首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination were studied in 6 sheep, after intravenous and intramuscular injection at a single dose rate of 20 mg/kg body weight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam). The drugs were distributed according to an open 2-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method of ampicillin and sulbactam were 0.32+/-0.06 L/kg and 0.42+/-0.04 L/kg, respectively and the total body clearances were 0.69+/-0.07 and 0.38+/-0.03 L/kg x h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.32+/-0.05 h and 0.75+/-0.27 h, respectively, whereas for sulbactam the half-lives were 0.74+/-0.10 h and 0.89+/-0.16 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (72.76+/-9.65% for ampicillin and 85.50+/-8.35% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.25+/-0.10 h and 0.24+/-0.08 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.01+/-7.36 mg/L of ampicillin and 10.39+/-3.95 mg/L of sulbactam). Both drugs had a similar pharmacokinetic behavior after intramuscular administration in sheep. Since the plasma concentrations of sulbactam where consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a higher than 2:1 ratio.  相似文献   

2.
The disposition kinetics of difloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration were determined in sheep at a single dose of 5mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental pharmacokinetics method (after IV, IM and SC administration). Plasma concentrations of difloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (V(ss)) and clearance (Cl) of difloxacin after IV administration were 1.68+/-0.21L/kg and 0.21+/-0.03L/hkg, respectively. Following IM and SC administration difloxacin achieved maximum plasma concentration of 1.89+/-0.55 and 1.39+/-0.14mg/L at 2.42+/-1.28 and 5.33+/-1.03h, respectively. The absolute bioavailabilities after IM and SC routes were 99.92+/-26.50 and 82.35+/-25.65%, respectively. Based on these kinetic parameters, difloxacin is likely to be effective in sheep.  相似文献   

3.
The disposition kinetics of moxifloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration was determined in sheep at a single dose of 5 mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental (after IV, IM and SC administration) pharmacokinetic methods. Plasma concentrations of moxifloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (Vss) and clearance (Cl) of moxifloxacin after IV administration were 2.03 ± 0.36 L/kg and 0.39 ± 0.04 L/h kg, respectively. Following IM and SC administration, moxifloxacin achieved maximum plasma concentration of 1.66 ± 0.62 mg/L and 0.90 ± 0.19 mg/L at 2.25 ± 0.88 h and 3.25 ± 1.17 h, respectively. The absolute bioavailabilities after IM and SC routes were 96.12 ± 32.70% and 102.20 ± 23.76%, respectively. From these data (kinetic parameters and absence of adverse reactions) moxifloxacin may be a potentially useful antibiotic in sheep.  相似文献   

4.
The pharmacokinetics of marbofloxacin was investigated after intravenous (IV) and intramuscular (IM) administration, both at a dose rate of 5 mg/kg BW, in six clinically healthy domestic ostriches. Plasma concentrations of marbofloxacin was determined by a HPLC/UV method. The high volume of distribution (3.22+/-0.98 L/kg) suggests good tissue penetration. Marbofloxacin presented a high clearance value (2.19+/-0.27 L/kgh), explaining the low AUC values (2.32+/-0.30 microgh/mL and 2.25+/-0.70 microgh/mL, after IV and IM administration, respectively) and a short half life and mean residence time (t(1/2 beta)=1.47+/-0.31 h and 1.96+/-0.35 h; MRT=1.46+/-0.02 h and 2.11+/-0.30 h, IV and IM, respectively). The absorption of marbofloxacin after IM administration was rapid and complete (C(max)=1.13+/-0.29 microg/mL; T(max)=0.36+/-0.071 h; MAT=0.66+/-0.22 h and F (%)=95.03+/-16.89).  相似文献   

5.
The pharmacokinetics of azithromycin after intravenous and intramuscular injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits by using a modified agar diffusion bioassay for determining plasma concentrations. The plasma creatine kinase activity was determined after i.m. administration for the evaluation of the tissue tolerance. The elimination half-lives of azithromycin after intravenous and intramuscular administration were 24.1 and 25.1h, respectively. After intramuscular administration mean peak plasma concentration was 0.26+/-0.01 mg/L and bioavailability was 97.7%. Plasma CK activity rose sharply within 8h after i.m. injection of azithromycin; activity returned to pre-treatment level by 48-72 h post-treatment. The transient rise in serum CK activity indicates some degree of muscle tissue damage at the injection site.  相似文献   

6.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   

7.
The pharmacokinetic profile and bioavailability of a long-acting formulation of cephalexin after intramuscular administration to cats was investigated. Single intravenous (cephalexin lysine salt) and intramuscular (20% cephalexin monohydrate suspension) were administered to five cats at a dose rate of 10 mg/kg. Serum disposition curves were analyzed by noncompartmental approaches. After intravenous administration, volume of distribution (Vz), total body clearance (Clt), elimination constant (λz), elimination half-life (t½λ) and mean residence time (MRT) were: 0.33 ± 0.03 L/kg; 0.14 ± 0.02 L/h kg, 0.42 ± 0.05 h−1, 1.68 ± 0.20 h and 2.11 ± 0.25 h, respectively. Peak serum concentration (Cmax), time to peak serum concentration (Tmax) and bioavailability after intramuscular administration were 15.67 ± 1.95 μg/mL, 2.00 ± 0.61 h and 83.33 ± 8.74%, respectively.  相似文献   

8.
9.
A pharmacokinetic study of a commercial florfenicol-tylosin (2:1) combination product was conducted in six beagle dogs after intravenous (IV) and intramuscular (IM) administration at doses of 10 mg/kg (florfenicol) and 5 mg/kg (tylosin). Serum drug concentrations were determined by a validated high performance liquid chromatography (HPLC) using UV detection. A rapid and nearly complete absorption of both drugs with a mean IM bioavailability of 103.9% (florfenicol) and 92.6% (tylosin), prolonged elimination half-life, and high tissue penetration with steady state volume of distribution of 2.63 l/kg (florfenicol) and 1.98 l/kg (tylosin) were observed. Additional studies, including pharmacodynamic and toxicological evaluation are required before recommendations can be made regarding the clinical application of the product in dogs.  相似文献   

10.
The pharmacokinetic behaviour and bioavailability of enrofloxacin (ENR) were determined after single intravenous (iv) and intramuscular (im) administrations of 5mg/kg bw to six healthy adult Angora rabbits. Plasma ENR concentrations were measured by high performance liquid chromatography. The pharmacokinetic data were best described by a two-compartment open model. ENR pharmacokinetic parameters were similar (p>0.05) for iv and im administrations in terms of AUC0-infinity, t1/2beta and MRT. ENR was rapidly (t1/2a, 0.05 h) and almost completely (F, 87%) absorbed after im injection. In conclusion, the pharmacokinetic properties of ENR following iv and im administration in Angora rabbits are similar to other rabbit breeds, and once or twice daily iv and im administrations of ENR at the dose of 5mg/kg bw, depending upon the causative pathogen and/or severity of disorders, may be useful in treatment of infectious diseases caused by sensitive pathogens in Angora rabbits.  相似文献   

11.
The purpose of this study was to investigate the plasma disposition kinetics of ceftriaxone in female camels (n=5) following a single intravenous (i.v.) bolus or intramuscular (i.m.) injections at a dosage of 10mg kg(-1) body weight in all animals. A crossover design was carried out in two phases separated by 15 days. Jugular blood samples were collected serially for 48h and the plasma was analysed by high-performance liquid chromatography (HPLC). Following single i.v. injections the plasma concentration time curves of ceftriaxone were best fitted to a two-compartment model. The drug was rapidly distributed with half-life of distribution t(1/2alpha) of 0.24+/-0.01h and moderately eliminated with elimination rate constant and elimination half-life of 0.27+/-0.13h(-1) and 2.57+/-0.52h, respectively. The volume of distribution at steady state (V(dss)) was 0.32+/-0.01lkg(-1) and the total body clearance (Cl(tot)) was 0.11+/-0.01lkg(-1)h(-1), respectively. Following i.m. administration, the mean T(max), C(max), t(1/2el) and AUC values for plasma data were 1.03+/-0.23h, 21.54+/-2.61microg ml(-1), 1.76+/-0.03h and 85.82+/-11.21microg ml(-1)h(-1), respectively. The i.m. bioavailability was 93.42+/-21.4% and the binding percentage of ceftriaxone to plasma protein was moderate, ranging from 33% to 42% with an average of 34.5%.  相似文献   

12.
Azithromycin is the first of a class of antimicrobial agents designated azalides. The aim of the present study was to investigate the disposition pharmacokinetics of azithromycin in goats and determine its bioavailability. A cross-over study was carried out in two phases separated by 30 days. Azithromycin was administered at a single dose of 20 mg/kg body weight by i.v. and i.m. routes. Plasma concentrations of azithromycin were determined by a modified agar diffusion bioassay. After a single i.v. dose plasma concentrations were best fitted to a three-compartment open model. A two-compartment open model with first-order absorption fitted best after i.m. administration. The values of the pharmacokinetic parameters after i.v. administration were: half-life 32.5 h, apparent volume of distribution at the steady-state 34.5 L/kg, clearance 0.85 L/kg. and mean residence time (MRT) 40.1 h. After i.m. administration half-life of 45.2 h, a MRT of 60.3 h, maximum plasma concentration 0.64 mg/L and a bioavalability 92.2% were obtained. The pharmacokinetic parameters of azithromycin after i.m. administration, principally its long half-life and high bioavailability, could provide an alternative to the oral route of administration in goats, although more studies are needed to establish a suitable pharmaceutical formulation, propose optimun dosage regimens, investigate clinical efficacy and study the tolerability of repeated doses.  相似文献   

13.
14.
The pharmacokinetic properties of ceftazidime, a third generation cephalosporin, were investigated in five cats after single intravenous (IV) and intramuscular (IM) administration at a dose rate of 30 mg/kg. Minimum inhibitory concentrations (MICs) of ceftazidime for some Gram-negative (Escherichia coli, n=11) and Gram-positive (Staphylococcus spp., n=10) strains isolated from clinical cases were determined. An efficacy predictor, measured as the time over which the active drug exceeds the bacteria minimum inhibitory concentration (T>MIC), was calculated. Serum ceftazidime disposition was best fitted by a bi-compartmental and a mono-compartmental open model with first-order elimination after IV and IM dosing, respectively. After IV administration, distribution was rapid (t(1/2(d)) 0.04+/-0.03 h), with an area under the ceftazidime serum concentration:time curve (AUC((0-infinity))) of 173.14+/-48.69 microg h/mL and a volume of distribution (V((d(ss)))) of 0.18+/-0.04 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.19+/-0.08 L/hkg and a t(1/2) of 0.77+/-0.06 h. Peak serum concentration (C(max)), T(max), AUC((0-infinity)) and bioavailability for the IM administration were 89.42+/-12.15 microg/mL, 0.48+/-0.49 h, 192.68+/-65.28 microg h/mL and 82.47+/-14.37%, respectively. Ceftazidime MIC for E. coli ranged from 0.0625 to 32 microg/mL and for Staphylococcus spp. from 1 to 64 microg/mL. T>MIC was in the range 35-52% (IV) and 48-72% (IM) of the recommended dosing interval (8-12h) for bacteria with a MIC(90)4 microg/mL.  相似文献   

15.
The purpose of this study was to evaluate plasma concentrations and pharmacokinetic parameters of buprenorphine in dogs following intravenous (IV) administration of clinical doses of the opioid. An IV bolus of 0.02 mg/kg buprenorphine was administered to six healthy Beagles and blood samples were collected through a jugular catheter before and at 1, 5, 10, 15, 20, 30 and 45 min, and 1, 2, 4, 6, 8 and 12 h after administration. Plasma buprenorphine concentrations, measured using a commercial radioimmunoassay (RIA), decreased following a three-exponential curve. The two distribution and the elimination half-lives were 2.9 ± 1.8 min, 16.5 ± 3.7 min, and 266.6 ± 82.0 min, respectively; the clearance was 329.6 ± 62.2 mL/min, and the steady state volume of distribution was 83.7 ± 26.5 L.The results demonstrated the feasibility of the RIA assay to analyse buprenorphine in dog plasma samples. Following IV administration buprenorphine showed a three-compartment kinetic profile, as has been described previously in humans, rabbits and cats. The relationship between plasma concentrations and dynamic effects in dogs remains to be established.  相似文献   

16.
Background: Despite frequent clinical use, information about the pharmacokinetics (PK), clinical effects, and safety of butorphanol in foals is not available. Objectives: The purpose of this study was to determine the PK of butorphanol in neonatal foals after IV and IM administration; to determine whether administration of butorphanol results in physiologic or behavioral changes in neonatal foals; and to describe adverse effects associated with its use in neonatal foals. Animals: Six healthy mixed breed pony foals between 3 and 12 days of age were used. Methods: In a 3‐way crossover design, foals received butorphanol (IV and IM, at 0.05 mg/kg) and IV saline (control group). Butorphanol concentrations were determined by high‐performance liquid chromatography and analyzed using a noncompartmental PK model. Physiologic data were obtained at specified intervals after drug administration. Pedometers were used to evaluate locomotor activity. Behavioral data were obtained using a 2‐hour real‐time video recording. Results: The terminal half‐life of butorphanol was 2.1 hours and C0 was 33.2 ± 12.1 ng/mL after IV injection. For IM injection, Cmax and Tmax were 20.1 ± 3.5 ng/mL and 5.9 ± 2.1 minutes, respectively. Bioavailability was 66.1 ± 11.9%. There were minimal effects on vital signs. Foals that received butorphanol spent significantly more time nursing than control foals and appeared sedated. Conclusions and Clinical Importance: The disposition of butorphanol in neonatal foals differs from that in adult horses. The main behavioral effects after butorphanol administration to neonatal foals were sedation and increased feeding behavior.  相似文献   

17.
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively.  相似文献   

18.
19.
Background: Cyclophosphamide is an alkylating chemotherapeutic drug administered IV or PO. It is currently assumed that exposure to the active metabolite, 4‐hydroxycyclophosphamide (4‐OHCP), is the same with either route of administration.

Objectives:

To characterize the pharmacokinetics of cyclophosphamide and 4‐OHCP in dogs with lymphoma when administered PO or IV. Animals: Sixteen client‐owned dogs with substage A lymphoma were enrolled in the study. Eight dogs received cyclophosphamide IV and 8 received it PO. Methods: Prospective randomized clinical trial was performed. Blood was collected from each dog at specific time points after administration of cyclophosphamide. The serum was evaluated for the concentration of cyclophosphamide and 4‐OHCP with mass spectrometry and liquid chromatography. Results: Drug exposure to cyclophosphamide measured by area under the curve (AUC)0–inf is significantly higher after intravenous administration (7.14 ± 3.77 μg/h/mL) compared with exposure after oral administration (P‐value < .05). No difference in drug exposure to 4‐OHCP was detected after IV (1.66 ± 0.36 μg/h/mL) or PO (1.42 ± 0.64 μg/h/mL) administered cyclophosphamide. Conclusions and Clinical Importance: Drug exposure to the active metabolite 4‐OHCP is equivalent after administration of cyclophosphamide either PO or IV.  相似文献   

20.
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10 mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)(0–∞) 2.61 ± 1.52 μg h/mL; volume of distribution (Vz) 2.34 ± 1.76 L/kg; total body clearance (Clt) 2.10 ± 1.37 L/h kg; elimination half-life (t½λ) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (Cmax), 3.54 ± 2.16 μg/mL; time of peak (Tmax), 1.22 ± 0.67 h; t½λ, 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)90 = 0.5 μg/mL for 7 and 1.5 h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号