首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two metabolism trials were conducted to evaluate the influence of therapeutic antibiotic supplementation on characteristics of digestion of growing and finishing diets. Treatments consisted of a basal diet supplemented with: no antibiotics, 350 mg chlortetracycline and 350 mg sulfamethazine and 700 mg chlortetracycline and 700 mg sulfamethazine. In trial 1, treatment effects were evaluated in a replicated 3 X 3 Latin-square design experiment involving six crossbred steers (462 kg) with cannulas in the rumen and proximal duodenum. The basal diet contained (dry matter basis) 16.1% alfalfa hay, 72% steam flaked corn, 3.3% molasses, 5.8% fat, .96% urea, .79% limestone, .50% trace mineral salt, 33 mg/kg lasalocid, 2,200 IU/kg vitamin A and .44% chromic oxide. Dry matter intake was limited to 1.4% of body weight. In trial 2, treatment effects were evaluated in a 3 X 3 Latin-square design experiment involving three steers (399 kg) with cannulas in the rumen and proximal duodenum. The basal diet contained (dry matter basis) 10.1% sudangrass hay, 34.9% alfalfa hay, 43.9% steam flaked corn, 6.1% molasses, 4.0% fat, .46% urea, .49% trace mineral salt, 33 mg/kg lasalocid and 2,200 IU/kg vitamin A. Dry matter intake was limited to 1.65% of body weight. Antibiotic supplementation did not influence microbial efficiency, passage of microbial and feed N to the small intestine, or either ruminal or total tract digestion of organic matter and acid detergent fiber in either growing or finishing diets (P greater than .20).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Eight cannulated Holstein steers (average BW: 251 kg) were used in 2 simultaneous 4 x 4 Latin squares in a split-plot arrangement to test the effects of processing method [dry-rolled (DR) vs. steam-flaked (SF); main plot] and vitreousness (V, %; subplot) of yellow dent corn (V55, V61, V63, and V65) on site of digestion of diets containing 73.2% corn grain. No vitreousness x processing method interactions were detected for ruminal digestion, but ruminal starch digestion was 14.4% lower (P < 0.01) for DR than for SF corn. Interactions were detected between vitreousness and processing method for postruminal (P < 0.10) and total tract digestion (P < 0.05). With DR, vitreousness tended to decrease (linear effect, P < 0.10) postruminal OM and starch digestion. With SF, vitreousness did not affect (P > or = 0.15) postruminal digestion of OM and starch. Postruminal N digestion tended to decrease (linear effect, P = 0.12) as vitreousness increased. Postruminal digestion was greater for SF than for DR corn OM (25.7%, P < 0.05), starch (94.3%, P < 0.10), and N (10.7%, P < 0.01). Steam flaking increased total tract digestion of OM (11%, P < 0.05), starch (16%, P < 0.01), and N (8.4%, P < 0.05) but decreased total tract ADF digestion (26.7%, P < 0.01). With DR, total tract starch digestion was lower for V65 (cubic effect, P < 0.10) than for the other hybrids. With SF, total tract starch digestion was not affected (P > or = 0.15) by vitreousness. Fecal starch and total tract starch digestion were inversely related (starch digestion, % = 101 - 0.65 x fecal starch, %; r2 = 0.94, P < 0.01). Ruminal pH was greater for steers fed DR than for steers fed SF corn (6.03 vs. 5.62, P < 0.05). Steam flaking decreased (P < 0.01) the ruminal molar proportion of acetate (24%), acetate:propionate molar ratio (55%), estimated methane production (37.5%), and butyrate (11.3%, P < 0.05). There was a vitreousness x processing interaction (P < 0.01) for acetate:propionate. For DR, acetate:propionate tended to increase (linear effect; P < 0.10) with increasing vitreousness. With SF, acetate:propionate was greater (cubic effect, P < 0.01) for V65. Starch from more vitreous corn grain was less digested when corn grain was DR, but this adverse effect of vitreousness on digestion was negated when the corn grain was SF. Of the 19% advantage in energetic efficiency associated with flaked over rolled corn grain, about 3/4 can be attributed to increased OM digestibility, with the remaining 1/4 ascribed to reduced methane loss.  相似文献   

3.
Six yearling Hereford X Angus steers (avg 272 kg), each with ruminal, duodenal and ileal cannulas were used in a 6 X 6 Latin-square metabolism trial to evaluate the impact of NaHCO3 and trona (a ground, nonrefined ore with chemical composition NaHCO3-Na2CO3-2H2O) on site and extent of digestion of nutrients in the digestive tract. The diets were 50:50 or 90:10 (cracked corn-based concentrate:cottonseed hulls) with no buffer, 1% NaHCO3, or 1% trona. Intake, across all treatments, averaged 2.4% of body weight. Dry matter (DM) and starch digestibility (via indigestible acid detergent fiber) before the duodenum was decreased (P less than .10) with trona in the 50:50 diet. Digestibility of DM, crude protein and starch before the ileum were greater (P less than .05) in the 90:10 diet vs 50:50 diet. Total tract digestibility was similar across buffer treatments in the 90:10 diet. Addition of NaHCO3 increased (P less than .05) digestibility of dry matter and cell solubles in the 50:50 diet. Organic matter and crude protein digestibility were also increased (P less than .10) with NaHCO3. Apparent crude protein and cell solubles digestibility were greater (P less than .10) with trona than NaHCO3 in the 50:50 diet. This trial indicates that buffers provide overall enhancement of diet digestibility in mixed grain/roughage diets.  相似文献   

4.
Jersey cattle are known for producing carcasses with a greater amount of marbling, but they require more days on feed to achieve acceptable market weights compared with other breeds. The objective of this study was to evaluate the effect of dietary forage (12 vs. 24% sudangrass:alfalfa hay, DM basis) in steam-flaked, corn-based finishing diets on carcass characteristics, beef palatability, and retail color stability of steaks from Jersey beef compared with conventionally fed commodity beef strip loins (COM) of identified quality (Choice(-) and Select(+)). Jersey steers (n = 77) were blocked by BW and randomly assigned to 1 of the following treatments for a 383-d trial period: Jersey low 12% (JL; n = 38) or Jersey high 24% (JH; n = 39) forage (DM basis). A comparison group was selected from conventionally fed cattle on the same day of slaughter as the Jersey treatments, and strip loins from USDA Select(+) (COM; n = 20) and Choice(-) (COM; n = 20) were removed for data analysis. Seventy-two hours postmortem, strip loins were removed, vacuum-packaged, and aged at 3°C for 18 d postmortem. After the aging period, steaks from the LM were sliced, vacuum-packaged, and frozen (-20°C) until analyzed. Jersey steaks had reduced (P < 0.05) Warner-Bratzler shear force values compared with COM steaks. Trained sensory panelists rated JL greater (P < 0.05) for initial and sustained tenderness and initial juiciness than COM, whereas JH was intermediate. As expected, marbling was greater (P < 0.05) for both JL and JH compared with COM, and trained sensory panel sustained juiciness, beef flavor intensity, and overall acceptability scores were greater (P < 0.05) for both JL and JH compared with COM; however, no differences (P = 0.14) were reported for consumer tenderness and flavor. Objective color (L*, a*, b*) measurements decreased (P < 0.05) over time across treatments. There were no differences among treatments for lightness (L*); however, overall during retail display JL were less (P < 0.05) red (a*) and yellow (b*) than JH and COM. Subjective color scores indicated both JL and JH were less red (P < 0.05) than COM. Steaks from Jersey were equal to and on some measurements more desirable than steaks from COM carcasses for both color stability and palatability. These results suggest that dietary forage level had minimal effects on carcass characteristics and beef palatability. However, feeding a low-forage diet decreases input cost and potentially results in a greater valued carcass. Finishing long-fed (383 d) Jersey steers can meet beef industry expectations with respect to quality grade.  相似文献   

5.
The study of grain hybrids with faster or more extensive rates of ruminal starch fermentation has been a key research area. Because grain sorghum starch is generally regarded as less accessible to enzymatic degradation than starch in other grains, it has received the greatest research emphasis. However, all grains have been evaluated to some extent. Grain sorghum hybrids appear to be more variable in digestibility, in vitro and in vivo, and in rate of starch fermentation than are corn hybrids. The greater variation may be partially because grain sorghum hybrids are developed and evaluated under more stressful environmental conditions (high temperature and limited water conditions) than are corn hybrids. In vitro and in vivo studies indicate that differences in grain hybrids exist, but these differences may not totally explain differences in cattle performance. The response to feeding high-lysine corn to cattle has been variable. Although high-lysine corn supplies more lysine in the diet, lysine flow to the abomasum was not increased. Hybrids selected for increased lysine content have been shown to have faster in vitro rates of starch digestion, suggesting that improvements in animal performance may be related to the indirect selection for improved energy utilization. In one study in which high-oil corn was evaluated, feed conversion was not improved compared with a control corn diet. At the present time additional studies in which other genetic modifications of grain hybrids are evaluated are in progress, but the results have not been published.  相似文献   

6.
Inclusion of potato-processing waste (PW) from the frozen potato products industry in high-grain beef cattle finishing diets was evaluated in two studies. In a randomized complete block design, 125 crossbred yearling heifers (365 +/- 0.3 kg initial BW; five pens per treatment; five heifers per pen) were used to evaluate PW level on feedlot performance and meat quality. Heifers were fed for 85 (two blocks) or 104 d (three blocks). In a digestion study, four ruminally, duodenally, and ileally cannulated Holstein steers (474.7 +/- 26.6 kg initial BW) were used in a 4 x 4 Latin square design to evaluate effects of PW level on ruminal fermentation, site of digestion, and microbial protein synthesis. The control diet for both studies contained 80% corn, 10% alfalfa hay, 5% concentrated separator by-product (CSB), and 5% supplement (DM basis). Potato waste replaced corn and separator by-product (DM basis) in the diet at 0, 10, 20, 30, and 40% in the feedlot study, and at 0, 13, 27, and 40% in the digestion study. In the feedlot study, DMI decreased (linear; P = 0.007) with increasing inclusion of PW. Increasing PW decreased ADG and feed efficiency from 0 to 30% and then increased at 40% (quadratic; P < 0.01). Calculated dietary NEg concentrations did not differ among treatments (P = 0.18). Hot carcass weight decreased as PW increased from 0 to 30% and then increased at 40% PW (cubic; P < 0.01). Fat thickness and longissimus muscle area decreased with increasing PW (linear; P < 0.05). Level of PW did not affect marbling or liver scores (P > 0.30). No difference (P > 0.20) was observed for Warner-Bratzler shear force at 0, 10, 20, and 30% PW levels; however, 40% PW resulted in lower (P = 0.05) shear force values. Taste panel scores for juiciness and flavor intensity did not differ with increasing PW (P > 0.30). Steaks from cattle fed 0% were scored less tender than 10 and 40% PW (cubic; P < 0.05). In the digestion study, DMI decreased (quadratic; P < 0.01) with increasing PW. Ruminal pH and total VFA concentration increased (linear; P < 0.05) and true N disappearance from the stomach complex and apparent total-tract N disappearance decreased with increasing level of PW (linear; P < 0.01). Starch intake and ruminal disappearance decreased with increasing level of PW (quadratic; P < 0.05). Inclusion of PW decreased feedlot performance, with little effect on carcass characteristics or meat quality. Optimal inclusion of PW in finishing diets may depend on the cost of transportation and other dietary ingredients.  相似文献   

7.
8.
A feedlot growth performance experiment and 2 metabolism experiments were conducted to evaluate dietary roughage concentration and calcium magnesium carbonate in steers fed a high-grain diet. In Exp. 1, one hundred ninety-two crossbred yearling steers (320 +/- 10 kg of initial BW) were fed diets based on steam-flaked corn with 0, 0.75, or 1.5% CaMg(CO(3))(2). There were no effects (P > or = 0.13) on ADG, DMI, G:F, or total water intake due to CaMg(CO(3))(2). In Exp. 2, five ruminally and duodenally fistulated steers (263 +/- 9 kg of initial BW) were used in a 5 x 5 Latin square design, with 5 dietary treatments arranged in a 2 x 2 + 1 factorial: 1) 3.8% dietary roughage and no CaMg(CO(3))(2); 2) 7.6% dietary roughage and no CaMg(CO(3))(2); 3) 11.4% dietary roughage and no CaMg(CO(3))(2); 4) 3.8% dietary roughage and 1.5% CaMg(CO(3))(2); and 5) 7.6% dietary roughage and 1.5% CaMg(CO(3))(2). Water consumption was less (quadratic, P = 0.003) when 7.6% dietary roughage was fed compared with 3.8 or 11.4% dietary roughage. Intake of DM was not affected (P > or = 0.16) by dietary roughage or by CaMg(CO(3))(2). Poststomach and total tract starch digestion decreased (linear, P < 0.01) as dietary roughage increased. Ruminal pH tended (P = 0.08) to increase as dietary roughage increased but was not affected (P = 0.60) by CaMg(CO(3))(2). In Exp. 3, DMI and ruminal pH were continuously monitored in a 6 x 6 Latin square design using 6 ruminally and duodenally fistulated Holstein steers (229 +/- 10 kg of initial BW). A 3 x 2 factorial treatment structure was utilized, with factors consisting of dietary roughage concentration (4.5, 9.0, or 13.5%) and CaMg(CO(3))(2) inclusion (0 or 1.0%) to replace MgO and partially replace lime-stone. A dietary roughage x CaMg(CO(3))(2) interaction (P = 0.01) occurred as steers consuming 13.5% roughage, 1.0% CaMg(CO(3))(2) had greater DMI per meal than those consuming 4.5% dietary roughage, no CaMg(CO(3))(2) and 9.0% dietary roughage, 1.0% CaMg(CO(3))(2). Steers consuming 13.5% dietary roughage, 1.0% CaMg(CO(3))(2) and 9.0% dietary roughage, no CaMg(CO(3))(2) had greater meal length (min/meal; P = 0.01) than steers consuming 4.5% dietary roughage, no CaMg(CO(3))(2). Total tract OM digestibility decreased linearly (P = 0.01), and ruminal pH increased linearly (P = 0.01) with increasing dietary roughage concentration. Inclusion of CaMg(CO(3))(2) can replace limestone and MgO but did not produce ruminal pH responses similar to those observed by increasing dietary roughage in high-concentrate diets.  相似文献   

9.
To compare the effects of sorghum grain hybrids on site and extent of digestion, two yellow (Y1 and Y2), two cream (C1 and C2), and two hetero-yellow (HY1 and HY2) sorghum grains were fed (1.85% BW, DM basis) in an 81% dry-rolled grain diet to steers (342 kg BW) equipped with ruminal, duodenal, and ileal cannulas within a 6 X 6 Latin square. Yellow (YEL) hybrids had a homozygous yellow endosperm and a yellow seed coat; cream (CREAM) and hetero-yellow (HET-YEL) hybrids had a heterozygous (partial) yellow endosperm, with white or red seed coats, respectively. Total tract starch digestibility (percentage) was greater (P less than .10) for CREAM and HET-YEL (82.3) than for YEL (78.9), primarily because of greater (P less than .05) starch digestion in the large intestine. Ruminal starch digestibility (percentage) was greater (P less than .10) for HET-YEL (73.2) than for CREAM (66.3) and was a larger proportion of total tract digestion for HET-YEL (90.6) than for CREAM (80.1). Ruminal starch digestion was correlated negatively (r = -.46; P less than .08) with ruminal escape of feed N. Prececal starch digestibility (average 76.2%) was more strongly correlated with ruminal digestibility (r = .69; P less than .01) than with digestion in the small intestine (r = .41; P = .12). Total tract nonammonia N (NAN) digestibility (percentage) was greater (P less than .10) for CREAM than for HET-YEL, greater for Y1 (P less than .10) than for Y2, greater for C2 (P less than .05) than for C1, and greater for HY2 (P less than .05) than for HY1. Flow of NAN to the duodenum was correlated negatively (r = -.55; P less than .05) with prececal starch digestion. Small intestinal NAN disappearance (g/d) was greater (P less than .01) for HY1 (76.0) than for HY2 (52.2). Microbial N flow (r = .88; P less than .01), but not feed N flow (r = .17; P = .52), to the duodenum was correlated with partial NAN digestibility in the small intestine. Hybrids differed in site and extent of digestion. Differences were generally larger for N than for starch.  相似文献   

10.
Six cannulated Salers steers (305 +/- 17 kg initial BW) were used in a double 3 x 3 Latin square design to compare the effects of the nature of the cereal (wheat vs corn) and the corn genotype (dent vs flint) on rate, site, and extent of digestion of high-concentrate diets. The cereals were coarsely cracked, and the diets were balanced to have the same percentage of starch (47.7 +/- 2.3%) and CP (14.6 +/- .7%). Differences in ruminal starch digestion were observed between wheat- and corn-based diets (86.6 vs 47.8%; P < .001) and between corn genotypes (60.8 vs 34.8% for dent and flint corns; P < .001). For flint corn, more than half the starch was digested in the hindgut. Total tract digestion of starch was greater (P < .001) by steers fed wheat than by those fed corn and did not differ (P > .1) between the two corn genotypes. Ruminal mean pH (P < .01) was lower and total VFA concentration (P < .1) was higher for wheat- than for corn-based diets. Ruminal acetate:propionate tended to increase with the decrease in the amount of starch degraded in the rumen, but differences were not significant (P > .1). When wheat replaced corn, nonammonia, nonmicrobial N duodenal flow decreased (P < .01), and microbial duodenal flow increased (P < .05), so there were no differences in the duodenal flow of nonammonia N duodenal flow (P > .1). The lower nonammonia N duodenal flow for the dent corn- than for the flint corn-based diet (P < .05) was related to a lower passage of nonammonia, nonmicrobial N into the duodenum. Efficiency of microbial protein synthesis was inversely correlated with the amount of starch degraded in the rumen. Nature of the cereal, wheat vs corn, and genotype of the corn, dent vs flint, alter the site and extent of starch digestion.  相似文献   

11.
To determine the effects of blends of high-moisture harvested sorghum grain (HMS) and dry-rolled corn (DRC) on site and extent of digestion, high-grain diets were fed to Angus-Hereford heifers (315 kg) in a 5 x 5 latin square. The grain portion consisted of ratios (HMS:DRC) of 0:100, 25:75, 50:50, 75:25 and 100:0. Heifers were equipped with ruminal, duodenal and ileal T-type cannulas. Digestibilities of OM (P less than .05) and non-ammonia nitrogen (NAN; P less than .01) in the total tract declined linearly as HMS replaced DRC. Chyme flow (liters/d) through the duodenum increased linearly (P less than .01), and true ruminal OM disappearance tended to decline linearly (P less than .10) as HMS replaced DRC. A quadratic response (P less than .05) in extent of starch disappearance (g/d) in the rumen was noted; blends were lower than either individual grain. Ruminal escape of feed N tended to be quadratic (P less than .10); values for individual grain types were greater than blends. Microbial efficiency increased linearly (P less than .05) as HMS replaced DRC. Extent of starch digestion in the rumen averaged 82.7% compared to only 2.9% in the small intestine and 5.7% in the large intestine. Altering the ratio of HMS to DRC appeared to have more effect on ruminal fermentation than on digestion in the small intestine; most starch and nitrogen responses were quadratic. Increases in ruminal pH and chyme flow, potentially caused by increased salivary flow, may cause non-linear changes in the solubility of proteins in HMS and DRC, when fed as blends, altering the digestibility of protein and starch from values predicted from the individual grains.  相似文献   

12.
Feedlot producers often exceed NRC recommendations for vitamin A and D supplementation; however, increased concentrations of these vitamins have been shown to limit adipocyte differentiation in vitro. A feedlot trial was conducted using 168 Angus crossbred steers (BW = 284 ± 0.4 kg) allotted to 24 pens. The experiment had a 2 × 2 factorial arrangement of treatments: no supplemental vitamin A or D (NAND), 3,750 IU vitamin A/kg dietary DM with no supplemental vitamin D (SAND), no supplemental vitamin A and 1,860 IU vitamin D/kg dietary DM (NASD), and 3,750 IU and 1,860 IU vitamin A and D/ kg dietary DM (SASD), respectively. Serum, liver, and intramuscular and subcutaneous adipose tissue retinol concentrations were decreased in (P < 0.001) in cattle fed the no supplemental vitamin A diets (NAND and NASD combined) compared with those consuming supplemental vitamin A (SAND and SASD combined) diets. In addition, intramuscular retinol concentration was 38% less than in the subcutaneous depot. Serum 25(OH)D(3) concentrations were reduced (P < 0.001) during the first 70 d when cattle were fed no supplemental vitamin D diets (NAND and SAND combined); however, liver 25(OH)D(3) concentrations remained unchanged (P > 0.10) through d 184. Serum and liver 25(OH)D(3) concentrations increased (P < 0.001) with vitamin D supplementation (NASD and SASD combined). The DMI, ADG, G:F, and morbidity were not affected (P > 0.10) by dietary concentration of vitamin A or D. There were vitamin A and D interactions (P < 0.03) for backfat thickness and USDA Yield grade. Cattle fed the NAND diet had greater (P < 0.03) Yield grades than other treatments because of greater (P < 0.005) 12th rib backfat thickness in NAND steers than the NASD and SAND steers. Vitamin D concentrations were attenuated and minimal carcass adiposity responses to vitamin D supplementation were observed. Feeding a diet without supplemental vitamin A increased (P < 0.05) Quality grades and marbling scores and tended (P = 0.06) to increase ether extractable lipid of the LM. As retinol and 25(OH)D(3) concentrations in feedlot cattle declined as a result of a lack of dietary supplementation, adipose accretion increased, resulting in elevated Quality and Yield grades. Withdrawal of supplemental vitamin A, D, or both from the finishing diet of feedlot beef cattle had minimal impact carcass composition.  相似文献   

13.
Effects of processing barley on its digestion by horses   总被引:1,自引:0,他引:1  
Four horses were randomly fed a diet containing rolled, micronised or extruded barley; the barley intake was adjusted to supply 2 g starch/kg bodyweight per day. During a 10-day acclimatisation period the horses were also fed 1 kg grass hay/100 kg bodyweight per day. Samples of blood and breath were collected at the end of each period after the test meal of barley had been fed after a 12-hour overnight fast. The glycaemic and insulinaemic responses of the horses were measured as an indication of the pre-caecal digestibility of starch, and postprandial breath hydrogen and methane were measured to detect microbial fermentation of starch. The highest peak serum glucose and serum insulin concentrations were observed after feeding the extruded barley, lower concentrations were observed after feeding the micronised barley and the lowest concentrations were observed after feeding the rolled barley. Breath hydrogen increased within four hours of feeding all the barley diets, and the mean (sd) peak hydrogen concentrations were 98.3 (55.2) ppm for rolled barley, 59.3 (31.5) ppm for micronised barley and 96.1 (51.9) ppm for extruded barley. There were wide variations within individual horses but these concentrations were not significantly different. Breath methane concentrations were very variable and, although there were no significant differences, there was a trend for higher methane concentrations after the feeding of rolled barley.  相似文献   

14.
A balance trial was conducted to titrate the effects of tallow on the energy metabolism of wethers fed barley finishing diets. Six dietary levels of tallow (0, 2, 4, 6, 8, or 10%) in a barley finishing diet were fed to six crossbred wethers (35+/-1.1 kg) in a randomized complete block design. Diets were 73% barley, 10% tallow and(or) bentonite, 10% alfalfa pellets, and 7% supplement. There was no effect of tallow level on OM intake (1,103.1+/-51 g/d), OM digestibility (84+/-0.9%), GE digestibility (83+/-1.1%), or cell solubles digestibility (84.2+/-1.2%). The level of tallow quadratically decreased ADF digestibility (P < 0.05), methane emissions, and methane energy as a percentage of GE P < 0.01). There were linear increases in dietary GE (megacalories per kilogram of OM [P < 0.01]), dietary DE (megacalories per kilogram of OM [P < 0.05]), and dietary ME (megacalories per kilogram of OM [P < 0.01]), as dietary tallow increased. Numbers of ruminal protozoa (Entodinium spp. and Polyplastron sp.) decreased linearly (P < 0.05) with increased level of tallow. The energy value of tallow (calculated by difference) was low. The total-tract fatty acid digestibility of tallow was calculated by linear regression, without intercept, after accounting for the fatty acids digested from the base diet (0% tallow fed to a wether in a period). Fatty acids of the same carbon length were pooled for the regression analysis. All linear regressions were significant (P < 0.10) indicating no effect of tallow level on fatty acid digestibility. Lauric acid had low digestibility. The high digestibility of all C16 (89%) and C18 (104%) fatty acids suggests an effect of tallow on endogenous and microbial fatty acid excretion. Fatty acid digestibility was probably a minor contributor to the low energy content of tallow, calculated by difference, in these diets.  相似文献   

15.
Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater (P < 0.01) by steers fed SFC without bran than by steers fed DRC without bran. Gain efficiency was 16.9% greater (P < 0.01) for steers fed SFC without bran compared with steers fed DRC without bran. In DRC and SFC diets, feeding bran decreased (P < 0.01) G:F by 5.2 and 13.8%, respectively. The moisture content of corn bran had no effect on finishing steer performance, and drying corn bran did not affect its energy value in finishing cattle diets.  相似文献   

16.
A 5 x 5 Latin square design was used to determine the effects of restricted and ad libitum intake of diets containing wheat middlings on the site and extent of digestion compared to ad libitum intake of a corn-based diet and ad libitum intake of chopped alfalfa hay. Five ruminally and duodenally cannulated Angus steers (519 +/- 41.5 kg BW) were used to compare five dietary treatments. The five treatments were as follows: ad libitum access to a corn-based finishing diet (control), the control diet with 25 percentage units of the corn and soybean meal replaced with wheat middlings offered ad libitum (WM), the WM diet restricted to 75% of predicted ad libitum intake (RWM), the RWM diet with wheat middlings replaced with ammoniated wheat middlings (RNWM), and ad libitum access to a chopped alfalfa hay diet. Although RWM steers were fed to consume 75% of ad libitum intake, RWM steers consumed 15.5% less DM than WM. Steers fed ad libitum hay consumed 28.6, 31.7, and 37.2% less (P < 0.01) DM, OM, and nitrogen than RWM steers. No differences in apparent or true ruminal digestibility were observed among steers fed the control vs WM, WM vs RWM, RWM vs RNWM, or RWM vs hay diets. However, the steers fed the hay diet had 32.5, 33.4, and 36.9% lower (P < 0.01) apparent total tract digestibilities of DM, OM, and N than those fed the RWM diet. Average ruminal pH was lower (P < 0.01) for control steers than those fed the WM diet and for those fed RWM compared to the hay diet. The acetate:propionate ratio was higher for cattle fed hay vs the RWM diet. Microbial DM and OM flow to the small intestine was higher (P < 0.02) for steers fed the RWM diet than those fed the hay diet. In addition, bacterial N flow to the small intestine was higher (P < 0.01) for cattle receiving the RWM diet than the hay diet. Feeding diets containing 25 percentage units of wheat middlings at 75% ad libitum intake had no effect on ruminal digestibility.  相似文献   

17.
The value of sunflower seed (SS) in finishing diets was assessed in two feeding trials. In Exp. 1, 60 yearling steers (479 +/- 45 kg) were fed five diets (n = 12). A basal diet (DM basis) of 84.5% steam-rolled barley, 9% barley silage, and 6.5% supplement was fed as is (control), with all the silage replaced (DM basis) with rolled SS, or with grain:silage mix replaced with 9% whole SS, 14% whole SS, or 14% rolled SS. Liver, diaphragm, and brisket samples were obtained from each carcass. In Exp. 2, 120 yearling steers (354 +/- 25 kg) were fed corn- or barley-based diets containing no SS, high-linoleic acid SS, or high-oleic acid SS (a 2 x 3 factorial arrangement, n = 20). Whole SS was included at 10.8% in the corn-based and 14% in the barley-based diets (DM basis). In Exp. 1, feeding whole SS linearly increased DMI (P = 0.02), ADG (P = 0.01), and G:F (P = 0.01). Regression of ME against level of whole SS indicated that SS contained 4.4 to 5.9 Mcal ME/kg. Substituting whole for rolled SS did not significantly alter DMI, ADG, or G:F (8.55 vs. 8.30 kg/d; 1.36 vs. 1.31 kg; and 0.157 vs. 0.158, respectively). Replacing the silage with rolled SS had no effect on DMI (P = 0.91) but marginally enhanced ADG (P = 0.10) and improved G:F (P = 0.01). Dressing percent increased linearly (P = 0.08) with level of SS in the diet. Feeding SS decreased (P < 0.05) levels of 16:0 and 18:3 in both diaphragm and subcutaneous fats, and increased (P = 0.05) the prevalence of 18:1, 18:2, cis-9,trans-11-CLA and trans-10,cis-12-CLA in subcutaneous fat. In Exp. 2, barley diets supplemented with high-linoleic SS decreased DMI (P = 0.02) and ADG (P = 0.007) by steers throughout the trial, whereas no decrease was noted with corn (interaction P = 0.06 for DMI and P = 0.01 for ADG). With barley, high-linoleic SS decreased final live weight (554 vs. 592 kg; P = 0.01), carcass weight (329 vs. 346 kg; P = 0.06), and dressing percent (58.5 vs. 59.4%; P = 0.04). Steers fed high-linoleic SS plus barley had less (P < 0.05) backfat than those fed other SS diets. No adverse effects of SS on liver abscess incidence or meat quality were detected. Although they provide protein and fiber useful in formulating finishing diets for cattle, and did improve performance in Exp. 1, no benefit from substituting SS for grain and roughage was detected in Exp. 2. Because of unexplained inconsistencies between the two experiments, additional research is warranted to confirm the feeding value of SS in diets for feedlot cattle.  相似文献   

18.
Two studies were conducted to determine whether a bacterial direct-fed microbial (DFM) alone or with yeast could minimize the risk of acidosis and improve feed utilization in feedlot cattle receiving high-concentrate diets. Eight ruminally cannulated steers, previously adapted to a high-concentrate diet, were used in crossover designs to study the effects of DFM on feed intake, ruminal pH, ruminal fermentation, blood characteristics, site and extent of digestion, and microbial protein synthesis. Steers were provided ad libitum access to a diet containing steam-rolled barley, barley silage, and a protein-mineral supplement (87, 8, and 5% on a DM basis, respectively). In Exp. 1, treatments were control vs. the lactic-acid producing bacterium Enterococcus faecium EF212 (EF; 6 x 10(9) cfu/d). In Exp. 2, treatments were control vs EF (6 x 10(9) cfu/d) and yeast (Saccharomyces cerevisiae; 6 x 10(9) cfu/d). Supplementing feedlot cattle diets with EF in Exp. 1 increased (P < 0.05) propionate and (P < 0.05) decreased butyrate concentrations, decreased the nadir of ruminal pH (P < 0.05), enhanced the flow of feed N (P < 0.10) to the duodenum but reduced that of microbial N (P < 0.10), reduced (P < 0.10) intestinal digestion of NDF, and increased (P < 0.10) fecal coliform numbers. Other than the increase in propionate concentrations that signify an increase in energy precursors for growth, the other metabolic changes were generally considered to be undesirable. In Exp. 2, providing EF together with yeast abolished most of these undesirable effects. Combining EF with yeast increased the DM digestion of corn grain incubated in sacco, but there were no effects on altering the site or extent of nutrient digestion. The diets used in this study were highly fermentable, and the incidence of subclinical ruminal acidosis, defined as steers with ruminal pH below 5.5 for prolonged periods of time, was high. Supplementing the diet with EF, with or without yeast, had limited effects on reducing ruminal acidosis. It seems that cattle adapted to high-grain diets are able to maintain relatively high feed intake and high fiber digestion despite low ruminal pH. The Enterococcus faecium bacterium and yeast used in this study were of limited value for feedlot cattle already adapted to high-grain diets.  相似文献   

19.
To determine the effect of dry (D); reconstituted and ensiled (R); reconstituted and acid-treated (A); and urea-treated, high-moisture (U) sorghum grain on starch digestibility, four Angus x Hereford steers (means BW = 350 kg) with duodenal and ileal cannulas were used in a 4 x 4 Latin square design. Diets consisting of 69% ground sorghum grain were fed every 2 h in equal portions (8.2 kg/d). Diets averaged 46.5% starch and 12% CP, except for U, which averaged 14% CP due to urea treatment. Ytterbium attached to sorghum was used as a particulate marker. Duodenal, ileal, and fecal samples were taken 1 h postfeeding after a 14-d adaption to diets. Whole samples were analyzed. Preduodenal starch digestion (%) was 89, 83, 76, and 70, and starch digestion over the total tract was 99, 97, 95 and 91 for R, U, A, and D, respectively. Starch digestion proximal to each site (duodenum and ileum) was enhanced (P less than .05) by R and U compared with D. Within the small intestine, there was a linear relationship (P less than .003) between starch digestion and daily starch supply. However, digestibility of starch in the small intestine (mean = 45%) was not different among diets. Apparent digestibility of starch in the large intestine was not significantly different from digestibility in the small intestine. Urea-treated sorghum grain was equivalent to reconstituted, ensiled sorghum in digestion characteristics and was superior to dry sorghum.  相似文献   

20.
Hetero-yellow (HY), red (RED) and brown (BR, high tannin) sorghums were fed dry-rolled or reconstituted (RED and BR only) to evaluate the effect of variety and reconstitution on the site and extent of starch and protein digestion in steers fitted with ruminal, duodenal and ileal cannulae. Processed grains were incorporated into 88% sorghum (DM basis) diets fed at 2% of body weight in a 5 X 5 Latin square. Ruminal fermentation of organic matter, starch and protein tended to be lower for the dry-rolled RED than for either the dry-rolled HY or BR sorghum. Digestion of organic matter (OM) and starch in the small intestine was very low for dry-rolled sorghums. Total tract starch digestibility was lower for the dry-rolled RED sorghum (86.9%) than the BR (90.8%) and HY (91.4%). Nitrogen (N) digestibility ranged from 53.1% for the dry-rolled BR to 64.5% for the HY. Tannins were extensively (95.2%) degraded in the rumen, which may have enhanced fermentation of the BR sorghum. Reconstitution increased (P less than .05) total-tract starch digestion of the RED and tended to increase starch digestion of the BR as well. Total N flow to the duodenum tended to increase with reconstitution, with most of the increase being due to greater (P less than .05) microbial-N. Reconstitution also increased (P less than .05) total-tract N digestibility of the RED. The response to reconstitution for the RED sorghum appeared to be due primarily to an increase (P less than .10) in the extent of fermentation of organic matter and starch in the rumen. Reconstitution of BR, however, enhanced disappearance of starch from the small intestine. In both cases, most (97.3%) of the digestible starch of the reconstituted sorghums had disappeared before the terminal ileum. In contrast, 14.5% (621 g) of the digestible starch of dry-rolled RED disappeared in the large intestine. Sorghum grain variety and reconstitution appear to alter site and extent of starch and protein digestion, which may result in variable performance of cattle fed sorghum grain diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号