首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
不同灌溉条件下冬小麦叶面积指数的高光谱监测   总被引:1,自引:1,他引:0  
LAI是作物长势监测的一个重要指标,实时、无损和准确地估测冬小麦LAI具有重要的实践意义。通过对冬小麦进行不同的灌溉处理试验,研究LAI与冠层光谱反射率的关系,计算350~2 450 nm不同波段组合的原始光谱指数和导数光谱指数,筛选最优波段组合光谱指数,并建立LAI的监测模型。结果表明,冬小麦LAI与冠层光谱反射率和不同波段组合光谱指数相关性较好;冬小麦LAI监测的最优光谱指数为DVI(435,447),以此为自变量建立的指数模型y=10.669e~(-701.9x)表现最优,模型最稳定。  相似文献   

2.
[目的]通过将原始光谱数据经过不同的数据变换方式,分析其与枣冠层LAI的相关关系,建立基于高光谱的阿克苏市枣冠层LAI的估测模型,为快速、精确、无损伤、大范围的适时、动态监测植被LAI提供有效途径.[方法]基于原始光谱数据的不同数据变换方式,采用相关性分析和逐步回归分析方法.[结果]不同数据变换后的冠层光谱反射率与枣LAI具有较好的相关性,微分变换后的相关性较原始相关性有所提升.所建模型经过精度评价发现,原始光谱数据经倒数一阶微分变换后估测模型拟合度和预测精度都最高,一阶微分、对数一阶微分、归一化一阶微分次之.[结论]不同数据变换方式后的光谱数据与塔里木盆地枣LAI有显著的相关性,可以用微分、对数微分、归一化微分、倒数微分变换后的数据建立较理想的塔里木盆地枣LAI的估测模型.  相似文献   

3.
花生红边特征及其叶面积指数的高光谱估算模型   总被引:2,自引:3,他引:2  
选用大花生品种丰花1号作为试验材料,设置5个氮素水平的小区试验。在不同发育期同步测定花生冠层的光谱反射率及其叶面积指数,利用花生冠层的光谱反射率数据提取红边参数,分析其变化规律及花生叶面积指数与红边参数的相关性。估算结果表明:花生冠层红边一阶微分光谱呈“双峰”现象,红边位置位于707~724 nm之间,在花生生长旺盛期间出现“红边平台”,结荚期以后有明显的“蓝移”现象;叶面积指数与冠层光谱红边参数之间在结荚期-饱果初期显著相关,但开花期相关性不显著,利用结荚期-饱果期的红边参数可以估算花生的叶面积指数,最后建立了结荚期-饱果期和整个生育期的花生叶面积指数的估算模型。  相似文献   

4.
叶面积指数(LAI)是表示植被利用光能状况和冠层结构的一个综合指数,与作物产量密切相关。高光谱遥感数据具有连续、高光谱分辨率等特点,为估算农作物生理生化参数和冠层结构参数提供了重要手段。为挖掘高光谱数据估算LAI的最优波段组合以及提高估算精度,以冬小麦作为研究对象,野外实测不同生长阶段(起身、拔节、开花阶段)的冠层高光谱数据,并对其进行不同数学变换处理,包括原始光谱、一阶导数光谱和连续统去除。利用3种不同预处理的冠层高光谱数据构建30种常用植被指数和4种优化光谱指数,比较常用植被指数与优化光谱指数对冬小麦LAI的响应,建立估算冬小麦LAI的单变量和多变量回归模型,对其进行精度验证,并筛选出最优估算模型。结果表明,随着生育期的推进,可见光波段范围内,冬小麦冠层光谱反射率较低、吸收较强,LAI对连续统去除光谱的影响较大,呈负相关;近红外波段范围内不同生育期间的差异较大,随着LAI的增大,冠层光谱的红边位置出现了“红移”现象;基于一阶导数的优化植被指数(NDSI和RSI)与LAI相关系数达到0.8;从估算模型来看,基于一阶导数的RSI(627 nm, 774 nm)单变...  相似文献   

5.
以冬小麦为研究对象,利用开顶式气室试验,开展以环境CO2浓度为对照(CK)和比CK处理的CO2浓度高200μmol·mol-1(T)处理的试验,测定冬小麦主要生育期冠层光谱反射率、叶面积指数(LAI)和SPAD值,分析LAI、SPAD值与原始光谱反射率、光谱特征参数的相关性,并探究最优回归反演模型.结果表明,高CO2浓...  相似文献   

6.
利用高光谱数据和叶面积指数对加工番茄产量估算的研究   总被引:1,自引:0,他引:1  
以ASD FieldSpec光谱仪实测了大田中不同生育期加工番茄的冠层高光谱、叶面积指数及作物的产量,采用单时相线性逐步回归和复合回归,建立了加工番茄光谱变量-叶面积指数与产量的复合光谱估产模型,并对模型的估算结果进行了初步分析.分析结果表明,在青熟期光谱参数与叶面积指数相关性最大,而其他时期的光谱变量与产量相关性均达到了显著水平:复合回归模型以4个生育期与产量的复合回归最为理想.  相似文献   

7.
孙晓  谭炳香 《广东农业科学》2012,39(14):189-193
高光谱遥感技术能够快捷、准确、无损坏地估测森林LAI,从而有效地监测森林长势,估测森林生物量,评价森林病虫害等。以黑龙江凉水自然保护区为例,利用高光谱遥感技术和GPS测量技术,结合地面实测LAI数据,采用从CASI图像提取的NDVI、SR、MSAVI 3种植被指数,与地面实测的LAI建立统计回归模型,然后再从众多的统计模型中根据相关系数,筛选出由CASI反演LAI的最佳植被指数和回归模型。  相似文献   

8.
冬小麦叶面积矫正系数及叶面积指数的研究   总被引:5,自引:0,他引:5  
以河北省目前生产上应用的四个冬小麦品种为对象,研究了冬小麦春生六叶片的叶面积矫正系数及群体叶面积指数的速测方法。结果表明:(1)r值与密度无关;(2)品种间r值无差异;(3)春生六片叶间r值差异显著,随着叶位升高r值变小,根据r值可将六片叶分为三组,  相似文献   

9.
基于随机森林算法的冬小麦叶面积指数遥感反演研究   总被引:9,自引:1,他引:9  
【目的】通过利用随机森林算法(random forest,RF)反演冬小麦叶面积指数(leaf area index, LAI),及时、准确地监测冬小麦长势状况,为作物田间管理和产量估测等提供科学依据。【方法】本研究依据冬小麦拔节期、挑旗期、开花期及灌浆期地面观测数据,将相关系数分析(correlation coefficient,r)和袋外数据(out-of-bag data,OOB)重要性分析与随机森林算法(random forest,RF)相结合,在优选光谱指数和确定最佳自变量个数的基础上,构建了两种冬小麦LAI反演模型|r|-RF和OOB-RF,并利用独立数据集对两种模型进行验证;然后,将所建LAI反演模型用于无人机高光谱影像,进一步检验所建模型对无人机低空遥感平台的适用性和可靠性。【结果】|r|-RF和OOB-RF反演模型分别采用相关性前5强、重要性前2强的光谱指数作为输入因子时精度最优,验证决定系数(R2)分别为0.805、0.899,均方根误差(RMSE)分别为0.431、0.307,表明这两个模型均能对作物LAI进行精确反演,其中OOB-RF模型的反演效果更好。利用无人机高光谱影像数据结合OOB-RF估算模型反演得到冬小麦LAI与地面实测值的拟合方程的决定系数R2为0.761,RMSE为0.320,数值范围(1.02-6.41)与地面实测(1.29-6.81)亦比较吻合。【结论】本文基于地面数据构建的OOB-RF模型不仅具有较高的反演精度,而且适用性强,可用于无人机高光谱遥感平台提取高精度的冬小麦LAI信息。  相似文献   

10.
【目的】 研究基于PROSAIL模型监测天然草地的动态变化,掌握草地的质量与数量。【方法】 研究使用地物光谱仪连续3年在天山北坡中段的2个山地草原样区采集光谱数据和配套数据,基于PROSAIL模型进行冠层LAI的高光谱反演,重点研究应用不同代价函数、植被种类变化对反演精度的影响。【结果】 多数代价函数反演LAI的决定系数(R2)在0.54~0.55,均方根误差(RMSE)在0.23~0.25,归一化均方根误差(NRMSE)在17~19。在9个来自不同统计类型的代价函数中,常用的RMSE代价函数的反演精度相对不高。将获取的427个样方数据依据种类数分成组,然后用PROSAIL进行LAI反演。种类数越多,RMSE在增大,R2在减少,反演精度越差。但精度的下降幅度不是均匀的,种类数≤2的组和种类数≤3的组之间精度差异最大。【结论】 在利用物理模型反演天然草地的叶面积指数时,不同代价函数获得的反演精度差别比较大;随着植被种类数量的增多,反演的精度是下降的。  相似文献   

11.
为探究冠层图像分析技术在冬小麦长势监测中应用,6个施氮水平的田间试验条件下,在冬小麦拔节期采集冠层图像,并同步测定冬小麦叶面积指数和叶片SPAD值.通过图像分析软件计算了冬小麦冠层覆盖度及红、绿、蓝亮度值等10种色彩指数,分析了叶面积指数及叶片SPAD值与色彩指数和冠层覆盖度的相关性,利用逐步回归方法构建了叶面积指数及叶片SPAD值的估算模型.结果表明:冬小麦拔节期叶面积指数与冠层覆盖度及几个色彩指数呈极显著相关;叶片SPAD值与红光标准化值等几个色彩指数呈极显著相关;利用叶面积指数估算模型计算的预测值与实测值的线性回归方程的决定系数为0.771,相对均方根误差为25.181%;利用叶片SPAD值估算模型计算的预测值与实测值的线性回归方程的决定系数为0.644,相对均方根误差为6.734%.相关分析和估算模型验证结果表明,基于冠层图像分析的冬小麦拔节期叶面积指数和叶片SPAD值的监测是可行的.  相似文献   

12.
基于高光谱遥感的冬小麦叶水势估算模型   总被引:2,自引:0,他引:2  
【目的】采用高光谱技术,建立快速、无损与准确获取冬小麦叶水势的估算模型,为小麦灌溉的精确管理提供科学依据。【方法】利用不同水分处理的大田试验,于小麦主要生育期同步测定冠层光谱反射率、叶水势、土壤水分等信息,并探讨高光谱植被指数与冬小麦叶水势之间的定量关系。通过相关性分析、回归分析等方法,基于不同水分处理,构建4种植被指数与冬小麦叶水势的估算模型。【结果】不同水分处理和不同生育期的冬小麦,其冠层光谱反射率具有显著的变化特征。在可见光波段,冬小麦冠层反射率随着水分含量的增加而逐渐降低,而在近红外波段,其冠层反射率则随着土壤水分含量的增加而升高。随着小麦生育期的推进,在近红外波段,抽穗期的冠层反射率比拔节期的高,在灌浆期之后,红波段(670 nm)、蓝波段(450 nm)的反射率上升加快;4种植被指数与叶水势显著相关(P0.05),相关系数|r|均在0.711以上,四者均可用于冬小麦叶片水势的定量监测。在充分供水条件下(70%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.75和0.771)均低于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.808和0.896),而在重度水分亏缺条件下(50%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.857和0.853)均高于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.711和0.792);所建模型对45个未知样的预测结果与实测值相似度较高,其回归模型R~2、验证模型MRE、RMSE的范围分别为0.616—0.922、-17.50%—-12.52%、0.102—0.133。在70%FC水分处理下,基于EVI2(enhanced vegetation index)所得叶水势估算模型的R~2最高,为0.922,而在60%FC和50%FC水分处理下,由于考虑了土壤背景的影响,基于OSAVI所建模型的R~2最高,分别为0.922和0.856。【结论】4种植被指数均可用于冬小麦叶水势的定量监测。但是,在构建不同水分处理的叶水势估算模型时,应考虑土壤背景对冠层光谱的影响。研究结果可以为小麦精准灌溉管理提供技术依据,为星载数据的参数反演提供模型支持。  相似文献   

13.
基于新型植被指数的冬小麦LAI高光谱反演   总被引:7,自引:1,他引:7  
【目的】本研究旨在分析冠层叶片水分含量对作物冠层光谱的影响,构建新型光谱指数来提高作物叶面积指数高光谱反演的精度。【方法】在冬小麦水肥交叉试验的支持下,分析不同筋性品种、施氮量、灌溉量处理下的冬小麦叶面积指数冠层光谱响应特征,并分析标准化差分红边指数(NDRE)、水分敏感指数(WI)与叶面积指数的相关性,据此构建一个新型的植被指数——红边抗水植被指数(red-edge resistance water vegetable index,RRWVI)。选取常用的植被指数作为参照,分析RRWVI对于冬小麦多个关键生育期叶面积指数的诊断能力,随机选取约2/3的实测样本建立基于各种植被指数的叶面积指数高光谱响应模型,未参与建模的样本用于评价模型精度。【结果】研究结果表明,随着生育期的推进,冬小麦的叶面积指数呈先增加后降低的变化趋势,不同的水肥处理对冬小麦叶面积指数具有较大影响。开花期之后冬小麦LAI显著下降,强筋小麦(藁优2018)在整个生育期叶面积指数均高于中筋小麦(济麦22);不同氮水平下冬小麦冠层光谱反射率在近红外波段(720—1 350 nm)随着施氮量的增加而增大,与氮肥梯度完全一致,其中2倍氮肥处理的近红外反射率达到最高;不同生育期下冬小麦冠层光谱反射率变化波形大体一致;各个关键生育期的NDRE和WI均存在较高的相关性,而NDRE与LAI的相关性明显优于WI,新构建的植被指数RRWVI与LAI的相关性均优于NDRE、WI;虽然8个常用的植被指数均与LAI存在显著相关,但RRWVI与LAI相关性达到最大,其拟合曲线的决定系数R2为0.86。【结论】通过分析各种指数所构建的冬小麦叶面积指数高光谱反演模型,新构建的RRWVI取得了比NDRE、NDVI等常用植被指数更为可靠的反演效果,说明本研究新构建的红边抗水植被指数可有效提高冬小麦叶面积指数的精度。  相似文献   

14.
【目的】考虑到利用单一植被指数(VI)反演叶面积指数(LAI)时,存在着不同程度的饱和性和易受土壤背景影响的问题,提出通过分段的方式选择敏感植被指数形成最佳VI组合以提高LAI反演的精度。【方法】通过ACRM辐射传输模型模拟数据,结合地面实测光谱数据,选择常用的植被指数进行土壤敏感性分析以及饱和性分析确定LAI的分段点,并在此基础上分段选择最佳植被指数形成组合VI来实现LAI的最终反演,并利Landsat5 TM开展区域条件下冬小麦LAI反演应用。【结果】以LAI=3是较为适宜的分段点,利用植被指数最佳分段组合OSAVI(LAI≤3)+TGDVI(LAI>3)可在一定程度上有效克服土壤影响因素以及饱和性问题,联合反演的结果明确优于单一植被指数反演精度。【结论】通过分段选择最佳植被指数形成联合VI可以有效提高LAI反演精度。  相似文献   

15.
Leaf area index(LAI)is an important parameter in a number of models related to ecosystem functioning,carbon budgets,climate,hydrology,and crop growth simulation.Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level.In this study.the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices(SVIs)were analyzed by using the curve estimation procedure in North China Plain.The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal Variations of winter wheat LAI.The results indicated that the general relationships between LAI and SVIs were curvilinear,and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs.The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index(DVI)and LAI,with the adjusted R2(0.82)and the RMSE(0.77).The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations.The mean TMLAI value(30m)for winter wheat of the study area increased from 1.29(March 7,2004)to 3.43(April 8,2004),with standard deviations of 0.22 and 1.17,respectively.In conclusion,spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain.  相似文献   

16.
不同光谱植被指数反演冬小麦叶氮含量的敏感性研究   总被引:6,自引:0,他引:6  
【目的】氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据。【方法】以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R~2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性。【结果】反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R~2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R~2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R~2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R~2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R~2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R~2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点)。【结论】利用高光谱植被指数可有效实现作物叶氮含量反演,作物叶氮含量定量反演对不同光谱指标—中心波长、信噪比和波段宽度,具有较强敏感性。应用多指数联合反演模型,可显著提高反演精度,并且联合反演模型在不同高光谱传感器下有一定普适性。  相似文献   

17.
宋博文  赫晓慧 《安徽农业科学》2013,41(10):4671-4672,4690
以河南省作为研究区域,采用冬小麦返青及拔节期间的高光谱数据MODIS-NDVI 16 d合成数据集,利用遥感手段对河南省冬小麦面积进行估测。利用剔除非耕地后的数据,使用最小噪声分离(MNF)的方法进行数据压缩处理,并基于连续最大角突锥模型的线性混合像元分解法进行估测计算。估测结果与当年河南省实际统计数据相比,在特殊气候影响下,其相对误差也仅在0~7%,说明这种方法提取效果较好,在农作物面积估测中具有较强的应用价值。  相似文献   

18.
HJ-1号卫星数据与统计抽样相结合的冬小麦区域面积估算   总被引:18,自引:0,他引:18  
【目的】探讨利用HJ-1号卫星遥感数据进行冬小麦种植面积测量的可行性,并进一步结合统计抽样的方法,估算区域冬小麦种植面积,解决单靠遥感进行冬小麦种植面积测量时多期影像信息误差积累和生长差异性影响的问题。【方法】以北京市为研究区,采用多时相HJ-1号卫星遥感数据与分层抽样相结合的方法进行冬小麦种植面积测量:利用多时相HJ-1号卫星遥感数据获取冬小麦遥感识别结果(56506.67hm2),结合耕地地块数据建立入样总体,以耕地地块内冬小麦遥感识别面积作为分层标志进行分层随机抽样,反推得到北京市冬小麦面积总量(59680hm2)。【结果】多时相冬小麦遥感识别结果MAE为0.17,bias为-0.05,抽样反推区域总量面积提高了约5%,在一定程度上纠正了HJ-1号卫星多期遥感影像提取冬小麦区域面积偏低的问题。【结论】本文方法能够准确测量出区域冬小麦总量面积,具有较强的应用性和普适性,为采用HJ-1号卫星遥感数据进行农作物种植面积遥感测量进行了先期的方法探讨,深化了该遥感数据源的应用。  相似文献   

19.
【目的】建立基于气象资料的中国冬小麦收获指数统计模型,为构建作物产量模型提供支持。【方法】获取河南、河北、山东合计30个农业气象观测站近20年冬小麦农业气象观测数据,利用时间序列分析方法提取趋势收获指数,收获指数观测值与趋势收获指数差值即为由气象要素决定的气象收获指数。采用逐步回归分析方法建立基于气象要素的冬小麦收获指数统计模型,模型模拟并反映气象要素变化对冬小麦气象收获指数的影响。【结果】冬小麦关键生育期气象要素与气象收获指数相关关系显著,但单站尺度和区域尺度的显著性水平存在差异。利用209组独立数据,分别在单站和区域尺度对建立的冬小麦收获指数模型进行了验证,单站尺度上模型模拟值与实测值的线性相关系数和斜率分别是0.65和0.4(2n=209,P0.001),均方根误差12.2%,平均偏差-2.4%,拟合指数75.8%,模拟效率42.3%;区域尺度上模型模拟值与实测值的线性相关系数和斜率分别是0.56和0.33(n=209,P0.001),均方根误差13.3%,平均偏差-1.3%,拟合指数为69.0%,模拟效率为31.7%。【结论】基于气象资料构建的冬小麦收获指数模型可以较好地模拟不同气象条件下冬小麦收获指数的动态,该模型可与作物NPP模拟模型相耦合,用于区域尺度上冬小麦产量的模拟研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号