首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以雷笋笋肉及加工后的下脚料笋壳等为原料,探讨了制取雷笋膳食纤维的最佳工艺条件。通过正交试验设计,采用绿色木霉发酵法制备雷笋膳食纤维,并对其化学成分、持水力、溶胀性、对重金属束缚能力等特性进一步研究。结果表明:最佳发酵条件为8%的接种量,于32℃,pH为7.0条件下培养48 h;产品的膳食纤维含量为85.23%,可溶性膳食纤维为30.43%,持水力和溶胀性分别达到7.82 g/g和689 mL/g,对重金属Cd2+和Pb2+的最大束缚量分别为38.8μmol/g和37.4μmol/g。  相似文献   

2.
用木质素降解菌16-2发酵麦麸制取膳食纤维,以总膳食纤维含量作为指标,确定最佳的发酵条件,并对最佳发酵条件下获取的膳食纤维制品的物化特性进行研究.结果表明:最佳的发酵条件为pH值6.0,发酵温度28℃,发酵时间72 h;在最优发酵条件下获得的产品的总膳食纤维(TDF)为82.41%,不溶性膳食纤维(IDF)为55.12%,可溶性膳食纤维(SDF)为27.60%;膳食纤维的溶胀性和持水力分别为0 mL?g-1和4.2 g?g-1;其纤维素、木质素、粗蛋白、灰分质量分数分别为30.12%、18.28%、7.39%和15.04%;获得的膳食纤维对重金属离子Cd2+、Pb2+和Cu2+的最大束缚量分别为66.9、249.6和15.9μmol?g-1,对H2O2的清除率为23.1%.由此可见,利用微生物发酵法所制得的麦麸膳食纤维的持水力和生理活性较好.  相似文献   

3.
以可可果皮为原料,采用酸水解法提取水溶性膳食纤维和水不溶性膳食纤维。结果表明,可可水溶性膳食纤维的最佳提取工艺为:料液比为1∶30,水浴温度90℃,pH 2.0,提取时间30 min,得率为25.19%。可可膳食纤维总得率达57.99%,不溶性膳食纤维的持水力为5.23g/g,溶胀性为11.42mL/g。  相似文献   

4.
青稞麸膳食纤维研究   总被引:1,自引:0,他引:1  
本文探讨了从青稞麸皮中制备青稞膳食纤维的工艺方法,对制取的膳食纤维的组成成分、溶胀性、持水力进行了测试和分析。结果表明:利用青稞麸制得的膳食纤维组成成分主要有粗纤维、淀粉、蛋白质、水分、β-葡聚糖和矿物质等,总收率为37.5%,其持水能力为5.82g/g、溶胀为1.75ml/g。  相似文献   

5.
该研究采用碱法提取黍米粉膳食纤维,探讨了料液比、碱解温度、碱解时间、碱液浓度对黍米膳食纤维提取的影响,并采用正交实验方法确定最佳提取条件。结果表明:当料液比为1∶15、碱解温度为65℃、碱解时间为2.5h、碱液浓度为0.6%时,黍米膳食纤维的提取率可达12.25%,持水力为6.5g/g,溶胀性为5.8m L/g。  相似文献   

6.
以春笋为原料,以水溶性膳食纤维(soluble dietary fiber,SDF)提取率为考察指标,采用酶法与碱法相结合的方式,通过单因素及正交试验设计,优化春笋膳食纤维提取工艺,并对春笋膳食纤维的功能特性进行研究。结果表明:酶碱法提取春笋膳食纤维最佳工艺为α-淀粉酶用量0.5%,木聚糖酶用量0.4%,NaOH浓度0.6%,碱解时间120min,在此条件下春笋水溶性膳食纤维的提取率为12.70%,持水力为7.721g/g,膨胀力为7.963mL/g,持油力为3.368 g/g,对胆酸盐的吸附量为11.79 mg/g,亚硝酸钠的吸附量为39.87μg/g,具有良好的功能特性。  相似文献   

7.
采用化学法提取油茶蒲中的不溶性膳食纤维,对其提取工艺条件进行优化,并对油茶蒲膳食纤维含量和持水力、膨胀力等特性进行研究.结果表明:用碱提取法获得油茶蒲不溶性膳食纤维的最佳工艺条件为料液比1∶14,氢氧化钠浓度0.35mol/L,在80℃条件下反应3h;在此工艺条件下油茶蒲不溶性膳食纤维的提取率为40.4%,纯度达91.52%;油茶蒲不溶性膳食纤维的持水力为2.04g/g,膨胀力为1.2mL/g,其在一般食品体系(pH值、蔗糖浓度、盐分或防腐剂)条件下较为稳定.表明油茶蒲不溶性膳食纤维是一种含量丰富且具有较好特性的可利用资源.  相似文献   

8.
以蚕豆渣为原料,通过单因素试验和L9(34)正交试验得出用碱法和酶-碱法提取水不溶性膳食纤维的最佳工艺条件,并测定了2种方法制取的水不溶性膳食纤维的溶胀性和持水性。结果表明,碱法最佳工艺条件为:NaOH溶液浓度6g/100mL,碱浸温度50℃,碱浸时间40min;酶-碱法最佳工艺条件为:NaOH溶液浓度3g/100mL,碱浸温度60℃,碱浸时间50min,胰蛋白酶用量0.4g/100mL。酶-碱法制取的水不溶性膳食纤维具有较好的溶胀性和持水性。  相似文献   

9.
[目的]利用雪莲果榨汁后的废渣为原料,采用碱液浸提法制备水不溶性膳食纤维,为副产物的综合利用开辟新途径,为生产水不溶性膳食纤维提供新料源。[方法]以碱溶液用量、碱处理温度、碱处理时间为影响因素,在单因素试验的基础上进行正交试验,研究雪莲果渣水不溶性膳食纤维的最佳提取工艺条件。[结果]3种因素对膳食纤维含量的影响由大到小依次为:碱溶液用量〉碱浸提时间〉碱浸提温度。[结论]雪莲果渣中水不溶性膳食纤维的最佳提取工艺为:碱溶液用量2.0 ml/g,碱浸提时间60 min,碱浸提温度40℃。水不溶性膳食纤维得率为80.89%,持水力为8.58 g/g,溶胀性为8.73 ml/g。  相似文献   

10.
[目的]比较分析花生壳膳食纤维的提取方法、理化和功能特性。[方法]以花生壳为原料,分别采用直接水提法(W)、乳酸菌发酵法(F)和挤压膨化法(E)提取花生壳可溶性膳食纤维(SDF),详细比较它们的各种理化和功能特性。[结果]W-SDF、F-SDF和ESDF的溶解性分别为2.07%、3.74%和4.72%,持水力分别为8.63、12.84和15.28 g/g,持油力分别为2.32、3.07和4.17 g/g,膨胀力分别为11.73、13.85和16.23 m L/g,乳化活性分别为408.3、528.4和604.6 m L/L,乳化稳定性分别为428.7、489.3和563.8 m L/L,最小凝胶浓度分别为13.19%、10.24%和8.92%;在肠道环境(p H 7.0)中,对重金属Pb吸附能力分别为178.6、243.6、308.1μmol/g,对As的吸附能力分别为143.5、200.4、276.5μmol/g,对Cu的吸附能力分别为49.3、103.8、169.3μmol/g;在胃环境(p H 2.0)中,W-SDF、FSDF、E-SDF对重金属Pb的吸附能力分别为52.9、106.3、178.5μmol/g,对As的吸附能力分别为60.3、98.4、164.2μmol/g,对Cu的吸附能力分别为32.7、50.2、89.7μmol/g。[结论]研究结果可为花生壳膳食纤维的功能改性及综合利用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号