首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
施肥模式对茶叶产量、营养累积及土壤肥力的影响   总被引:12,自引:0,他引:12  
施肥是提高茶叶产量、品质、土壤质量及促进茶园可持续利用最重要的农业措施之一。为了筛选出合理的茶树施肥模式,采用连续4周年的田间定位试验方法,研究了6种不同施肥模式(不施肥、茶树配方化肥、1/2茶树配方化肥+1/2有机肥、有机肥、茶树配方化肥+豆科绿肥、1/2茶树配方化肥+1/2有机肥+豆科绿肥)对茶叶产量,茶叶中氮、磷、钾、茶多酚和水浸出物的累积量及茶园土壤肥力状况的影响。结果表明:与对照(不施肥)模式相比,其他几种不同施肥模式均在一定程度上增加了茶叶产量,促进了茶叶营养物质的累积,并提高了茶园土壤的基本肥力状况;其中,1/2茶树配方化肥+1/2有机肥+豆科绿肥的试验效果最佳,其3年茶叶总产量最高,为5 929 kg.hm?2,比对照提高106.17%;茶叶氮、磷和钾累积量最高,分别为4.962 kg.hm?2、0.48 kg.hm?2和5.966 kg.hm?2,比对照分别提高88.6%、57.41%和98.87%;茶叶茶多酚和水浸出物累积量最高,分别为23.39 kg.hm?2和119.41 kg.hm?2,比对照分别提高73.29%和85.56%;并比对照分别提高茶园土壤有机质1.29倍、全氮1.7倍、全磷2.98倍、速效氮1.59倍、速效磷34.3倍和速效钾3.3倍。1/2茶树配方化肥+1/2有机肥+豆科绿肥施肥模式值得在茶园施肥上进一步推广应用。  相似文献   

2.

Purpose

Occlusion of carbon (C) within phytoliths, biogenic silica deposited in plant tissues and returned to the soil, is an important mechanism for long-term terrestrial biogeochemical C sequestration and might play a significant role in mitigating climate change.

Materials and methods

Subtropical and tropical soil profiles (to 100 cm depth) developed on granite and basalt were sampled using a mass-balance approach to explore the influence of climate and lithology on soil phytolith-occluded carbon (PhytOC) accumulation.

Results and discussion

Soil PhytOC storage in the subtropics was significantly greater than in the tropics, with the soil profiles developed on granite storing greater PhytOC than soils derived on basalt. Phytolith and PhytOC content decreased with depth in all soil profiles. Phytolith content showed a positive correlation with the soil bio-available silicon in the soil profiles developed on basalt, while a negative correlation was observed in soil profiles developed on granite.

Conclusions

Climate and lithology have a significant impact on soil PhytOC sequestration. The management of forests (e.g., afforestation and reforestation) and external silicon amendments (e.g., basalt powder amendment) in soils, especially those developed on granite, have the potential to enhance PhytOC accumulation in forest ecosystems.
  相似文献   

3.
连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响   总被引:13,自引:1,他引:13  
在长沙县百里茶廊连续进行5年的定位试验,研究施菜籽饼肥结合稻草覆盖对丘陵茶园土壤生态系统的影响。结果表明,施菜籽饼肥加稻草覆盖处理(TI)茶园土壤pH、有机质含量、全氮含量、有效磷含量均显著高于纯施化肥处理(T3),0~40cm土层土壤容重显著低于T3处理,0~60cm土层土壤水分含量、0~20cm土层蚯蚓数量和生物量、氨基化细菌、好气性自生固氮菌、嫌气性自生固氮菌、放线菌、真菌和细菌等微生物数量均显著高于T3处理。施菜籽饼肥结合稻草覆盖可显著改善丘陵茶园土壤生态功能,菜籽饼化肥配施结合稻草覆盖(T2)也一定程度改善了土壤生态系统,长期不施肥使茶园土壤养分贮存量全面下降。  相似文献   

4.
长期施肥对土黑碳积累的影响   总被引:1,自引:0,他引:1  
通过长期定位试验,探讨了20年不施肥(CK)、 单施化肥(NPK)、 秸秆和化肥配施(SNPK)、 常量有机肥和化肥配施(M1NPK)以及高量有机肥和化肥配施(M2NPK)5个施肥处理对土中黑碳含量及积累的影响。结果表明: 与CK处理相比,NKP处理对黑碳含量和积累没有明显影响; 有机肥和化肥配施(M1NPK、 M2NPK)对耕层(020 cm)土壤黑碳含量的影响较大,与CK处理相比,在土壤表层(05 cm),M1NPK、 M2NPK分别提高了黑碳含量的108%和134%, 510 cm土层中黑碳含量增幅最高,分别提高164%和176%,在整个土层,M1NPK、 M2NPK处理分别增加了1.51和1.55倍; 秸秆和化肥配施(SNPK)下表层黑碳含量也有所增加,但增加幅度相对施用有机肥来说明明显较小。施肥对黑碳含量的影响主要发生在土壤表层,深层土壤黑碳受施肥影响较小。  相似文献   

5.

Purpose

The purpose of this study was to better understand how both the content and flux of soil carbon respond to forest succession and anthropogenic management practices in forests in subtropical China.

Materials and methods

We assembled from the literature information on soil organic carbon (SOC) and soil respiration (Rs) covering the forest successional chronosequence from pioneer masson pine (Pinus massoniana) forest (MPF) to medium broadleaf and needleleaf mixed forest (BNMF) and the climax evergreen broadleaf forest (EBF), along with the two major forest plantation types found in subtropical China, Chinese fir (Cunninghamia lanceolata) forest (CFF) and Moso bamboo (Phyllostachys pubescens) forest (MBF).

Results and discussion

Both SOC and Rs increased along the forest successional gradient with the climax EBF having both the highest SOC content of 33.1?±?4.9 g C kg?1(mean?±?standard error) and the highest Rs rate of 46.8?±?3.0 t CO2?ha?1 year?1. It can be inferred that when EBF is converted to any of the other forest types, especially to MPF or CFF, both SOC content and Rs are likely to decline. Stand age did not significantly impact the SOC content or Rs rate in either types of plantation.

Conclusions

Forest succession generally increases SOC content and Rs, and the conversion of natural forests to plantations decreases SOC content and Rs in subtropical China.
  相似文献   

6.
Based on data from 10-year field experiments on residue/fertilizer management in the dryland farming region of northern China, Century model was used to simulate the site-specific ecosystem dynamics through adjustment of the model's parameters, and the applicability of the model to propose soil organic carbon (SOC) management temporally and spatially, in cases such as of tillage/residue/fertilization management options, was identified v/a scenario analysis.Results between simulations and actual measurements were in close agreement when appropriate applications of stover,manure and inorganic fertilizer were combined. Simulations of extreme C/N ratios with added organic materials tended to underestimate the measured effects. Scenarios of changed tillage methods, residue practices and fertilization options showed potential to maintain and enhance SOC in the long run, while increasing inorganic N slowed down the SOC turnover rate but did not create a net C sink without any organic C input. The Century model simulation showed a good relationship between annual C inputs to the soil and the rate of C sequestration in the top 20 cm layer and provided quantitative estimations of changes in parameters crucial for sustainable land use and management. Conservation tillage practices for sustainable land use should be integrated with residue management and appreciable organic and inorganic fertilizer application, adapted according to the local residue resource, soil fertility and production conditions. At least 50% residue return into the soil was needed annually for maintenance of SOC balance, and manure amendment was important for enhancement of SOC in small crop-livestock systems in which crop residue land application was limited.  相似文献   

7.

Background aim and scope  

Soil organic carbon (SOC) accumulation is strongly affected by soil erosion and deposition that differ at slope positions of a watershed. However, studies on the effects of topography on soil aggregation and SOC dynamics, especially after the implementation of vegetation restoration, are rare. Poorly understood mechanisms and a lack of quantification for the suite of ecological benefits brought by the impacts of topography after planting further obstructed our understanding of terrestrial ecosystem carbon (C) sequestration. The purposes of this study are to (1) quantify the impacts of vegetation restoration on size and stability of soil aggregates and the sequestration of C in soil and (2) to address the impacts of various slope locations on aggregates and SOC distribution.  相似文献   

8.
施肥措施对黄土旱塬区小麦产量和土壤有机碳积累的影响   总被引:5,自引:1,他引:5  
利用中国科学院长武农田生态试验站的长期田间试验(1984~2007年),研究了小麦产量,耕层有机碳变化,评价了土壤管理和气候因素对土壤有机碳(Soil organic C,SOC)变化的影响。研究涉及6个处理:休闲地(F)、不施肥(CK)、有机肥(M)、氮肥(N)、磷肥(NP)和氮、磷、有机肥(NPM)处理。结果表明,施肥可以显著提高作物产量和SOC积累,CK、M、N、NP、NPM处理平均产量依次为1.5、2.6、2.0、3.3、4.0 t/hm2,2007年F、CK、M、N、NP、NPM处理0—20 cm土层SOC积累量依次为-1.09、0.76、8.59、1.02、3.42和9.5 t/hm2。作物产量与SOC含量呈显著的正相关关系(r=0.80),有机碳输入量与SOC含量相关性更好(r=0.97),外源有机碳的输入也是提高SOC的重要措施。施肥措施对作物固碳和SOC影响存在显著(P0.05)差异。土壤固碳速率(Y)与SOC输入量(X)符合线性方程Y=0.231X﹣0.0813(r=0.98)。施肥可以提高黄土高原半干旱地区土壤生产力和SOC的积累,且无机肥和有机肥配施效果最佳。  相似文献   

9.
Soil carbohydrates constitute an important component of soil organic matter (SOM), and substantially contribute to the stabilization of soil aggregates. Here, we aimed to investigate the distribution of water-stable aggregates and carbohydrates within water-stable aggregates of soil in tea plantations located in Zhongfeng Township of Mingshan County, Sichuan, which is in southwest China. Samples were collected from tea plantations of different ages (18, 25, 33, and 55 years old) and an area of abandoned land was used as a control(CK). We also examined correlations between soil carbohydrates fractions and aggregate stability. The results showed that the mean weight diameter (MWD) of soil aggregates in the tea plantations was significantly higher than that the control. Furthermore, the soil aggregate stability was significantly enhanced in tea plantations, with the 25-year-old plantation showing the most pronounced effect. Soils in the plantations were also characterized by higher concentrated acid-extracted carbohydrate content, and carbohydrate content in both surface and sub-surface layers were higher in the 25-year-old plantation. We also detected a significant positive correlation between the carbohydrate content of soil and MWD after tea plantation (P < 0.01). Notably, the association between dilute-acid extracted carbohydrate and the aggregate stability showed the highest correlation, indicating this carbohydrate fraction could be used as an index to reflect changes in soil quality during tea plantation development. We should develop a potential fertilisation programme to maintain SOM- Carbohydrates within aggregates and the appropriate pH for preventing soil structure degradation after 25 years of tea planting.  相似文献   

10.
土壤易氧化有机碳(ROC)作为土壤有机碳的重要组成部分,与土壤养分供应密切相关,在提升土壤肥力方面有着重要意义。施肥是影响土壤易氧化有机碳的重要措施之一,探讨不同土壤性质和气候条件下施肥对ROC变化的影响,为农田合理施肥和培肥地力提供理论依据。收集了2000—2022年公开发表的文献78篇,建立了378组包含不同施肥条件下表层土壤ROC含量的数据库。采用整合分析和随机森林方法分析全国农田土壤ROC的提升幅度在不同施肥措施之间的差异,定量分析不同肥料施用量,土壤性质和气候条件等因素对ROC提升的相对贡献。结果表明:(1)施肥能显著提高ROC的含量,且施用有机肥(单施或配施)对ROC的提升幅度(70.1%)是施用化肥(17.7%)的4.1倍。随着有机肥施用量的增加,ROC的提升幅度也在逐渐提高。(2)在不同土壤养分含量下,施肥均能显著增加ROC含量,但在养分较低的土壤中ROC的提升幅度显著高于养分较高的土壤;中性土壤施用化肥后对ROC的提升幅度(34.8%)显著高于酸性土壤(16.6%)和碱性土壤(10.4%),但施用有机肥对ROC的提升幅度在不同pH下的土壤中无显著差异。(3)不同气候条件下,施肥对ROC的提升幅度存在显著差异,寒冷干旱地区施用有机肥对ROC的提升幅度显著高于温暖湿润地区。(4)不同施肥条件下(施用化肥和有机肥)均是土壤性质对ROC的提升幅度起决定性作用。因此,建议在我国构建以有机肥为核心的肥料施用体系,因地制宜地选择有机肥配施化肥的施用量,从而改善土壤性质,以最大的程度提高ROC含量,提升土壤肥力。  相似文献   

11.
Soil respiration in forest plantations can be greatly affected by management practices. Irrigation is necessary for high productivity of poplar plantations in semi-arid northwest China. Moreover, plowing is essential for improving soil quality and reducing evaporation. In the present study, the influences of irrigation and plowing on soil carbon dioxide (CO2) efflux were investigated in poplar plantations in 2007 and 2008. The experiments included three stand age classes receiving three treatments: control, irrigation, and plowing. Mean soil respiration in irrigation treatment stands was 5.47, 4.86, and 4.43?µmol?m?2?s?1 in 3-, 8-, and 15-year-old stands, respectively, during the growing season. In contrast, mean soil respiration in control stands was 3.71, 3.83, and 3.98?µmol?m?2?s?1 in 3-, 8-, and 15-year-old stands, respectively. During the entire observation period, mean soil respiration in plowing treatment stands increased by 36.2% compared with that in the control stands. Mean soil respiration in irrigation treatment stands was significantly higher than that in the control stands; this was mainly because fine root growth and decomposer activities were greatly depressed by soil drought, since natural precipitation could not meet their water demands. The results also suggest that plowing management can greatly increase soil CO2 emission by modifying soil structure. After plowing, soil bulk density decreased and soil aeration was greatly improved, leading to greater rates of oxidation and mineralization.  相似文献   

12.
Four major tea management practices (organic, pollution‐free, conventional, and semi‐natural) are employed in Chinese tea plantations at present. These practices can induce changes in the physiochemical parameters, microorganism community and enzyme activity in tea plantation soil. However, understanding of their effects on soil nematodes is still scarce. This study aimed to investigate whether and how different management practices affect the biodiversity, function, and structure of soil nematode communities in tea plantation habitats. The soil nematode community structures and ecological indices were determined from the soil samples collected more than 6 y after their respective farming practices were first applied, and different management practices did not greatly affect soil nematode community evenness or species diversity, but organic practice increased nematode trophic diversity, common species diversity, and species richness. Pollution‐free practice considerably increased fungivorous nematodes, and both pollution‐free and conventional practice decreased bacterivorous nematodes markedly in the subsurface layers of soil. Predator and omnivorous nematodes were found to be more abundant in semi‐natural plantation. Organic practice was more sustainable and suitable for tea cultivation, with the greatest biodiversity, best nutrient conditions, higher and more stable C/N ratio and lower interference in the food web.  相似文献   

13.

Purpose  

Soil carbon (C) and nutrient pools under different plantation weed control and fertilizer management treatments were assessed in a 7-year-old, F1 hybrid (Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis) plantation in southeast Queensland, Australia. This research aimed to investigate how early establishment silvicultural treatments would affect weed biomass, soil C, nitrogen (N) and other nutrient pools; and soil C (δ13C) and N isotope composition (δ15N) to help explain the key soil processes regulating the soil C and nutrient pools and dynamics.  相似文献   

14.
Soil organic carbon (SOC) in eroded soil can be redistributed from upper slope positions and deposited and sequestered in depressional areas. However, the SOC lost from soil erosion is normally not considered when soil carbon budgets are derived and this could result in an overestimation of SOC loss from the agricultural areas. The impact of soil redistribution on the SOC budget of a sloping landscape in the Black soil region in Northeast China was studied using the presence of the 137Cs tracer which has been deposited since 1954 and the fly‐ash tracer, which was deposited in 1903. Five landscape positions (summit, shoulder‐, back‐, foot‐ and toe‐slope) were selected and included in this study. The depths of 137Cs and fly ash and the SOC content of the deposition layers were used to calculate the change in C content of the soil in the various landscape positions over the last century. We found that the most severe soil erosion occurred in soils in the shoulder‐slope position followed by the back‐slope and the summit positions. Soil deposition occurred in the toe‐slope position followed by the foot‐slope position. A total of 683 kg C was eroded from the summit, shoulder‐ and back‐slopes (in a 1 m wide strip) over the past 100 years and 418 kg C (about 61·2 per cent) was deposited in the low‐lying areas (foot‐ and toe‐slopes). Over half (61·5 per cent) of the deposition (257 kg SOC) occurred over the past 50 years. Most of the previously reported loss of C from the upper slope positions in the Black soils was in fact sequestered in the deposition areas in the landscape. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

In this paper, the spatial-temporal dynamics of soil moisture content was investigated in an evergreen broad-leaved forest and a tea tree plantation in Ailao Mountains, which was dominated by Fagaceae (Castanopsis wattii and Lithocarpus xylocarpus). Soil moisture content was studied between January 2005 and December 2006 at different depths (from 0–150 cm) with a neutron probe. The results showed that mean soil moisture content in the evergreen broad-leaved forest was usually higher than in the tea tree plantation in the dry season, whereas it was lower than the tea tree plantation in the rainy season. In addition, mean soil moisture content was depth dependent, and in the 10–50 cm layer the spatial variability was due to the active root zone within this depth area in two types of land use. From 50–150 cm, the spatial variability was slightly increasing in the evergreen broad-leaved forest or relatively stable in the tea tree plantation. Our study also showed that soil moisture content was higher and more stable under the evergreen broad-leaved forest than the tea tree plantation, hence we stress that evergreen broad-leaved forest plays an important role in holding soil moisture. It is suggested that the protection of evergreen broad-leaved forest should be strengthened.  相似文献   

16.
施肥模式对茶叶品质、产量构成及土壤肥力的影响   总被引:5,自引:0,他引:5  
采用田间试验,比较分析了撒施、沟施和沟施覆膜3种施肥模式及沟施覆膜下氮肥施用量对茶叶品质成分、产量构成因子和茶园土壤肥力状况的影响。结果表明:沟施覆膜在一定程度上增加了茶叶产量并改善了品质,提高了茶园土壤的基本肥力状况,沟施次之,撒施效果最差。与沟施相比,沟施覆膜下茶叶的水浸出物、咖啡碱、游离氨基酸含量分别提升2.24%、7.26%、14.68%,茶多酚下降1.88%,芽叶密度、芽叶长度分别提升8.50%、8.15%;土壤表层和深层pH分别下降8.16%和5.30%,表层有机质、全氮、速效氮、速效磷、速效钾分别提升10.87%、26.74%、17.95%、34.69%、25.42%,深层有机质、全氮、速效氮、速效磷、速效钾分别提升10.38%、28.22%、25.64%、15.34%、17.97%。比较沟施覆膜下45 kg·hm-2、60 kg·hm-2、75 kg·hm-2、90 kg·hm-2 4种施氮量对茶叶品质、产量构成以及土壤肥力提高的效果,结果表明随着施氮量的增加,茶叶品质及产量构成和茶园土壤肥力增加,但施氮75 kg·hm-2与90 kg·hm-2处理的茶叶品质及产量构成因子间差异不显著,说明沟施覆膜条件下施氮肥75 kg·hm-2即可满足茶园生产需求。  相似文献   

17.
施肥对黑土土壤微生物生物量碳的作用研究   总被引:18,自引:0,他引:18  
长期施肥对黑土耕地表层土壤微生物生物量碳 (MBC)的作用研究结果表明 ,NPK化肥配施可保持休闲地土壤微生物生物量碳含量至 1.6g/kg水平 ;高量有机肥与无机肥配施可比休闲地土壤微生物生物量碳含量提高 1.96~ 2 .75倍 ;长期耕种与施肥对土壤微生物生物量碳含量产生衰减影响 ;各处理土壤微生物生物量碳含量增加依次为M2 NPK( 14 1.2 5 % ,1990年始处理 ) >M4 NPK( 12 6 .88% ) >M2 NPK( 10 1.2 5 % ,1980年始处理 ) >M4 CK( 80 .6 3% ) >(M1 NPK)× 1.5 ( 13.13% ) >NPK( 8.12 % ) ,各处理土壤微生物生物量碳含量减少依次为M0 NPK(- 3.75 % ) >M1 NPK(- 17.5 0 % ) >M2 CK(- 30 .6 3% ) >CK(- 4 7.5 0 % ) >M0 CK(- 6 1.88% )。  相似文献   

18.
长期施肥对土壤有机碳和无机碳的影响   总被引:14,自引:2,他引:14  
利用18年长期定位试验,研究了在不同施肥条件下,土壤有机碳和无机碳在0~50 cm土层分布特征。结果表明,施肥对土壤有机碳的影响随着土层深度的增加而下降,0~7.5 cm土层的土壤有机碳比7.5~15 cm、15~30 cm、30~50 cm分别增加了4.6%、22.0%、63.1%,而无机碳含量随着土层深度的增加而增加,与有机碳的变化规律正好相反。不同种类的肥料对土壤有机碳的影响也不相同,化肥、有机肥长期配合施用和长期施用有机肥可以在0~30 cm土层增加土壤有机碳含量,降低土壤中的无机碳含量,而长期单施化肥对土壤的有机碳和无机碳含量无明显差异。  相似文献   

19.
长期施肥对褐潮土磷素积累、形态转化及其有效性的影响   总被引:1,自引:0,他引:1  
系统研究了14年定位试验不同施肥处理对褐潮土磷素积累、形态转化及其有效性的影响,结果表明:长期不施磷肥土壤的全磷、速效磷、无机磷总量以及各组分含量较长期休闲处理均明显降低;施用磷肥的处理则相应提高。施肥对Ca2 P含量的影响最大,减少幅度最高为94 7%,几乎耗竭;施磷增加幅度最高可达34倍。其次是Ca8 P和Al P。有机肥配施磷肥更有利于土壤中积累磷素的有效性转化,转变成的Ca2 P为34 5%,明显高于单施磷肥所形成的23 1%,转变成的Ca10 P和O P(闭蓄态P)仅为7%和1 6%,明显低于单施磷肥所形成的11 4%和2 6%。  相似文献   

20.
长期施肥对红壤不同有机碳库及其周转速率的影响   总被引:8,自引:1,他引:8  
通过土壤有机质物理分组和室内培养的方法,研究了长期定位施肥对红壤不同有机碳库及其周转速率的影响。结果表明:平衡施肥(NPK、2NPK)和施用有机肥(OM、NPKOM)显著提高玉米产量,降低产量年际变异系数,同时也显著提高了土壤有机碳(SOC)和活性有机碳(LOC)的含量。根据有机碳物理分组方法,将SOC分成五部分,其中,与矿物结合的有机碳占绝对优势,微团聚体中的粉黏粒(s+c_mM)和大团聚体中的粉黏粒(s+c_M)分别占SOC的31%~53%和28%~38%,其次为微团聚体间的细颗粒有机质(fPOM)和微团聚体中的细颗粒有机质(iPOM_mM),分别占8%~15%和7%~21%,粗颗粒有机质(cPOM)仅占5%~12%。施有机肥(OM、NPKOM)显著提高了颗粒有机碳组分,包括cPOM、fPOM和iPOM_mM组分碳的数量,但是对矿物结合态碳(s+c_M、s+c_mM)影响不明显。施无机肥对有机碳库组成(除s+c_mM外)影响不显著。在有机肥处理中(OM、NPKOM)土壤有机碳周转速率最快,相应的半衰期最短,是CK处理的0.47倍~0.70倍,是无机肥处理的0.11倍~0.95倍。原土有机碳周转时间与LOC/SOC呈显著正相关(r=0.66*)。研究表明平衡施肥和有机肥能提高土壤地力,同时还有利于土壤有机碳的积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号