首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在10kV配电线路运行中,由于线路长、分布广,会出现各种各样的故障,而线路接地是最常见的故障.根据变电所电压互感器反映的现象,准确、快速地判断接地信号动作的原因,对于我们保证电网安全运行,提高供电可靠性具有十分重要的意义.1 线路接地故障造成接地信号动作造成单相接地的故障很多,如:一相导线断线落地,树枝碰及导线,导线因风偏对杆塔放电,跌落保险、瓷瓶等被击穿,变压器等电机设备损坏等.发生金属性接地故障时相电压为0,非故障相电压升高为3~(1/2) 倍相电压,零序电压为100 V.非金属性(经过渡电阻)接地时,相电压低,但不为0,非故障相电压升高接近于线电压,出现零序电压,造成接地信号动作.2 铁磁谐振造成接地信号动作  相似文献   

2.
<正>在10 kV或35 kV中性点不接地(或非有效接地)系统中,由于谐振过电压、间歇性弧光接地过电压的存在,经常导致10 kV或35 kV接地电压互感器烧毁或使某熔断器的熔丝熔断,从而造成系统需停电检修,给电力系统造成不必要的损失。本文对处理一起110 kV变电站10 kV母线系统发生单相接地后,电压互感器烧毁及一次保险熔断故障案例,从理论联系实际的角度分析电压互感器烧毁及一次保险熔断故障特征、起因,并认为烧毁电压互感器  相似文献   

3.
1 系统接地的特点小电流接地电力系统中 ,单相接地是一种常见的临时性故障 ,发生单相接地后 ,故障相对地电压降低 ,非故障两相的相电压升高 ,系统相电压由对称变成不对称 (见图 1) ,而线电压却依然对称 (因负序电压等于零 ,见图 2 ) ,因而 ,对用户的供电不构成影响 ,但升高的非故障相电压 ,可能在绝缘薄弱处引起击穿 ,继而造成短路 ;可能使电压互感器铁芯严重饱和 ,导致电压互感器严重过负荷而烧毁。所以 ,发生单相接地后 ,系统仍能继续运行一定时间 ,但不允许长期对外供电。图 1          图 22 系统接地监视装置的工作原理系…  相似文献   

4.
1接地的危害我国35kV及以下电力网为非直接接地电力网。在中性点非直接接地系统发生单相接地时,仅相电压发生畸变,中性点位移,而线电压不变,用户可继续工作,允许短期(不超过两小时)带接地点运行。因此我国农网35kV变电站普遍采用的检测接地故障的方法是利用母线绝缘监察  相似文献   

5.
变电站10kV母线发生接地故障,出现35kV相电压不稳,发出相电压越线告警的现象。通过事故现象进行原理分析,找出了引发故障的真正原因,并针对装置存在的事故隐患,采取了切实可行的解决措施。  相似文献   

6.
风电场中性点接地方式以及设备的选择均与系统电容电流密切相关。风电场35 kV集电线路系统宜采用有许多优点的小电阻接地,通过分析单相接地电阻电流与单相接地电容电流的倍数关系选择接地电阻,通过接地电阻的功率以及过负荷系数选择接地变压器。  相似文献   

7.
何连兵 《农村电工》1999,(11):32-32
1 事故经过1.1 1998年10月16日5:36,天气晴朗。湖北省宜昌县35kV桥边农用变电站中控室警铃响,发出10kVⅠ段母线接地信号,三相电压A相10kV,B相0kV,C相10kV。值班员还没有反应过来,喇叭响,桥06开关位置红灯闪光,桥06开关过流跳闸。15:40喇叭又响,桥05开关过流跳闸。然而,10kV母线B相接地仍未消除,B相电压仍为零,其他两相电压升高,断开桥05开关后,接地消除。  相似文献   

8.
张建国 《农村电工》2020,28(1):43-44
我国电力系统10 kV中性点接地的方式有直接接地与非直接接地两类,非直接接地分为不接地或经消弧线圈接地。直接接地是指10 kV电力系统中至少有一个中性点直接或经小阻抗与接地装置相连接。这种接地方式使中性点经常保持零电位,当系统发生单相接地故障时能限制非故障相对电压的升高,但单相接地故障电流较大,发生人身单相对地电击时,危险性较大,且会造成过电流保护动作停电。  相似文献   

9.
小电流接地系统是指采用中性点不接地或经消弧线圈接地的系统.在该系统中,当中性点非直接接地系统发生单相接地时,一般出现下列迹象.(1)警铃响,"××千伏母线接地"信号,中性点经消弧线圈接地的系统,常常还有"消弧线圈动作"的信号.(2)绝缘监察电压表三相指示值不同,接地相电压降低或为零,其他两相电压升高为线电压,此时为稳定性接地.如果绝缘监察电压表指针不停地来回摆动,出现这种现象即为间歇性接地.(3)当发生弧光接地产生过电压时,非故障相电压很高,表针打到头,常伴有电压互感器高压一次侧熔体熔断,甚至严重烧坏电压互感器.  相似文献   

10.
申海宏 《农村电工》2006,14(10):32-32
1 故障现象 2005年3月11日,我局固新35kV变电站发出10kV母线接地报警信号。该站10kV母线为一段不分段接线方式。修试人员及时赶到现场,用万用表测量10kV侧电压互感器二次绕组开口三角处电压为100V左右,L1相电压接近于0,L2相、L3相电压升高为线电压。  相似文献   

11.
分析了一起风电汇集站35 kV接地变因电力线路发生单相接地而引起接地变越级跳闸事故原因,并提出整改和防范措施。  相似文献   

12.
小电流接地系统发生单相接地故障时,由于线电压的大小和相位不变(仍对称),而且系统的绝缘又是按线电压设计的,因此允许短时间运行而不立即切除故障,带接地故障运行时间,一般10kV、35kV线路允许接地运行不超过2h,这主要是受电压互感器和消弧线圈带接地允许运行时间的限制。1接地故障的判断电压互感器一相高压保险熔断,报出接地信号。区分依据:接地故障时,故障相对地电压降低,非故障相对地电压升高,线电压不变,而电压互感器一相高压保险熔断时,对地电压一相降低,另两相电压不变,线电压指示则会降低。用变压器对空载母线合闸充电时,断路器三相…  相似文献   

13.
在我国35 kV及以下电压等级的中低压配网中,谐振接地的运行方式最为常用,单相接地短路是谐振接地系统最常见的故障。消弧线圈接地系统中发生单相接地时,由于消弧线圈的补偿作用,使得系统稳态的电流数值很小,和稳态电流相比,暂态电流特征量更加明显,而且消弧线圈的影响较小。利用小波变换提取故障时的暂态信号特征量,并在此基础上对单相接地故障进行了大量的仿真分析,结果验证了小波变换在谐振接地电网单相接地故障选线的有效性。  相似文献   

14.
<正>1小电流接地系统的概念在电压等级35 k V及以下电力系统中,变压器中性点不接地或经消弧线圈接地发生单相接地故障时,由于不构成短路回路,接地故障电流非常小,甚至比正常的负荷电流还小,这样的系统称为小电流接地系统。小电流接地系统发生单相接地故障时,系统可带故障运行1—2 h,提高了运行的可靠性,但这时非接地  相似文献   

15.
1问题的提出变电站二次电压常有三相同时升高的现象,相电压最高值达9kV左右,逐断、过流保护并未动作。将PT刀闸拉开,然后合上PT刀闸,这种现象消失。当负荷突然变化,常有这种现象发生。2原因分析在60/10kV的变电站中,10kV侧的中性点不接地,而电磁式电压互感器中性点是接地运行的。由于电网中电压互感器的突然投入,线路发生单相接地(包括弧光短路接地),系统运行方式突然改变,或某些电气设备投切,如因空投母线、技空载线路、区域性停送电、单相操作和线路接地,引起系统负荷发生较大变化,电网频率波动,负荷不平衡变化等造成…  相似文献   

16.
1 事故经过 2010年4月某日下午16时31分,某变电站故障警铃响.值班员检测发现10 kV母线接地,U相电压11 kV,V 相电压10 kV,W 相电压2 kV,三相电流正常,10 kV各出线正常.经初步判断10 kV母线接地.  相似文献   

17.
在小水电35千伏系统与6~10千伏系统中,广泛采用三只单相电压互感器并联和三相五柱式电压互感器,对中性点不接地或经消弧线圈接地的系统进行绝缘监视。根据实际运行观察,当中性点不接地系统发生单相接地,或电压互感器高压侧熔断器熔断一相时,保护回路都同样发出接地信号,这样既增加了误判断的可能性。又延长了寻找和排除故障的时间。农电系统由于历史、资金、技术等诸方面的原因,绝缘水平较低,即使是在国家规定的中性点不接地系统,单相接地时允许运行的时限内,  相似文献   

18.
正1事故基本情况某35kV变电站控制室发出音响告警信号,随着后台机出现接地信号,10kV母线L3相电压突然降为零,L1,L2相电压升高,达到10.2kV,并且三相电压值出现大范围的波动。事故造成该变电站10kV南母电压互感器柜内W相电压互感器烧毁,U,V相电压互感器外壳裂纹。  相似文献   

19.
配电系统中性点采用何种接地方式与对电器、设备、线路绝缘水平的要求有很大关系。因此需要根据经济技术比较综合考虑,中性点直接接地系统的绝缘水平比不接地系统低很多。发生一相接地时,仍保持低电位,但故障点的电流不再是系统的电容电流,而是短路电流。中性点不接地系统正常运行对各相对地电容相等,三相总对地电流为0,当发生单相接地时,故障相的对地电容被短路,中性点位移,故障相电压上升中性点非直接接地是35KV以下线路采用的方式,在发生单相接地时,相电压畸变,中性点位移,而线电压不变,需装设有选择性的接地保护。  相似文献   

20.
该文介绍了10kV线路单相接地故障及线路接地故障选线的原理,并阐述了变电站综合自动化系统中10kV线路接地选线的两种主要实现方法。即综合自动化系统的分布武接地选线系统和智站化自动调谐式消弧系统专用接地选相系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号