首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
Targhee sheep were selected for 120-d weight under irrigated pasture-drylot conditions at Davis (DW) and under range conditions at Hopland (HW). Unselected control lines were maintained in both environments (DC, HC1 and HC2). At Hopland, a line (DH) was maintained in which ewes were mated to Davis (DW) rams. Selection for 120-d weight was successful in both environments, with more improvement made in the drylot environment. The genetic improvement made in the drylot environment was expressed, although to a lesser degree, under range conditions. Correlated responses were analyzed. Birth weight increased significantly in all three selected lines; the increase was less in line DH than in the other two lines. In all selected lines, weights of ewes of all ages at mating increased significantly compared with their respective controls. Proportion of ewes lambing decreased (P less than .05) in line DH; the trend was negative but nonsignificant in line DW. Differences in litter size between lines within location were not significant. Lamb survival to weaning decreased in lines DW (P less than .05) and DH (P less than .01), compared with their respective controls; and the trend in HW was negative but nonsignificant. Fertility and survival data indicated that, under range conditions, the line selected under drylot conditions (DH) was less fit than the line selected under range conditions (HW). As a result of the decreases in lamb survival and fertility, none of the selected lines produced more total lamb weight weaned per ewe than the controls, in spite of the significant direct response to selection. Mature ewes of lines DH and DW produced less total lamb weight weaned per ewe (P less than .001 and P less than .05) than their respective controls. The results indicate that while single trait selection for growth rate to weaning results in heavier lambs, it does not increase and may decrease total lamb production per ewe.  相似文献   

2.
Lactation and growth of three contemporary lines of grade Targhee sheep developed from the same genetic base were characterized by three experiments performed over a period of 2 yr. Two lines (HW and DH) had been selected for 120-d weaning weights for 24 yr prior to beginning these experiments. A third line (C) was a randomly selected control. Year I experiment contrasted 10 DH with 7 C ram lambs fed to 58 kg. Year II experiments utilized 9 C, 14 DH and 10 HW ram lambs and 11 ewes suckling twins from each line. All Year II ram lambs were born and weaned as twins, then fed to 50 kg. Mature DH and HW ewes were heavier (P less than .05) than C ewes (65.2 and 68.8 vs 54.9 kg), and the DH and HW lambs grew faster than C lambs both before (P less than .05) and after weaning (P less than .05). While both DH and HW lambs drank more milk (2,419 and 2,368 vs 2,059 g X d-1 X pair-1; P less than .10) only HW ewes showed a trend towards greater potential milk production than controls (HW = 2,774 vs C = 2,155 g X d-1 X ewe-1 P less than .12). The HW lambs tended to be leaner than C lambs (P less than .05), but DH lambs did not differ from either line. Lambs from DH and HW lines required less post-weaning feed (121.9 and 129.3 vs 152.0 kg P less than .05) and exhibited 17 and 16% greater weight per day of age at 50 kg than controls (P less than .05). The DH line displayed lower feed: gain ratios than controls in both post-weaning trials (6.68 vs 7.30 to 58 kg; 5.83 vs 6.24 at 50 kg; P = .06).  相似文献   

3.
A study was undertaken to determine the effect of selection for high weaning weight on concentrations of plasma insulin-like growth factor I (IGF-I) in sheep and to evaluate the usefulness of measuring IGF-I as an aid in identification of genotypes with a higher growth potential. Lambs from two lines selected for high 120-d weight (HW and DH) and an unselected control (C) were weighed and blood samples collected monthly from birth to weaning (4 mo. of age). A clear differentiation in size occurred after 1 mo of age between lines, between sexes, and between singles and twins. At weaning, selected lines were 3.8 and 5.0 kg heavier than controls. Plasma IGF-I concentrations were 1.5 to 2 times higher (P less than .001) in males than in females after 1 mo of age. There were no significant differences in IGF-I concentration between lines or types of birth. However, line DH and single lambs on average had higher concentrations of IGF-I. Within sex and type of birth correlations between IGF-I concentrations at 0, 1, 2, 3, and 4 mo and 4-mo BW ranged from -.16 to .49 in the three lines, and most were not significant. Coefficients of variation for IGF-I concentrations (36 to 50%) were two to three times higher than those for BW (11 to 15%). Due to the high variability of IGF-I measurements, the low correlations between IGF-I concentration and BW, and the small differences in IGF-I between control and selected lines, measurement of plasma IGF-I is unlikely to be an effective aid to selection for growth rate in sheep.  相似文献   

4.
Single trait selection was practiced in three lines of Hereford cattle at two locations. Bulls were selected within sire families for increased weaning weight (WW) in the WW line (WWL), for postweaning gain (PG) in the PG line (PGL) and at random in the control line (CTL). Data include the performance of 2,467 calves produced from 1967 to 1981. Environmental effects were estimated from CTL (method I) and from multiple regression procedures (method II). Phenotypic and environmental time trends were negative for WW and generally were positive for PG. Estimated genetic gains for WW in WWL were 1.07 +/- .51 kg/yr in bulls and .62 +/- .36 kg/yr in heifers using method I and .50 +/- .31 kg/yr in bulls and .10 +/- .17 kg/yr in heifers using method II. Corresponding values for PG in PGL were .85 +/- .40 and 1.03 +/- .24 kg/yr in bulls and .30 +/- .28 and .37 +/- .12 kg in heifers. Correlated genetic gains for WW in PGL were larger than direct WW gains, whereas genetic gains for PG in WWL were smaller than direct PG gains. From method I, estimates of realized heritability (h2R) for WW were .31 +/- .18 in bulls and .22 +/- .13 in heifers. For PG, h2R was .31 +/- .13 in bulls and .06 +/- .12 in heifers. Using method II, h2R for WW was .09 +/- .08 in bulls and .02 +/- .07 in heifers. Corresponding values for PG were .29 +/- .10 and .11 +/- .08. Joint estimates of the realized genetic correlation between WW and PG were .69 +/- .18 and .46 +/- .31 for methods I and II, respectively. Variation in selection response was evaluated using quasi-replicates. Results of this study indicate that selection for PG improved both WW and PG faster than selection for WW.  相似文献   

5.
Conception rate, prenatal survival and litter size were recorded for 444 ewes of two age groups from five lines of grade Targhee sheep: two unselected control lines, HC1 and DC(C); two lines selected for 20 yr for increased 120-d weight, HW and DH(W); and a line selected for 18 yr for increased multiple births, T. Line T was equal or superior to the control lines in conception rate, prenatal survival and litter size in both age groups, although most of the differences were not significant. The W selected lines were inferior to the C and T lines in fertility and tended to be lower in prenatal survival, among mature ewes, resulting in a significantly lower number of lambs born per corpus luteum in the W lines than in the other two groups. Among yearlings, C ewes were non-significantly lower in fertility than T and W ewes, while W ewes were significantly lower than C and T ewes in prenatal survival. The T line ewes had higher overall reproductive performance than either of the other two groups. Ewes with two ovulations had a significantly higher conception rate than ewes with single ovulations. Gestation period was exceptionally uniform with a coefficient of variation of 1.3% and little difference due either to line or litter size. It was concluded that selection for multiple births improved overall reproductive performance, whereas selection for increased growth rate had an adverse effect on several components of reproduction, leading to a net decline in fitness.  相似文献   

6.
Ovulation rate was measured by laparoscopy at two consecutive cycles on 366 ewes 2 yr old and over and 85 yearling ewes of five lines of Targhees from the base base population; 53 yearling linecross ewes were also included. The lines were two unselected controls (HCl and DC), two selected for 21 yr for increased 120-d weight (HW and DH) and one selected for 19 yr for multiple births (T). Ewes were synchronized in late July or early August at the start of the normal breeding season with intravaginal pessaries impregnated with 60 mg methylacetoxyprogesterone and examined at first and second estrus. Ovulation had occurred in both cycles in 327 (89%) and 177 (85%) of the mature and yearling ewes, respectively. Overall mean numbers of corpora lutea at first and second estrus were 1.42 and 1.63, respectively for ewes 2 yr and over and 1.20 and 1.44 for yearlings, indicating an effect of synchronizing treatment, season, flushing, or a combination of these. Among mature ewes, ovulation rate was higher (P less than .05) in DH (+.20), HW (+.19) and T (+.16) than in controls at first estrus, and in HW (+.29) and T (+.21) but not DH (-.04) at second estrus. Among yearlings, differences were significant only at second estrus (HW, +.40; T, +.35) and again not for DH (+.08). The failure of line DH to increase in ovulation rate from first to second estrus as did other lines was transmitted to linecross progeny. Body weight within line affected ovulation rate significantly, with a greater effect at second estrus, in both age groups. Adjustment for body weight removed the difference between HW and controls but not between T and controls. Repeatability of corpora lutea count was .27 and .25 for mature and yearling ewes, respectively.  相似文献   

7.
Direct selection for increased litter size was done for nine generations. The select line consisted of approximately 15 sires and 60 dams per generation, and selection was based on estimated breeding values for number of live pigs. A control line of approximately 10 sires and 30 dams was maintained with stabilizing selection. Heritabilities estimated in the select line using restricted maximal likelihood procedures, daughter-dam regression within sires, and half-sib analysis were 0.01, 0.04, and 0.00 for number of pigs born alive (NBA) and 0.02, 0.16, and 0.00 for total born per litter (TB). Corresponding estimates for the control line were 0.01, 0.06, and 0.23 and 0.02, 0.07, and 0.09 for NBA and TB, respectively. Realized heritabilities for NBA from multiple regression were 0.09 +/- 0.08 in the select line and 0.11 +/- 0.166 in the control line. Heritability estimated from regression of differences in response between lines on differences in cumulative selection differentials was 0.13 +/- 0.07. At Generation 9, litter sizes, estimated breeding values, and cumulative selection differentials were 0.86 (P < 0.05), 0.63 (P < 0.01), and 9.05 (P < 0.01) pigs larger for the select line than for the control line. Phenotypic differences between lines for TB, adjusted backfat (BF), and days to 104 kg (DAYS) were not significant. Genetic trends in the select line were 0.053 +/- 0.002 pigs/yr for NBA, 0.054 +/- 0.013 mm/yr for BF, and 0.398 +/- 0.110 d/yr for DAYS. Corresponding phenotypic trends were 0.145 +/- 0.051 pigs/yr, -0.012 +/- 0.089 mm per yr, and 0.307 +/- 0.278 d/yr, respectively. Genetic trends in the control line were -0.026 +/- 0.004 pigs/yr for NBA, 0.026 +/- 0.022 mm/yr for BF, and -0.532 +/- 0.182 d/yr for DAYS. Corresponding phenotypic trends were 0.001 +/- 0.085 pigs/yr, -0.043 +/- 0.147 mm/yr, and -0.519 +/- 0.462 d/yr, respectively. Litter size can be increased by direct selection using breeding values estimated from an animal model, in conjunction with rearing selected gilts in litters of 10 pigs or less.  相似文献   

8.
The phenotypic ratio of a calf's weaning weight to its dam's weight is thought to be an indicator of efficiency of the cow. Thus, the objectives of this research were to 1) estimate genetic parameters for the ratio of 200-d calf weight to mature-equivalent cow weight at weaning, its components, and other growth traits; and 2) evaluate responses to selection based on the ratio. Phenotypes evaluated were the ratio (100 kg/ kg; n = 4,184), birth weight (kg; n = 5,083), 200-d weight (kg; n = 4,902), 365-d weight (kg; n = 4,626), and mature-equivalent cow weight at weaning (kg; n = 4,375). In 1989, a randomly selected and mated control line and a line selected for greater values of the ratio were established. Average generation intervals were 3.39 +/- 0.05 and 3.90 +/- 0.08 yr in the ratio selected line and control line, respectively. The ratio selection line (n = 895) accumulated approximately 4.7 SD more selection differential than the control line (n = 912) over 2.5 generations. Data were analyzed with a multiple-trait Gibbs sampler for animal models to make Bayesian inferences. Heritability estimates (posterior mean +/- SD) for direct effects were 0.20 +/- 0.03, 0.46 +/- 0.04, 0.48 +/- 0.03, 0.58 +/- 0.04, and 0.76 +/- 0.02 for ratio, birth weight, 200-d weight, 365-d weight, and cow weight, respectively. Estimates for heritability of maternal effects were 0.58 +/- 0.05, 0.10 +/- 0.02, 0.13 +/- 0.02, and 0.10 +/- 0.02 for ratio, birth weight, 200-d weight, 365-d weight, respectively. Significant response to selection was limited to maternal effects: 1.32 +/- 0.38 ratio units per generation. As the ratio was a trait of the calf, estimated maternal genetic effects on the ratio contained both genetic effects due to dams that environmentally affected progeny performance and direct effects on the reciprocal of cow weight. In the control line, genetic trends in direct and maternal 200-d weight were -1.28 +/- 0.91 and 0.62 +/- 0.92 kg/generation, respectively, and the genetic trend in direct effects on cow weight was -5.72 +/- 2.80 kg/ generation. In the selection line, genetic trends in direct and maternal 200-d weight were 1.43 +/- 0.79 and 2.90 +/- 0.80 kg/generation and the genetic trend in cow weight was -2.79 +/- 2.43 kg/generation. Significant correlated responses were observed in direct effects on birth weight and maternal effects on 365-d weight. Results contraindicate use of the ratio of calf weaning weight to cow weight as a selection criterion.  相似文献   

9.
Effects of selection for 2-yr-old heifer calving ease (reduced calving difficulty score) on phenotypic differences between select and control lines of cattle for birth, growth, yearling hip height, and pelvic measurements were estimated. The selection objective was to decrease calving difficulty score in 2-yr-old heifers, while either maintaining or increasing yearling weight. The control line objective was to maintain or increase yearling weight by the same amount as the select lines and to maintain or proportionally increase birth weight. Select and control lines were formed in 4 purebred and 3 composite populations. Selection began in 1992 and select (n = 6,926) and control (n = 2,043) line calves were born from 1993 through 1999. Selection was based on EBV calculated from a 4-trait BLUP with observations on 2-yr-old calving difficulty scores, birth weight, weaning weight, and postweaning gain. Calving difficulty was scored on a scale from 1 (unassisted) to 7 (caesarean). All birth traits in select lines differed significantly from control lines. Averaged over 7 yr, select lines calved 3.0 +/- 0.5 d earlier, had 1.8 +/- 0.5 d shorter gestations, were 2.99 +/- 0.32 kg lighter at birth, had 5.6 +/- 1.5% fewer calves assisted at birth (averaged across dam ages), and 2-yr-old heifers had 0.80 +/- 0.08 lower calving difficulty score. Select lines averaged 19.8% lower 2-yr-old heifer calving assistance, but there was no difference in calving assistance of older cows, resulting in a highly significant interaction of selection and dam classification. Preweaning ADG was increased 15 +/- 9 g/d (1.7%) in select lines. Increased preweaning gain offset decreased birth weights in select lines, resulting in weaning weights that did not differ (P = 0.71). Postweaning ADG (P = 0.16) and yearling weight (P = 0.41) also did not differ. Increased preweaning ADG in select lines was not maintained after weaning. Select line hip heights were 0.70 +/- 0.21 cm shorter when measured as yearlings. Pelvic height, width, and area of select heifers measured 25 to 74 d after yearling weights were not significantly different. The differences between select and control lines significantly changed over the course of the experiment for some traits. In the final 2 yr of the experiment, select lines had 3.9 kg lower birth weight and 1.3 cm shorter hip heights. Selection can be used effectively to reduce 2-yr-old calving difficulty and calving assistance while maintaining or increasing yearling weight.  相似文献   

10.
Twenty-nine pairs of high-yielding dairy cows (HC; > or = 45 kg/day reached at least once during lactation) and corresponding control cows (CC; with milk yields representing the average yield of the herds) were examined on 29 Swiss farms from March 1995 to September 1996. The hypotheses were tested that there are differences in feed intake, body-conformation traits, body weight (BW), body condition score (BCS), fertility status and disease incidence between HC and CC cows. Cows were studied 2 weeks before and at 5, 9, 13, 17 and 40 weeks post-partum. HC cows produced more energy-corrected milk (ECM) than CC cows (10,670 +/- 321 kg in 293 +/- 5 days and 8385 +/- 283 kg in 294 +/- 4 days, respectively; P < or = 0.001) and yields in the first 100 days of lactation were greater in HC than in CC cows (46.2 +/- 1.1 and 36.2 +/- 1.0 kg ECM/day, respectively; P < or = 0.001). Concentrate intake was greater (P < or = 0.05) in HC than in CC cows (7.6 +/- 0.5 and 5.7 +/- 0.5 kg/day, respectively) and dry matter intakes (measured in week 5 of lactation over 3 days on six farms) were greater in HC than in CC cows (24.0 +/- 1.1 and 20.3 +/- 1.1 kg/day, respectively; P < or = 0.001). HC cows were taller than CC cows (wither heights 143.3 +/- 0.8 and 140.1 +/- 0.8 cm, respectively; P < or = 0.01). Although BW in HC cows was greater than in CC cows throughout the study, differences and decreases of BW during lactation were not significant. BCS at the end of pregnancy and decrements during lactation were similar in HC and CC cows. Fertility parameters were similar in HC and CC cows. Incidences of mastitis, claw and feet problems, hypocalcemia/downer cow syndrome, ovarian cysts and abortions were similar in HC and CC cows, but there were more indigestion problems in HC than in CC cows.  相似文献   

11.
The CGC population is a stabilized composite of 1/2 Red Angus, 1/4 Charolais, and 1/4 Tarentaise germplasm. The objectives of this research were to estimate genetic parameters for weight traits of CGC and to evaluate genetic responses resulting from selection based on the following index: I = 365-d weight 3.2(birth weight). Phenotypes evaluated were birth weight (n = 5,083), 200-d weight (n = 4,902), 365-d weight (n = 4,626), and the index. In addition, there were 1,433 cows with at least one recorded weight, and 4,375 total observations of cow weight collected at the time their calves were weaned. In 1989, a randomly selected control line and a line selected for greater values of the index were established. Average generation intervals were 3.16 +/- 0.04 and 3.90 +/- 0.08 yr in the index and control lines, respectively. The index selection line (n = 950) accumulated approximately 212 kg more selection differential than the control line over three generations (n = 912). Heritability estimates for direct effects were 0.32 +/- 0.04, 0.49 +/- 0.05, 0.49 +/- 0.05, 0.30 +/- 0.04, and 0.70 +/- 0.04 for the index, birth weight, 365-d weight, 200-d weight, and cow weight, respectively. Heritability estimates for maternal effects were 0.05 +/- 0.02, 0.11 +/- 0.03, 0.04 +/- 0.02, and 0.19 +/- 0.04 for the index, birth weight, 365-d weight, and 200-d weight, respectively. In the control line, direct genetic changes for the index and its components were small. For the index selection line, direct genetic changes for the index, birth weight, 365-d weight, 200-d weight, and cow weight were 6.0 +/- 0.3, 0.45 +/- 0.09, 7.74 +/- 0.55, 3.42 +/- 0.25, and 6.3 +/- 0.9 kg/generation, respectively. Maternal genetic changes were generally small for both the control and index selection lines. Thus, selection for the index produced positive correlated responses for direct genetic effects on BW traits at all ages, with only minor effects on maternal genetic effects. Results demonstrate that despite a genetic antagonism that compromises selection response for decreased birth weight and increased postnatal growth, favorable genetic responses can be achieved with the selection index used in this study.  相似文献   

12.
Records on 276 progeny were collected in the final 2 yr (1984 and 1985) of an 8-yr Hereford cattle selection project. Selection was practiced using the top sires from the American Hereford Association's National Cattle Evaluation based on yearling weight expected progeny difference. An unselected control line was maintained to monitor environmental change. One-half of each line was creep-fed during the preweaning period for the last 2 yr to evaluate genotype x environment interactions. Direct response to yearling weight selection averaged 28 +/- 8 kg. Correlated response to selection amounted to .057 +/- .028 kg/d in preweaning ADG, 14 +/- 6 kg in weaning weight, .085 +/- .033 kg/d in postweaning ADG, 4.6 +/- 1.5 cm in yearling hip height and 11.2 +/- 3.0 cm2 in yearling pelvic area. Yearling fat thickness and scrotal circumference were not significantly affected by selection. Significant effects of creep feeding were observed for yearling weight (15 +/- 3 kg), preweaning ADG (.067 +/- .012 kg/d), weaning weight (13 +/- 2 kg), yearling hip height (1.2 +/- .5 cm) and yearling fat thickness (.07 +/- .03 cm). Postweaning ADG, yearling pelvic area and yearling scrotal circumference were not affected by creep feeding. No significant genetic group x creep feeding effects were found for any of the traits analyzed, indicating calves genetically superior for growth did not gain any additional advantage from creep feeding.  相似文献   

13.
Data from a selection experiment for growth carried out in Brazil were analyzed in order to evaluate the direct responses on yearling weight (YW) and the correlated responses on the size and reproduction traits of cows. The experiment was started in 1976, and in 1980 three lines of Nelore cattle were established: selection (NeS), traditional (NeT), both selected for higher YW, and control (NeC), selected for mean YW. The NeT was an open line that eventually received bulls from other herds. Yearling weight records for animals born from 1978 to 1998 and yearling hip height (H550) offemales born from 1985 to 1998 were analyzed by fitting an animal model in order to obtain the genetic trends. The means for weight, height, and body condition score at the start of the breeding season, days to calving, and calving success of cows born from 1993 to 1996 (pertaining to the third to fourth generations of selection) were compared between the selected (NeS and NeT) and control lines. The genetic trends obtained after 16 yr for YW were 1.7 +/- 0.2, 2.3 +/- 0.2, and -0.1 +/- 0.1 kg/yr for males and 1.9 +/- 0.2, 2.4 +/- 0.2, and -0.1 +/- 0.1 kg/yr for females, for the NeS, NeT, and NeC lines, respectively. Corresponding values for H550 were 0.25 +/- 0.03, 0.24 +/- 0.04 and -0.04 +/- 0.03 cm/yr for females. Heifers and cows from NeS and NeT were 19% and 15% heavier and 4% taller at the start of the breeding season than those from NeC. No significant differences between selected (NeS and NeT) and control females were detected for body condition scores and for reproductive performance. The results indicate that selection for body weight promoted high and consistent weight and height responses both at the yearling and later ages, without compromising the reproductive performance of the cows with respect to days to calving and calving success.  相似文献   

14.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

15.
Our group has established two lines of meat-type chickens divergently selected for early (HC line) and late (LC line) antibody responsiveness at 10 days of age to immunization with inactivated pathogenic Escherichia coli bacteria. The question addressed in the study presented here is whether this selection has changed other immunological responses, increasing the overall 'early' immunocompetence. Broilers of the third and fourth generations (S3 and S4) of the selected lines (HC and LC) and a control, unselected line (CT) were vaccinated at 10 days of age with E. coli vaccine, Newcastle virus vaccine (NDV), sheep erythrocytes (SRBC) or bovine serum albumin (BSA). Line-HC chicks exhibited higher antibody titers to E. coli, NDV and SRBC than CT or LC chicks. At 20 days of age HC chicks demonstrated a higher total protein and a higher beta- and gamma-globulin levels in their serum. At 21 days of age, HC chicks cleared carbon particles faster than LC chicks. Peripheral blood lymphocytes (PBL) from HC chicks vaccinated with E. coli vaccine, proliferated in vitro more actively in the presence of the stimulating antigen than the PBL of LC chicks. Peripheral blood lymphocytes (PBL) obtained from HC-line chicks exhibited a higher proliferative response to concanavalin A (Con A)-, phytohemagglutinin (PHA)- or pokeweed mitogen (PWM)-stimulation than LC PBL. These results demonstrate that the selection for high or low antibody response to E. coli at a young age resulted also in a significant change in the response of other parameters of the immune system. The high response to E. coli was found to be associated with a high antibody response to other antigens (NDV and SRBC), increased phagocytic activity and increased proliferative response to antigen or mitogens. The selection most probably affected early immunocompetence.  相似文献   

16.
The objective of this study was to determine the relationships between birth-weight-associated modifications in histological or chemical muscle characteristics and meat quality traits in pigs. At 68 d of age, Pietrain x (Large White x Landrace) female littermates were allocated into 2 groups on the basis of low birth weight (LW = 1.05 +/- 0.04 kg; n = 15) or high birth weight (HW = 1.89 +/- 0.02 kg; n = 15). Pigs were reared in individual pens with free access to a standard diet up to slaughter at approximately 112 kg of BW. During the growing-finishing period, LW and HW pigs had a similar daily feed consumption, whereas G:F was lower (P = 0.009) for LW pigs than for HW littermates. At final BW, LW pigs were 12 d older (P < 0.001) than HW littermates. Estimated lean meat content, relative proportions of loin and ham in the carcass, and weights of LM and semitendinosus muscle (SM) were decreased (P < 0.05) in LW pigs compared with HW pigs. Conversely, the LW pigs exhibited a fatter carcass, greater activity levels of fatty acid synthase and malic enzyme in backfat (n = 15 per group), and enlarged subcutaneous adipocytes (n = 8 per group) compared with the HW pigs. Similarly, lipid content was increased by 25% (P = 0.009), and mean adipocyte diameter was 12% greater (P = 0.008) in the SM from LW pigs compared with that from HW pigs, whereas lipid content did not vary in the LM of either group. Mean myofiber cross-sectional areas were 14% greater in the LM (P = 0.045) and the SM (P = 0.062) of LW pigs than of HW pigs. Conversely, the total number of myofibers was less (P = 0.003) in the SM of LW vs. HW pigs. There were no differences between groups for glycolytic potential at slaughter and rate and extent of postmortem pH decline in both muscles, as well as for LM drip losses. A trained sensory test panel judged the roast loin meat to be less tender (P = 0.002) in LW pigs relative to HW pigs. Scores for juiciness, flavor, flouriness, and fibrousness of meat did not differ between groups. Overall, negative but somewhat low correlation coefficients were found between LM tenderness score and ultimate pH (r = -0.36; P = 0.06) and between LM tenderness and mean cross-sectional area of myofibers (r = -0.34; P = 0.07). This study demonstrates a lower tenderness of meat from pigs that had a LW, partly as a result of their enlarged myofibers at market weight.  相似文献   

17.
Correlated responses in reproductive and carcass traits were studied in 181 litters and 218 pigs from a line of Landrace pigs selected six generations for increased weight at 70 d of age and a contemporaneous, randomly selected control line. The reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th-rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle, and lean gain per day. Total weighted cumulative selection differential for 70-d weight was 30.2 kg. The realized heritability for 70-d weight was .13 +/- .06, and the change in 70-d weight was .65 +/- .29 kg per generation. The regression coefficient of litter size at 21 d on generation was .24 +/- .10 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Carcass length, specific gravity, and ham weight decreased (P less than .10) -.075 +/- .036 cm, -.00054 +/- .00027, and -.102 +/- .048 kg, respectively, per generation. Color score and lean gain per day increased .046 +/- .021 points and .0032 +/- .0013 kg/d, respectively, each generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Angora goat, Spanish goat, and Suffolk x Rambouillet sheep wethers (20 of each type; 30.4+/-.57, 31.3+/-.93, and 32.4+/-1.08 kg BW for Angora goats, Spanish goats, and sheep, respectively) were used to investigate influences of animal type and two grass-based pasture treatments on heat energy during summer grazing (mid-August through September in Oklahoma). The improved pasture treatment consisted of .7-ha paddocks primarily of Old World bluestem and johnsongrass, whereas the native pasture treatment entailed 10.8-ha paddocks dominated by big and little bluestems and indiangrass. Grasses were 95 to 100% of diets for the improved pasture treatment and 71 to 95% for the native pasture treatment; forbs were 2 to 25%, and shrubs were less than 4% of diets for the native pasture treatment. Metabolizable energy intake was similar (P > . 10) between pasture treatments but differed (P <.01) among animal types: 79, 99, and 113 kcal/(kg(.75) BW.d) for Angora goats, Spanish goats, and sheep, respectively; SE 7.1. Heat energy estimated via CO2 entry rate was affected by pasture treatment ( P = .08) and animal type (P < .001): improved pasture treatment 109, 132, and 151 kcal/(kg(.75) BW.d); native pasture treatment 126, 138, and 163 kcal/(kg(.75) BW.d) for Angora goats, Spanish goats, and sheep, respectively. Likewise, daylight grazing time was greater (P = .04) for the native than for the improved pasture treatment and differed (P < .01) among animal types: improved pasture treatment 5.3, 4.7, and 6.7 h; native pasture treatment 6.0, 5.7, and 8.1 h for Angora goats, Spanish goats, and sheep, respectively. In conclusion, heat energy during summer grazing of grass-based paddocks was less for goats than for sheep, and animal type can affect the increase in heat energy as energy intake and grazing time increase.  相似文献   

19.
Correlated responses in reproductive and carcass traits from a line of Duroc pigs selected for increased 200-d weight along with a randomly selected control line were studied in 189 litters (116 select, 73 control) and 191 pigs (106 select, 85 control), respectively. Reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle and lean gain per day. Total weighted cumulative selection differential for 200-d weight was 81.7 kg. The realized heritability for 200-d weight was .18 +/- .08, and the change in 200-d weight was 2.5 +/- 1.2 kg per generation. The regression coefficient of litter size born on generation was -.29 +/- .12 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Average backfat thickness, 10th rib backfat thickness, and belly weight increased by .093 +/- .016 cm, .122 +/- .029 cm, and .089 +/- .040 kg, respectively, per generation. Specific gravity, ham weight, shoulder weight, color score, and percentage of muscle decreased -.00086 +/- .00024, -.165 +/- .013 kg, -.104 +/- .011 kg, -.035 +/- .015 points, and -.47 +/- .12%, respectively, per generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Precocious puberty (<300 d of age) can be successfully induced in a majority of heifers with early weaning and continuous feeding of a high-concentrate diet. The objective of this experiment was to determine the relative effects of timing of feeding a high-concentrate diet on age at puberty in early-weaned heifers. Sixty crossbred Angus and Simmental heifer calves were weaned at 112 +/- 2 d of age and 155 +/- 3 kg of BW and were fed a receiving diet for 2 wk. Heifers were blocked by age and BW, and assigned randomly to receive a high-concentrate (60% corn; H) or control (30% corn; C) diet during phase 1 (mean age 126 to 196 d) and H or C during phase 2 (mean age 196 to 402 d), resulting in 4 treatments (HH, n = 15; HC, n = 15; CH, n = 15; and CC, n = 15). Blood samples were collected weekly beginning at a mean age of 175 d and assayed for progesterone concentration to determine age at puberty. After 56 d on the experimental diets, BW of heifers fed the H diet during phase 1 were greater (P < 0.05) than those of heifers fed the C diet (mean age of 182 d; treatment x mean age, P < 0.01). After 70 d on the new diets (mean age of 266 d), heifers fed the H diet during phase 2 reached heavier BW (P < 0.05) than heifers fed the C diet, when compared within phase 1 diet groups (HH > HC; CH > CC). Body weights in HC and CH treatments differed from a mean age of 169 through 238 d, after which BW did not differ between these treatments. The ADG over the entire experimental period was greatest for the HH treatment (1.2 +/- 0.04 kg/d; P < 0.05), followed by the HC and CH treatments (1.0 +/- 0.03 and 1.0 +/- 0.02 kg/d, respectively), which were not different, and the CC treatment gained the least (0.7 +/- 0.04 kg/d; P < 0.05). Precocious puberty occurred in 67, 47, 47, and 20% of heifers in the HH, HC, CH, and CC treatments, respectively (HH > CC; P < 0.05). Mean age at puberty for the HH and HC treatments (271 +/- 17 and 283 +/- 17 d of age, respectively) was earlier (P < 0.05) than for the CC treatment (331 +/- 11 d of age). Age at puberty in the CH treatment (304 +/- 13 d of age) was intermediate to and not different from the other treatments. Heifers fed the H diet during phase 1 attained puberty earlier (P < 0.05) than heifers fed the C diet during phase 1. In conclusion, increasing dietary energy intake in early-weaned heifers, through feeding a high-concentrate diet from 126 to 196 d of age, decreased age at puberty regardless of the diet fed after 196 d of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号