraradices (Gi) and G. versiforme (Gv) on the bacterial community composition in the rhizosphere of canola, clover and two tomato genotypes (wild type (76R) and its mutant with reduced mycorrhizal colonization (rmc)). Additionally, the effect of light intensity on the rhizosphere bacterial community composition of the tomato genotypes was studied. The bacterial community composition was assessed by denaturing gradient gel electrophoresis (DGGE). In canola, which is considered to be a non-mycorrhizal species, inoculation with Gi increased the shoot dw compared to Gv and the non-mycorrhizal control plants and also induced changes in the bacterial community composition in the rhizosphere. These fungal effects were observed although less than 8% of the root length of canola was colonized. On the other hand, about 50% of the root length of clover was colonized and inoculation with Gv resulted in a higher shoot dw compared to Gi or the control plants but the rhizosphere bacterial community composition was not affected by inoculation. Plant growth, mycorrhizal colonization and bacterial community composition of the two tomato genotypes were affected by a complex interaction between tomato genotype, AM fungal species and light intensity. Low light intensity (photosynthetic photon flux 200–250 μmol m−2 s−1) increased the shoot–root ratio in both genotypes and reduced colonization in the wild type. The differences in bacterial community composition between the two genotypes were more pronounced at low than at high light intensity (550–650 μmol m−2 s−1).  相似文献   

8.
《Applied soil ecology》2003,22(1):29-37
An evaluation of the mycorrhizal status of desertification-threatened ecosystems has been recommended as a first step in rehabilitation/restoration approaches based on revegetation strategies using arbuscular mycorrhizal (AM) technology. Representative desertified semiarid areas were selected from southeast Spain where the vegetation is dominated by grasses, with Stipa tenacissima usually present, and with some patches of the shrubs Pistacia lentiscus, Rhamnus lycioides, Olea europaea subsp. sylvestris and Retama sphaerocarpa. The objective of this study was to evaluate the mycorrhizal potential in these soils, the contribution of the different species established to the mycorrhizal potential of the soils and to assess the main mycorrhizal propagules involved. There were more AM fungal propagules in the rhizospheres of all the shrub species studied compared with adjacent fallow soils, suggesting that AM propagules can be considered as a functional component of the resource islands developing around plant roots. R. sphaerocarpa and O. europaea had a higher capacity to enhance the development of mycorrhizal propagules in their rhizospheres than R. lycioides and P. lentiscus. Correlation analyses showed that the number of spores of the most representative AM fungal species, i.e. Glomus constrictum, and the total length of extraradical AM mycelium are the propagule sources which were best correlated with the mycorrhizal potential in terms of the number of “infective” AM propagules in the rhizosphere of the target plant species. The contribution of AM symbiosis to the potentiality of S. tenacissima as nurse plant was site dependent. Diversity of AM fungi present in the test area is rather low, indicating the high degree of degradation of the ecosystem. At most, only four AM fungal spore morphoecotypes were consistently detected in the rhizosphere of the target plant species.  相似文献   

9.
The phylogenetic relationship of cultivated apple and its closely related species is still not clear in the taxonomy of genus Malus. To try to find new evidence for the origin and evolution of the cultivated apple, random amplified polymorphic DNA (RAPD) markers of 14 taxa of Malus, among which a reference species (M. toringoides) and six presumably ancestral species of cultivated apple in the genus were investigated. The RAPD data obtained were used to construct both unrooted and rooted trees using TREECON software package. The result showed in our rooted tree that M. sieversii from the Xinjiang Autonomous Region of China is the species which is most closely related to the cultivated apple, M. domesticacv. `Golden Delicious'. The phylogenetic relationships among the species studied are discussed.  相似文献   

10.
菊花[Dendranthema morifolium(Ramat)Tzvel.]的自毒作用是菊花连作障碍发生机理研究的重要内容之一.本文研究了连作障碍比较明显的菊花栽培种"高压太子"不同部位(枯落物、叶、茎和根系)及根际土壤水浸液处理对盆栽同种菊花光合作用的影响,结果表明:不同部位和根际土壤水浸液处理对叶片叶绿素含量、净光合速率及气孔导度均表现出抑制趋势,而暗呼吸速率却受到促进,尤以地上部水浸液的抑制作用为显著.说明降低自身叶绿素含量、净光合速率及气孔导度,即抑制自身的光合作用,同时促进自身暗呼吸是菊花自毒作用的机制之一.  相似文献   

11.
12.
To investigate the effects of individual plant species on microbial community properties in soils of differing fertility, a microcosm experiment was carried out using plant species representative of the dominant flora in semi-fertile temperate grasslands of northern England. Soil microbial biomass and activity were found to be significantly greater in the more fertile, agriculturally improved soil than in the less productive unimproved meadow soil. Differences in microbial community structure were also evident between the two soils, with fungal abundance being greater in the unimproved soil type. Individual plant species effects significantly differed between the two soils. Holcus lanatus and Anthoxanthum odoratum stimulated microbial biomass in the improved soil type, but negatively affected this measure in the unimproved soil. In both soil types, herb species generally had negative effects on microbial biomass. Patterns for microbial activity were less consistent, but as with microbial biomass, A. odoratum and H. lanatus promoted respiration, whereas the herbs negatively affected this measure. All plant species grown in the improved soil increased the abundance of fatty acids synthesised by bacteria (bacterial phospholipid fatty acid analysis) relative to bare soil, but they negatively impacted on this group of fatty acids in unimproved soil. Similarly, the abundance of the fungal fatty acid 18:26 was increased by all plants in the more fertile improved soil only, albeit non-significantly. Our data indicate that effects of plant species on microbial properties differ markedly in soils of differing fertility, making general predictions about how individual plants impact on soil properties difficult to make.  相似文献   

13.
Peach tree replant disease, though reported on in the literature for more than two centuries, has yet to have its causes clearly defined. Decline in peach productivity has been attributed to toxic agents, insects, nutritional disturbances, spray residues, fungi and nematodes. Bacteria has also been indicated as a contributing factor.Peach replant disease was reproduced by using two successive cultures on the same soil. Bacterial communities were isolated and characterized from healthy and diseased peach trees. The potential role of cyanide production by rhizobacteria in the replant problem of peaches was studied. Culture-dependent (evaluation of the number of culturable bacteria, metabolic activities, Biolog® GN2) and independent (ribosomal intergenic spacer analysis, RISA) methods were used, in order to compare bacterial community structure and diversity in healthy and sick soils and to evaluate the possible role of cyanide.Bacterial densities were significantly increased in sick soils. Metabolic activities (Biolog® GN2) and genetic structure, observed through RISA, were also significantly modified in sick soils. Changes in the composition of individual microbial groups in the rhizosphere of peach trees excavated from healthy or sick soil indicated the involvement of rhizobacteria in the etiology of the replant sickness of peach soil. More than 60% of the strains isolated from healthy soils corresponded to Pseudomonas sp. and 58% of the isolates from sick soils were Bacillus sp. This study determined that Bacillus were able to produce in vitro HCN. It also appeared that in sick soil, there was a shift in the structure of bacterial communities with an increase noted in phytotoxic microorganisms capable of producing HCN compounds.  相似文献   

14.
《Soil biology & biochemistry》2012,44(12):2374-2383
Soil food webs respond to anthropogenic and natural environmental variables and gradients. We studied abundance, connectance (a measure of the trophic interactions within each channel), and diversity in three different channels of the soil food web, each comprised of a resource-consumer pair: the microbivore channel (microbes and their nematode grazers), the plant–herbivore channel (plants and plant-feeding nematodes), and the predator–prey channel (predatory nematodes and their nematode prey), and their associations with different gradients in a heterogeneous agricultural landscape that consisted of intensive row crop agriculture and grazed non-irrigated grasslands in central California. Samples were taken at three positions in relation to water channels: water’s edge, bench above waterway, and the adjacent arable or grazed field. Nematode communities, phospholipid fatty acid (PLFA) biomarkers, and soil properties (NH4+-N, NO3-N, total N, total C, pH, P, bulk density and soil texture) were measured, and riparian health ratings were scored. Environmental variables were obtained from publicly-available data sources (slope, elevation, available water capacity, erodability, hydraulic conductivity, exchangeable cation capacity, organic matter, clay and sand content and pH).The abundance and richness in most food web components were higher in grazed grasslands than in intensive agricultural fields. Consumers contributed less than their resources to the abundance and richness of the community in all channels. The association between richness and abundance for each component was strongest for the lowest trophic links (microbes, as inferred by PLFA) and weakest for the highest (predatory nematodes). The trophic interactions for the predator–prey and plant–herbivore channels were greater in the grassland than in the cropland. Fields for crops or grazing supported more interactions than the water’s edge in the plant–herbivore and microbivore channels. Connectance increased with the total richness of each community. Higher connectance within the microbivore and predator–prey soil food web channels were associated with soil NO3-N and elevation respectively, which served as surrogate indicators of high and low agricultural intensification.  相似文献   

15.
Soil food webs respond to anthropogenic and natural environmental variables and gradients. We studied abundance, connectance (a measure of the trophic interactions within each channel), and diversity in three different channels of the soil food web, each comprised of a resource-consumer pair: the microbivore channel (microbes and their nematode grazers), the plant–herbivore channel (plants and plant-feeding nematodes), and the predator–prey channel (predatory nematodes and their nematode prey), and their associations with different gradients in a heterogeneous agricultural landscape that consisted of intensive row crop agriculture and grazed non-irrigated grasslands in central California. Samples were taken at three positions in relation to water channels: water’s edge, bench above waterway, and the adjacent arable or grazed field. Nematode communities, phospholipid fatty acid (PLFA) biomarkers, and soil properties (NH4+-N, NO3-N, total N, total C, pH, P, bulk density and soil texture) were measured, and riparian health ratings were scored. Environmental variables were obtained from publicly-available data sources (slope, elevation, available water capacity, erodability, hydraulic conductivity, exchangeable cation capacity, organic matter, clay and sand content and pH).The abundance and richness in most food web components were higher in grazed grasslands than in intensive agricultural fields. Consumers contributed less than their resources to the abundance and richness of the community in all channels. The association between richness and abundance for each component was strongest for the lowest trophic links (microbes, as inferred by PLFA) and weakest for the highest (predatory nematodes). The trophic interactions for the predator–prey and plant–herbivore channels were greater in the grassland than in the cropland. Fields for crops or grazing supported more interactions than the water’s edge in the plant–herbivore and microbivore channels. Connectance increased with the total richness of each community. Higher connectance within the microbivore and predator–prey soil food web channels were associated with soil NO3-N and elevation respectively, which served as surrogate indicators of high and low agricultural intensification.  相似文献   

16.
We compared functional diversity in 6‐ to 150‐year‐old sites on two primary successional glacier forelands (Ödenwinkelkees and Rotmoosferner, Austria) and related these changes to properties of their habitat in the soil (pH, soil organic matter, mineral nitrogen, phosphorus). Comparisons were made with land undisturbed for 9500 years immediately outside the glacier foreland. The functional diversity of the soil microflora was assessed based on microbial processes (N mineralization, ammonium oxidation, arginine deaminase) as well as on the activities of soil enzymes (protease, urease, xylanase, phosphatase, arylsulphatase). On both chronosequences, functional diversity (Shannon diversity index and evenness) and enzyme activity increased up to an age of 50 years, while older soils appeared to have reached a temporary steady state. The values of microbial biomass and enzyme activity were generally smaller in the Ödenwinkel soils than in the Rotmoos sequence, indicating that primary input of carbon from plant growth was less. Functional diversity increased with increasing plant development and organic matter accumulation, explaining similarities in enzyme activity patterns in the sequences. The local climates might also have contributed to the magnitude of the changes. Our data suggest that microbial functional diversity reached stability within 50 years' succession.  相似文献   

17.
Capillary gas chromatography with flame ionization detection (GC-FID) was used to determine the cellular fatty acid (CFA) profiles of 134 Enterobacter sakazakii strains, and these were compared to the CFA profiles of other closely related Enterobacter and Citrobacter species. For GC-FID analysis, whole cell fatty acid methyl esters (FAMEs) from cells cultured on brain heart infusion (BHI) agar at 37 degrees C for 24 h were obtained by saponification, methylation, and extraction into hexane/methyl tert-butyl ether. A database for E. sakazakii was prepared using fatty acid profiles from the 134 strains. Major fatty acids of E. sakazakii strains evaluated in this study were straight-chain 12:0, 14:0, and 16:0, unsaturated 18:1 omega7c, and 17:0 omegacyclo 7-8. Principal component analysis (PCA) based on CFA profiles for E. sakazakii strains shows separation of E. sakazakii subgroups A and B. The CFA profiles for E. sakazakii and Enterobacter cloacae show that there are several fatty acids, 14:0, 17:0 omegacyclo 7-8, 18:1 omega7c, and summed 16:1 omega6c/16:1 omega7c, that differ significantly between these two species. A PCA model based on CFA profiles for E. sakazakii strains clearly shows separation of E. sakazakii from closely related Enterobacter and Citrobacter species. Analysis of FAMEs from E. sakazakii strains grown on BHI agar by a rapid GC-FID method can provide a sensitive procedure for the identification of this organism, and this analytical method provides a confirmatory procedure for the differentiation of E. sakazakii strains from closely related Enterobacter and Citrobacter species.  相似文献   

18.
19.
A total of 237 Plant Introduction in eleven Trifolium species were evaluated for resistance to Meloidogyne arenaria (Neal) Chitwood race 1, M. hapla Chitwood, M. incognita (Kofoid & White) Chitwood race 3, and M. javanica (Treub) Chitwood. Plants were infected with 1500 nematode eggs collected from 'Rutgers' tomato (Lycoperiscon esculentum Mill.) roots with 0.5% NaOCl. Ratings of galling severity and egg mass production were assigned to each plant 8 wk after inoculation. Host plant reaction was classified as immune, highly resistant, resistant, moderately resistant, intermediate, moderately susceptible, susceptible, and highly susceptible according to the resistance index . More than 95% of 171 white clover accessions were moderately to highly susceptible to all four nematodes species. The best white clover accessions were only moderately resistant to either M. arenaria (PI 291843 and PI 306286) or M. hapla (PI 100250 and PI 204930). Accessions with moderate resistance or resistance to root-knot nematodes were found among relatives of white clover, with T. ambiguum M. Bieb. exhibiting the greatest resistance level. Among the other Trifolium species evaluated, T. carolinianum Michx. PI 516273 was immune or highly resistant to all four nematode species while accessions of T. hirtum All. showed a wide range of reaction to root-knot nematodes. Identified germplasm of white clover relatives with resistance to root knot nematodes should be useful for the selection of parents in white clover breeding programs.  相似文献   

20.
Interactions between plants and microorganisms can significantly affect plant health and productivity as well as ecosystem functioning. Detailed knowledge of the tripartite relationships between plants, fungi, and bacteria, and their environment is still limited. In the present study, the soils adjacent to three plant species (Cruciata laevipes, Mentha piperita, Equisetum arvense) in the Ljubljana Marsh and the bulk, plant-free soil were analyzed for their bacterial community structure in June and October 2006. The terminal restriction fragment length polymorphism analysis indicated a different bacterial community structure in the rhizosphere and in bulk soil, however, with almost no seasonal changes between late spring and autumn samples and no apparent impact of the three plant species. In addition, root colonization of the three plant species by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was microscopically assessed monthly from May until October 2006. A presumably accidental correlation between monthly precipitation and the degree of arbuscule formation, with the latter lagging 1 month, was noted for M. piperita, the most heavily colonized of the three plant species. With all three plants, the phosphorus content in roots correlated positively with most AMF structures. Microsclerotia of DSE were mainly abundant in autumn samples. Fungal diversity in roots was estimated using temporal temperature gradient gel electrophoresis separation of the fungal polymerase chain reaction products obtained for both 18S-rDNA and the 5.8S-ITS2-28S rDNA segments. No specific effects of either plant species or seasonal changes on mycorrhizal community structure were discernible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号