首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

Alpine meadow soils are large carbon (C) and nitrogen (N) pools correlated significantly with global C and N cycling. Soil N transformations, including nitrification and N mineralization, are key processes controlling N availability. Alpine meadow degradations are common worldwide, and vegetation restorations have been widely implemented. However, grass species used for restorations may alter soil N transformations or their response to warming and N deposition due to divergent plant traits and their different effects on soil characteristic. To understand the effects of meadow restorations by non-historically dominant species on N transformations, we measured N transformation rates in restored soils and control soils under the context of warming and N deposition.

Materials and methods

We collected soils from plots restored by dominant (Miscanthus floridulus) and non-dominant species (including Carex chinensis and Fimbristylis dichotoma) and non-restored plots in alpine meadows of Wugong Mountain, China. We measured nitrification and N mineralization rates when soils were incubated at different temperature (15 or 25 °C) and N additions (control vs. 4 g m?2) to examine their responses to restoration species, warming, and N.

Results and discussion

Vegetation restored soils differed substantially from non-restored bare soils. Total N, total organic C, pH, and dissolved organic C contributed the most to the separation. Restoration altered soil N transformations substantially, even though the effects varied among restoration species. Specifically, non-historically dominant species accelerated N transformations, while the originally dominant species decreased N transformations. In addition, sensitivity of nitrification to warming in restored soils was decreased by restorations. Soils restored by originally dominant species were higher in sensitivity of N transformations to warming than those restored by the other two species. Warming increased nitrification rates by 45.5 and 17.4 % in bare soils and restored soils, respectively. Meanwhile, N mineralization rates were increased by 52.8 and 21.9 %, respectively.

Conclusions

Vegetation restoration of the degraded meadows impacted N transformations and their sensitivity to warming. The effects varied with identity of the restoration species, suggesting that grass species should be considered in future restorations of degraded meadows in terms of their divergent effects on N transformations and sensitivity to warming.
  相似文献   

2.

Purpose

Soil water retention plays a crucial role in regulating soil moisture dynamics, water circulation, plant growth, contaminant transport, and permafrost stability, and it is an issue of concern in water-limited ecosystems. However, our understanding of the relationship between plant roots and soil water retention is still relatively poor in the alpine grasslands of permafrost regions. To addresses this, our study evaluated the effect of plants on the soil water retention in permafrost regions of the Qinghai-Tibet Plateau.

Materials and methods

Three alpine grassland sites were identified and characterized as alpine wet meadow (AWM), alpine meadow (AM), and alpine steppe (AS). Root biomass, soil water retention, and soil physico-chemical properties were examined in the top 0–50 cm of active layer in the three experimental sites in the hinterland of the Qinghai-Tibet Plateau (QTP). Pedotransfer functions (PTFs) and Retention Curve program (RETC) were employed to illustrate how the plant roots affect soil water retention.

Results and discussion

Approximately 80, 65, and 60% of root biomass was distributed in the top 0–20 cm in the AWM, AM, and AS soil, respectively. Soil water retention was enhanced with the presence of plant roots; thereinto, the highest values of field capacity were found in AWM soil: on average, about 0.45 cm3 cm?3. Field capacity of AWM soil was almost twice as high as that of AM soil, and triple higher than that of AS soil. Correlation and regression analysis showed that root-induced changes to soil water retention were caused by altering the soil organic matter and soil structure. In addition, we evaluated the Retention Curve (RETC) program’s performance and found that the program underestimated soil water retention if the effects of plant roots were not considered.

Conclusions

A lack of alpine plants is associated with a decline in soil physical conditions and soil water retention in permafrost regions, and the function of plant roots should be considered when predicting hydrological processes.
  相似文献   

3.

Purpose

Changes in bioactive soil C pools and their temperature sensitivities will dominate the fate of soil organic C in a warmer future, which is not well understood in highland ecosystems. This study was conducted in order to evaluate climate change, especially cooling effects, on soil labile organic C (LOC) pools in a Tibetan alpine meadow.

Materials and methods

A short-term reciprocal translocation experiment was implemented to stimulate climate warming (downward translocation) and cooling (upward translocation) using an elevation gradient on the Tibetan Plateau. Variations in soil microbial biomass C (MBC), dissolved organic C (DOC) and LOC were analyzed.

Results and discussion

Over the range of soil temperature from 0.02 to 5.5 °C, warming averagely increased soil MBC, DOC and LOC by 15.3, 17.0 and 3.7 % while cooling decreased them by 11.0, 11.9 and 3.2 %, respectively. Moreover, warming generally increased the proportion of DOC in LOC but cooling had an opposite effect, while the response of the MBC proportion to DOC and LOC varied depending on vegetation type. Soil MBC, DOC and LOC pools were positively related to soil temperature and showed a hump-shaped relationship with soil moisture with a threshold of about 30–35 %. Although soil DOC was more sensitive to warming (5.1 % °C?1) than to cooling (3.0 % °C?1), soil LOC showed a symmetrical response due to regulation by soil moisture.

Conclusions

Our results indicated that climate change would not only change the size of soil LOC pools but also their quality. Therefore, cooling effects and regulation of soil moisture should be considered to evaluate the fate of soil organic C in Tibetan alpine meadows in a warmer future.
  相似文献   

4.

Purpose

A better understanding of the role of grassland systems in producing and storing phytolith-occluded carbon (PhytOC) will provide crucial information in addressing global climate change caused by a rapid increase in the atmospheric CO2 concentration.

Materials and methods

Soil samples of typical steppe, meadow steppe, and meadow in Inner Mongolia, China, were taken at 0–10-, 10–20-, 20–40-, and 40–60-cm depths in July and August of 2015. The soil phytoliths were isolated by heavy liquid (ZnBr2), and the soil PhytOC was determined by the traditional potassium dichromate method.

Results and discussion

The results of our study showed that the storage of soil phytoliths was significantly higher in the meadow (33.44 ± 0.91 t ha?1) cf. meadow steppe (26.8 ± 0.98 t ha?1) and typical steppe (21.19 ± 4.91 t ha?1), which were not different. The soil PhytOC storage was significantly different among grassland types, being: meadow (0.39 ± 0.01 t ha?1) > meadow steppe (0.29 ± 0.02 t ha?1) > typical steppe (0.23 ± 0.02 t ha?1). PhytOC storage in typical steppe soil within the 0–60-cm soil layer is the lowest and that in meadow soils is the highest. The grassland type and the soil condition play significant roles in accumulation of phytoliths and PhytOC in different grassland soils. We suggest that the aboveground net primary productivity (ANPP) is important in soil phytolith accumulation and PhytOC content.

Conclusions

Phytolith and PhytOC storages in grassland soil are influenced by factors such as grass type, local climate and soil conditions, and management practices. Management practices to increase grass biomass production can significantly enhance phytolith C sequestration.
  相似文献   

5.

Purpose

Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete.

Materials and methods

Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0–10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 °C for 168 h with 80 % field water capacity).

Results and discussion

The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3 ?, NH4 +, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest.

Conclusions

These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.
  相似文献   

6.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

7.

Purpose

The alpine meadow has received mounting attention due to its degradation resulting from overgrazing on the Tibetan Plateau. However, belowground biotic characteristics under varied grazing stresses in this ecosystem are poorly understood.

Materials and methods

Here, the responses of soil protozoan abundance, community composition, microbial biomass, and enzyme activity to five grazing patterns including (1) artificial grassland without grazing (AG), (2) winter grazing (WG), (3) grazing for 7 months within a fence (GF), (4) continuous grazing for a whole year (CG), and (5) natural heavy grazing (HG) were investigated for two continuous years. Soil protozoan community composition was investigated using the most possible number (MPN) method, and soil microbial biomass and enzyme activity were analyzed using chloroform fumigation extraction and substrate utilization methods, respectively. Multivariate statistical analysis, the analysis of variance (ANOVA), multiple comparisons, and correlation analysis were together performed.

Results and discussion

The WG treatment had the highest abundance of total protozoa (2342–2524 cell g?1). Compared with AG treatment, HG treatment significantly reduced the abundance of soil total, flagellate and ciliate protozoa, and protease activities in 2012 and 2013. Significantly, lower soil microbial biomass nitrogen (MBN) was also observed in the HG (6.60 and 14.6 mg N kg?1) than those in other four treatments (22.3–82.9 mg N kg?1) both in 2012 and 2013, whereas significantly higher microbial biomass carbon (MBC) was observed in HG than that in AG treatment in 2012. Moreover, significantly positive correlations were detected between the abundance of soil protozoa and soil moisture, pH, organic C, total N, and MBN. Our results indicated that soil protozoa showed a negative response to increasing grazing intensities and therefore, suggesting that aboveground grazing practices also exerted strong impact on belowground protozoa, not only on soil microbial characteristics.

Conclusions

Soil protozoan community composition was apparently different between the HG treatment and other four grazing patterns and was potentially impacted by altered soil properties and MBC and/or MBN. Our results suggested that moderate grazing may sustain better belowground biotic diversity and ecosystem functioning in this alpine meadow on the Tibetan Plateau.
  相似文献   

8.

Purpose

Ecosystem restorations can impact carbon dioxide (CO2) and nitrous oxide (N2O) emissions which are important greenhouse gasses. Alpine meadows are degraded worldwide, but restorations are increasing. Because their soils represent large carbon (C) and nitrogen (N) pools, they may produce significant amounts of CO2 and N2O depending on the plant species used in restorations. In addition, warming and N deposition may impact soil CO2 and N2O emissions from restored meadows.

Materials and methods

We collected soils from degraded meadows and plots restored using three different plant species at Wugong Mountain (Jiangxi, China). We measured CO2 and N2O emissions when soils were incubated at different temperatures (15, 25 or 35 °C) and levels of N addition (control vs. 4 g m?2) to understand their responses to warming and N deposition.

Results and discussion

Dissolved organic C was higher in restored plots (especially with Fimbristylis dichotoma) compared to non-restored bare soils, and their soil inorganic N was lower. CO2 emission rates were increased by vegetation restorations, decreased by N deposition, and increased by warming. CO2 emission rates were similar for the three grass species at 15 and 25 °C, but they were lower with Miscanthus floridulus at 35 °C. Soils from F. dichotoma and Carex chinensis plots had higher N2O emissions than degraded or M. floridulus plots, especially at 25 °C.

Conclusions

These results show that the effects of restorations on soil greenhouse gas emissions depended on plant species. In addition, these differences varied with temperature suggesting that future climate should be considered when choosing plant species in restorations to predict soil CO2 and N2O emissions and global warming potential.
  相似文献   

9.

Purpose

Nitrification and denitrification processes dominate nitrous oxide (N2O) emission in grassland ecosystems, but their relative contribution as well as the abiotic factors are still not well understood.

Materials and methods

Two grassland soils from Duolun in Inner Mongolia, China, and Canterbury in New Zealand were used to quantitatively compare N2O production and the abundance of bacterial and archaeal amoA, denitrifying nirK and nirS genes in response to N additions (0 and 100 μg NH4 +–N g?1 dry soil) and two soil moisture levels (40 and 80 % water holding capacity) using microcosms.

Results and discussion

Soil moisture rather than N availability significantly increased the nitrification rate in the Duolun soil but not in the Canterbury soil. Moreover, N addition promoted denitrification enzyme activities in the Canterbury soil but not in the Duolun soil. The abundance of bacterial and archaeal amoA genes significantly increased as soil moisture increased in the Duolun soil, whereas in the Canterbury soil, only the abundance of bacterial amoA gene increased. The increase in N2O flux induced by N addition was significantly greater in the Duolun soil than in the Canterbury soil, suggesting that nitrification may have a dominant role in N2O emission for the Duolun soil, while denitrification for the Canterbury soil.

Conclusions

Microbial processes controlling N2O emission differed in grassland soils, thus providing important baseline data in terms of global change.
  相似文献   

10.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

11.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

12.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   

13.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

14.

Purpose

Soil temperature is a fundamental parameter affecting not only microbial activity but also manganese (MnIII,IV) and iron (FeIII) oxide reduction rates. The relationship between MnIII,IV oxide removal from oxide-coated redox bars is missing at present. This study investigated the effect of variable soil temperatures on oxide removal by MnIII,IV and FeIII oxide-coated redox bars in water-saturated soil columns in the laboratory.

Materials and methods

The Mn coatings contained the mineral birnessite, whereas the Fe coatings contained a mixture of ferrihydrite and goethite. Additionally, platinum (Pt) electrodes designed to measure the redox potential (EH) were installed in the soil columns, which were filled with either a humic topsoil with an organic carbon (Corg) content of 85 g kg?1 (pH 5.8) or a subsoil containing 2 g Corg kg?1 (pH 7.5). Experiments were performed at 5, 15, and 25 °C.

Results and discussion

Although elevated soil temperatures accelerated the decrease in EH after water saturation in the topsoil, no EH decreases regardless of soil temperature occurred in the subsoil. Besides soil temperature, the importance of soil organic matter as an electron donor is highlighted in this case. Complete removal of the MnIII,IV oxide coating was observed after 28, 14, and 7 days in the soil columns filled with topsoil at 5, 15, and 25 °C, respectively. Along the Fe redox bars, FeIII reducing conditions first appeared at 15 °C and oxide removal was enhanced at 25 °C because of lower EH, with the preferential dissolution of ferrihydrite over goethite as revealed by visual differences in the FeIII oxide coating. Oxide removal along redox bars followed the thermodynamics of the applied minerals in the order birnessite > ferrihydrite > goethite.

Conclusions

In line with Van’t Hoff’s rule, turnover rates of MnIII,IV and FeIII oxide reduction increased as a result of increased soil temperatures. Taking into account the stability lines of the designated minerals, EH-pH conditions were in accordance with oxide removal. Soil temperature must therefore be considered a master variable when evaluating the oxide removal of redox bars employed for the monitoring of soil redox status.
  相似文献   

15.

Purpose

Input of N as NH4 + is known to stimulate nitrification and to enhance the risk of N losses through NO3 ? leaching in humid subtropical soils. However, the mechanisms responsible for this stimulation effect have not been fully addressed.

Materials and methods

In this study, an acid subtropical forest soil amended with urea at rates of 0, 20, 50, 100 mg N kg?1 was pre-incubated at 25 °C and 60 % water-holding capacity (WHC) for 60 days. Gross N transformation rates were then measured using a 15N tracing methodology.

Results and discussion

Gross rates of mineralization and nitrification of NH4 +-N increased (P?<?0.05), while gross rate of NO3 ? immobilization significantly decreased with increasing N input rates (P?<?0.001). A significant relationship was established between the gross nitrification rate of NH4 + and the gross mineralization rate (R 2?=?0.991, P?<?0.01), so was between net nitrification rate of NH4 + and the net mineralization rate (R 2?=?0.973, P?<?0.05).

Conclusions

Stimulation effect of N input on the gross rate of nitrification of NH4 +-N in the acid soil, partially, resulted from stimulation effect of N input on organic N mineralization, which provides pH-favorable microsites for the nitrification of NH4 + in acid soils (De Boer et al., Soil Biol Biochem 20:845–850, 1988; Prosser, Advan Microb Physiol 30:125–181, 1989). The stimulated gross nitrification rate with the decreased gross NO3 ? immobilization rate under the elevated N inputs could lead to accumulation of NO3 ? and to enhance the risk of NO3 ? loss from humid forest soils.
  相似文献   

16.

Purpose

Straw residue has been widely applied in the North China Plain agroecosystems due to their positive roles in soil fertility improvement, sustainable production, and climate change mitigation. However, little is known about how straw application alters soil respiration by influencing soil biochemical properties in this region. This is the first study to evaluate the role of soil enzyme activity and glomalin content in the response of soil respiration to straw application at different growth stages in a wheat-maize rotation system.

Materials and methods

Field experiment was conducted in a wheat-maize rotation system and it contained two treatments: straw residue removal (CK) and straw residues application (SR). Soil respiration, moisture, and temperature were measured using LI-8100 at different growth stages during wheat and maize (2013–2015) growing seasons. From 2013 to 2014, soil sample (0–20 cm) was collected at different growth stages during wheat and maize growing seasons and transported to the laboratory. Glomalin content and soil enzyme activity were analyzed by using Bradford and enzyme-labeled meter method, respectively. In addition, we determined soil chemical properties such as soil organic carbon (SOC), soil total N content (TN), ammonium N (NH4 +-N), and nitrate N (NO3 ?-N) concentrations.

Results and discussion

SR significantly increased soil respiration and this promotion effect became more significant after 4-year straw application. Soil respiration exhibited significant seasonal variation and was significantly increased by soil temperature with Q 10 ranging from 1.73 to 2.14 for CK and from 1.51 to 2.28 for SR. Both soil temperature and moisture accounted for 70–72% of the seasonal variation in soil respiration. SR significantly increased easily extractable glomalin-related soil protein during 2013–2014 wheat growing season except jointing stage. In addition, positive and significant effect of SR on activities of β-glucosidase and cellobiohydrolase was observed at initial and vigorous growth stages. Straw application significantly increased TN, but did not significantly influence SOC, NH4 +-N, and NO3 ?-N concentrations.

Conclusions

Our study demonstrated that straw application increased soil respiration by stimulating soil enzyme activities and improving easily extractable glomalin-related soil protein. Straw application is recommended as an agricultural management in the North China Plain because of its role in improving biochemical properties. To improve soil biochemical parameters with a relative low soil respiration rate, further information is necessary about the optimum amount of straw application.
  相似文献   

17.

Purpose

Impacts of a commercially available decay-facilitating microbial inoculum on carbon (C) and nitrogen (N) mineralization were evaluated during decomposition of rice straw in a paddy soil.

Materials and methods

Two incubation experiments were conducted for 105 days with a typical low-yield high-clay soil in central China to monitor effects of straw and the inoculum on CO2 evolution, as well as dissolved organic C (DOC), NH4 +, NO3 ?, and pH under conditions of 15 °C 70 %, 25 °C 40 %, 25 °C 70 %, 25 °C 100 %, and 35 °C 70 % of water-holding capacity (WHC) with adequate N, supplied as urea or manure, respectively.

Results and discussion

Treatments of 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC generally achieved significant higher CO2 evolution while treatment of 25 °C 40 % WHC had least. This was more evident with added manure compared to urea (P?<?0.05). The inoculum generally increased the decomposition of C inputs and the largest increases were in the initial 28 day in treatments 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC; only the 25 °C 40 % WHC actually immobilized C. The CO2 release rates were positively correlated with DOC, but with different slopes within treatments. Despite equivalent N application rates, manure treatments had significantly less N (including NO3 ?, NH4 +, and total dissolved N) than those with urea. Incubation of 25 °C 40 % WHC decreased soil pH the least, probably due to relative low moisture causing delayed nitrification.

Conclusions

The results implied that the inoculum, especially fungi, would adjust to edaphic and N fertilization in regulating organic C mineralization, during which water potential would exhibit a great role in regulating substrate and nutrient availability.
  相似文献   

18.

Purpose

Fungi are essential components of soil microbial communities and have a crucial role in biogeochemical processes. Alpine regions are sensitive to climate change, and the importance of changes in fungal community composition along altitudinal gradients in alpine regions is hotly debated.

Materials and methods

We used 454 pyrosequencing approaches to investigate the fungal communities at 1600, 2300, 2800, 3000, and 3900 m above sea level along an altitudinal gradient on Mount Gongga.

Results and discussion

The results showed that Agaricomycetes, Sordariomycetes, and Tremellomycetes are the dominant classes at all sampling sites. Operational taxonomic unit richness decreased with increasing altitude, and the fungal communities were clustered into three groups that corresponded to altitudes of, i.e., 1600, 2300, and above 2800 m. The evenness of fungi was not significantly correlated with altitude, whereas beta diversities were significantly correlated with altitude. The distance-based redundancy analysis and Mantel test indicated that the composition of fungal assemblages was mostly driven by altitude and temperature.

Conclusions

Our results indicated that ecological processes possibly related to altitude and temperature play an important role in structuring fungal biodiversity along the elevational gradient. Our results highlight that different microbes may respond differently to environmental gradients.
  相似文献   

19.

Purpose

Organo-mineral biochar fertiliser has the potential to replace conventional biochar and organic fertiliser to improve soil quality and increase plant photosynthesis. This study explored mechanisms involved in nitrogen (N) cycling in both soil and ginger plants (Zingiber officinale: Zingiberaceae) following different treatments including organic fertiliser, commercial bamboo biochar fertiliser, and organo-mineral biochar fertiliser.

Materials and methods

Soil received four treatments including (1) commercial organic fertiliser (5 t ha?1) as the control, (2) commercial bamboo biochar fertiliser (5 t ha?1), (3) organo-mineral biochar fertiliser at a low rate (3 t ha?1), and (4) organo-mineral biochar fertiliser at a high rate (7.5 t ha?1). C and N fractions of soil and plant, and gas exchange measurements were analysed.

Results and discussion

Initially, organo-mineral biochar fertiliser applied at the low rate increased leaf N. Organo-mineral biochar fertiliser applied at the high rate significantly increased N use efficiency (NUE) of the aboveground biomass compared with other treatments and improved photosynthesis compared with the control. There was N fractionation during plant N uptake and assimilation since the 15N enrichment between the root, leaf, and stem were significantly different from zero; however, treatments did not affect this N fractionation.

Conclusions

Organo-mineral biochar fertiliser has agronomic advantages over inorganic and raw organic (manure-based) N fertiliser because it allows farmer to put high concentrations of nutrients into soil without restricting N availability, N uptake, and plant photosynthesis. We recommend applying the low rate of organo-mineral biochar fertiliser as a substitute for commercial organic fertiliser.
  相似文献   

20.

Purpose

The objective of the present study was to investigate the interactive effects of nitrogen (N) addition, temperature, and moisture on soil microbial respiration, microbial biomass, and metabolic quotient (qCO2) at different decomposition stages of different tree leaf litters.

Materials and methods

A laboratory incubation experiment with and without litter addition was conducted for 80 days at two temperatures (15 and 25 °C), two wetting intensities (35 and 50 % water-filled porosity space (WFPS)) and two doses of N addition (0 and 4.5 g N m?2, as NH4NO3). The tree leaf litters included three types of broadleaf litters, a needle litter, and a mixed litter of them. Soil microbial respiration, microbial biomass, and qCO2 along with other soil properties were measured at two decomposition stages of tree leaf litters.

Results and discussion

The increase in soil cumulative carbon dioxide (CO2) flux and microbial biomass during the incubation depended on types of tree leaf litters, N addition, and hydrothermal conditions. Soil microbial biomass carbon (C) and N and qCO2 were significantly greater in all litter-amended than in non-amended soils. However, the difference in the qCO2 became smaller during the late period of incubation, especially at 25 °C. The interactive effect of temperature with soil moisture and N addition was significant for affecting the cumulative litter-derived CO2-C flux at the early and late stages of litter decomposition. Furthermore, the interactive effect of soil moisture and N addition was significant for affecting the cumulative CO2 flux at the late stage of litter decomposition but not early in the experiment.

Conclusions

This present study indicated that the effects of addition of N and hydrothermal conditions on soil microbial respiration, qCO2, and concentrations of labile C and N depended on types of tree leaf litters and the development of litter decomposition. The results highlight the importance of N availability and hydrothermal conditions in interactively regulating soil microbial respiration and microbial C utilization during litter decomposition under forest ecosystems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号