首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
双流道及双叶片式叶轮内流场的PIV测量与比较   总被引:2,自引:1,他引:2  
为研究双流道叶轮与普通叶片式叶轮的内部流动区别,设计制作了满足粒子图像测速仪(PIV)测量要求的模型泵,模型泵的叶轮有双流道和双叶片2种形式。用PIV分别测量了双流道叶轮和双叶片叶轮的内部流动,并自编程序对测量所得绝对速度进行分解,得到相对速度。由测量结果可知:在双叶片叶轮内,流体基本沿叶片吸力面流动,叶片压力面上的相对速度较低,在压力面出口出现了速度很低的回流区,有明显“射流-尾迹”特征。双流道叶轮内流动也不均匀,但没有出现明显的回流区,流态较好。流量改变时2种叶轮内的流动变化规律一致,随着流量增大,相对速度逐渐增大、绝对速度减小,设计工况下叶轮内的流态最好,小流量工况下流动扩散严重。  相似文献   

2.
应用流场计算软件 CFX,采用修正的 RNG k -ε湍流模型,数值模拟了5种流量(0.6Qd ,0.8Qd ,1.0Qd ,1.2Qd 和1.4Qd )工况下恒扬程泵的内部流场,重点对0.6Qd ,1.0Qd 和1.4Qd 等3种流量工况下叶轮中间流面的压力场以及速度场进行研究,并提取了该3种流量工况下叶片中间流线的载荷进行分析.采用正则化螺旋度 Hn 对叶轮中间流面以及蜗壳8个断面的涡旋流动进行了分析.模拟结果表明:叶轮出口边存在明显的回流,回流角随着流量的增大而减小;叶片形状对叶片载荷分布规律具有一定的影响;相对于主流运动方向而言,叶间流道内主要是正向涡旋,而蜗壳内部是对称性旋涡,蜗壳内旋涡从隔舌处的断面到螺旋线末端的断面经历了由稳定到不稳定再到稳定的发展过程.  相似文献   

3.
双流道污水泵叶轮内部三维湍流流动的数值模拟   总被引:4,自引:0,他引:4  
基于Reynolds时均化的N-S方程和标准的k-ε两方程湍流模型,运用流场计算软件Fluent,在不同工况下对QW950-15-55型双流道污水泵叶轮蜗壳耦合流场进行了数值模拟研究,捕捉到了双流道叶轮内流的重要特征.依据计算结果,主要分析了设计工况时双流道叶轮内部的速度和压力分布情况.叶轮内压力分布与叶片式离心泵的数值模拟是类似的;在偏离设计的大流量工况,叶轮流道内的流动呈现明显的不对称性;叶轮内部流动为混合螺旋流,由轴向旋涡作用引发的相对速度旋涡的涡核位置靠近后盖板和压力侧;叶轮出口的压力和绝对速度分布呈现明显的周期性,其周期性与叶轮流道的周期性是对应的;静压周向分布的轴向不对称性较小,而速度周向分布的不对称性则较大.对比试验与数值模拟的扬程和水力效率值,数据基本吻合.  相似文献   

4.
为研究偏工况下不同叶轮外径D2(101,103,105 mm)对双流道污水泵内压力脉动的影响,采用Mixture多相流模型对泵内固液两相流进行了非定常数值计算,并进行了试验验证.偏工况主要包括了小流量工况0.6Qd和大流量工况1.2Qd.结果表明,在小流量工况下,蜗壳周向压力脉动总体上均随D2增大而增大,且叶轮外径从103 mm增大到105 mm时压力脉动最大增幅达到53.2%;而在大流量工况时,除VP3,VP6和VP7点外,其余各点处蜗壳周向压力脉动均随D2增大而小幅增大.在2种流量工况下,蜗壳周向压力脉动均随角度变化剧烈震荡,同时,偏工况下较小的叶轮外径有利于减小泵内压力脉动.在固液两相流工况下,当D2为105 mm时隔舌附近各点瞬时静压值波动都很剧烈,各点压力脉动主频在0.6Qd下以低频为主,而在1.2Qd下则均是叶频,且在该工况下各点压力脉动最大幅值均随D2增大而增大.研究结果可为双流道污水泵的优化设计提供依据.  相似文献   

5.
为了研究低比转数离心泵在小流量下的压力脉动特性,以IS50-32-160型离心泵为研究对象,在对模型泵进行网格无关性分析的基础上,采用分离涡模拟对不同小流量工况下的内部非定常流动进行数值计算.计算结果表明:隔舌对叶轮内部流动的影响较大,靠近隔舌的3个流道内均存在不同程度的进、出口旋涡,进口旋涡从叶片吸力面处产生,方向与叶轮旋转方向相同,而出口旋涡在叶片压力面产生,方向与叶轮旋转方向相同;随着流量的减小,旋涡不断发展,尤其是隔舌所在流道,进、出口旋涡会堵塞整个流道,且蜗壳出口会出现流动分离,导致出流不均匀;对叶轮和蜗壳内各监测点进行快速傅里叶变换,发现叶轮内的主要脉动频率为轴频及其倍频,且脉动从吸力面到压力面、进口到出口均逐渐增大;蜗壳内主要脉动频率为叶频及其倍频,且越靠近隔舌脉动越大,在隔舌处达到极大值;各监测点的脉动强度随流量的减小而增强.  相似文献   

6.
零流量工况下双叶片泵内部流场三维PIV测量   总被引:1,自引:0,他引:1  
采用三维PIV测试技术对一比转数为111的双叶片泵零流量工况下的内部流动进行了测量.采用基于光纤制作的外触发同步系统和等效标定方法等关键技术来保证三维PIV测试精度.在Visual C++2005平台下,根据速度三角形,编写了三维PIV速度合成程序,将测量的绝对速度与圆周速度合成得到相对速度.结果表明:隔舌对叶轮内绝对速度场影响较大;叶轮流道内3个测量平面上都存在较大范围的漩涡区,但漩涡的大小、位置有所不同;蜗壳扩散段存在低速区域,该区域的绝对速度小于0.62 m/s,且存在漩涡现象;3个测量平面上,叶轮流道内、蜗壳扩散段及隔舌附近区域的轴向速度各不相同.  相似文献   

7.
轴流泵非稳定工况下叶轮进口流场试验研究   总被引:2,自引:0,他引:2  
在小流量工况下,由于轴流泵不稳定工况区(马鞍区)的存在,使其稳定运行的范围大大缩小.详细测量了轴流泵能量性能参数,获得了"双马鞍"形的扬程-流量曲线,采用PIV技术对0.73Qd,0.55Qd0,.43Qd及0.33Qd流量工况下的叶轮进口轴面流场进行了二维流速测量.结果表明:小流量工况下,在叶轮进口靠近壁面处存在明显回流,回流区域随流量的减小而增大,同时叶轮进口轴面内湍流强度也随着流量减小而增大;相同工况下,轴向流速的湍流强度低于径向流速的湍流强度,靠近叶轮外壳处的湍流强度大于靠近轮毂处的湍流强度;通过流道壁面上的丝线示踪,显示了随着流量的减小,叶轮进口外壁处的流体由轴向流动向周向流动的演化过程.研究结果表明小流量工况下,轴流泵叶轮进口流场不稳定导致水泵效率偏低,为进一步提高水泵性能提供了参考.  相似文献   

8.
为研究叶轮与蜗壳的动静干涉作用,采用三维PIV对一双叶片离心泵最优工况下叶轮流道内3个截面内的流动进行了测量,每个截面内测量9个叶片位置.结果表明:随着叶片与隔舌距离的不同,叶轮流道内的相对速度场和轴向速度场发生了明显的变化;当叶片在隔舌与蜗壳1断面间时,流道内的流量最小,相对速度场分布最为均匀;在前盖板附近吸力面的流道出口出现了低速区,形成了射流-尾迹结构,并在流道进口发现较强的轴向速度;当叶片随着旋转方向远离隔舌时,流道内的流量逐渐增大,在叶片压力面进口出现了流动分离并产生了旋涡,而流道出口的相对速度变得平稳,同时流道进口的轴向速度减弱;当叶片随着旋转方向靠近隔舌时,叶轮流道内的流量逐渐减小,流道进口的旋涡减弱并消失,流道出口的压力面附近相对速度降低,吸力面附近的相对速度增大,同时流道进口的轴向速度继续减弱.  相似文献   

9.
混流泵叶轮内流动性能直接影响整台泵的外部性能.为了探讨混流泵叶轮内部的流动机理,设计了透明蜗壳,加工了1套半开式混流叶轮,建立了混流泵试验系统并利用PIV对其在不同流量工况下叶轮内部的流动性能进行了试验测试.通过对叶轮流道内的时均相对速度分析后发现,在设计流量工况下压力面附近相对速度从进口到出口先减小后增大,吸力面附近的相对速度先增大后逐渐减小.在叶轮出口处沿叶片高度方向的相对速度靠近压力面附近变化不大,靠近吸力面附近从叶根到叶顶逐渐降低,相对流速最小值出现在吸力面叶顶附近.在小流量工况下,流道中部叶高截面至叶顶的区域内会出现回流现象.同时还研究了不对称形状的蜗壳对叶轮内部流动的影响,对叶轮相对蜗壳不同位置流道内的流动进行了测试,发现相对蜗壳不同位置流道内的相对流速的分布趋势基本相同.  相似文献   

10.
粘度对离心泵蜗壳内部流动的影响   总被引:2,自引:0,他引:2  
利用LDV分别测量了离心泵最优工况和小流量工况下矩形断面蜗壳内3个断面的清水和粘油平均流动。试验表明,蜗壳内部液体绝对速度的圆周分速度比径向分速度大一个数量级;蜗壳断面内存在旋向相反的一对旋涡;液体粘度越大,蜗壳内部流动越不均匀;蜗壳断面内流体角动量不守恒,液体粘度越大,角动量越不守恒;最优工况和小流量工况时,蜗壳内部流动都是扩散流动;液体粘度越大,流动扩散越小。  相似文献   

11.
为探索旋流泵内盐析颗粒的流动规律,利用PIV粒子图像速度场仪对泵内颗粒流场进行了测量,获得了颗粒准三维速度场分布,初步掌握了泵内不同工况下颗粒的流动特征.结果表明,叶轮各轴截面上速度分布差异显著,无叶腔中速度分布呈现强迫涡旋和自由涡旋的特征;流量增加,颗粒流在叶轮进口处相对速度增大,出口处相对液流角也增大,无叶腔小半径处颗粒径向速度分量随之增大;颗粒流存在纵向涡旋,涡旋中心位于叶轮流道中部,且随流量变化并不明显.  相似文献   

12.
针对小流量工况采用计算流体动力学(CFD)对离心泵的性能进行数值模拟的精度问题,以一低比转数离心泵为例对其进行整体结构化网格划分,采用ANSYS CFX 14.5软件对模型离心泵的进口管路流道、叶轮流道以及蜗壳流道组成的流场进行定常数值计算.从改变整体网络数量与叶轮网格数量的角度分别进行网格无关性验证对0.6及1.0倍设计流量下的模拟精度进行比较研究.准确性评价指标采用外部特性扬程值及PIV得到的叶轮和蜗壳内部分区域的绝对速度,具有较强的说服性.分析表明:对总体网格数增加的方法进行的无关性分析即可满足要求;网格数量的增加对叶轮内绝对速度影响较大,而对蜗壳内绝对速度影响很小;在设计工况下蜗壳和叶轮内部绝对速度的预测精度都比0.6Qd工况下的高些,因而在进一步小流量流动特性分析时,需要更精密的网格.通过对外特性和内流场速度的对比,最终选择网格模型为网格IGD.  相似文献   

13.
通过对传统机电一体式排污泵的结构改造,以有机玻璃材料来加工叶轮及蜗壳,利用半螺旋形吸水室改变来流方向,成功获得适合于PIV测试的试验泵段.采用轴编码器等同步装置和空心玻璃球作为示踪粒子,对3个工况下叶轮与蜗壳5个不同相对位置的叶轮中间截面流场进行拍摄,取得了较好的结果.从PIV试验结果可以看出,在大流量1.4Qd和设计流量1.0Qd工况下,叶轮内部流场在任意时刻均能够保持较好的轴对称性分布,而极小流量0.2Qd情况下,叶轮内部流场较为紊乱,且表现出明显的非轴对称性.在所拍摄的5个时刻内,通道A由于穿过隔舌位置,其出口圆周的相对速度分布梯度和小流量下旋涡的强度、大小等均受到隔舌的强烈影响.在极小流量情况下,通道C随着叶轮的旋转,压力面附近的脱流不断加剧并形成旋涡,最终堵塞大部分流道.  相似文献   

14.
低比转数排污泵数值计算与实验   总被引:1,自引:0,他引:1  
结合数值计算与PIV实验手段,对一改造过的比转数ns =60的潜水排污泵蜗壳内部流动进行了研究。采用六面体结构化网格对其进行全流场数值计算,计算结果表明,由于口环泄漏导致该区域附近的湍动能最大,且设计工况下蜗壳内部湍动能要大于叶轮内部。另外,通过外特性实验结果、PIV测试结果与CFD数值计算的对比发现,二者能够较好地吻合,验证了数值计算的正确性,并得出以下结论:受叶轮出口绝对速度与圆周方向夹角随流量增加而变大的影响,在0.6Qopt 和Qopt 流量下第8断面内的流体一部分再次通过蜗壳进入第1断面内,导致蜗壳隔舌与蜗壳进口之间的速度较高,在该处造成较大的速度梯度;而在1.4 Qopt 工况下此现象消失,蜗壳第8断面附近的速度最高,速度梯度较大;并且在大流量1.4Qopt 下蜗壳第1断面与第5断面之间能够明显地看出3个从叶轮出口射流出来的高速尾迹区域。  相似文献   

15.
离心泵叶轮非设计工况下内部湍流流场的模拟   总被引:3,自引:0,他引:3  
采用ANSYSCFX11.0软件、标准k—ε湍流模型及SST湍流模型封闭雷诺平均方程,对低比转速离心泵叶轮在非设计工况下内部流场进行了三维定常湍流数值模拟,获取了离心泵叶轮内部流场结构,此两种模型所计算出的内部流场图案与参考文献中的PIV试验结果以及大涡模拟(LES)的计算结果基本一致,获得了文献中出现的“交替失速”这一特殊的流动现象.此外,对不同直径处将本计算所得到的速度轮廓的形态与文献中的PIV及LES结果进行了比较.结果显示采用标准k—ε湍流模型及SsT湍流模型能够对离心泵内部流动进行比较精确的模拟,但是在局部上与PIV试验结果有一定的偏差,并进行了初步分析,但仍需要对湍流模型进行进一步的探索和研究.  相似文献   

16.
立式轴流泵进水流场PIV测量   总被引:6,自引:0,他引:6  
采用3D-PIV激光流速仪对立式轴流泵喇叭管和进水池内部流动进行了测量,2个典型流量工况下的测量结果表明:设计流量(Q0)工况时,叶轮进口断面流速场呈对称分布,断面轴向流速均匀度达到0.87,无旋涡发生,喇叭管内及泵叶轮进口水流流态良好;大流量(1.2Q0)工况时,叶轮进口断面流速场呈非对称分布,断面轴向流速均匀度仅0.70,流道及喇叭管内有较强的旋涡产生,并进入叶轮诱发振动。分析了旋涡核心区的细部流动结构,导出了旋涡的数字形态,揭示了涡核内水流圆周分速度的分布规律,涡核中心的流速接近为零,圆周分速随涡核半径增加而增大,在半径3~5 mm范围内速度梯度最大,旋涡的强迫涡特征十分明显。提出了基于流量的单元面积加权流速均匀度及相应的计算公式,使过流断面流速均匀度的计算结果更为合理、更加符合实际。  相似文献   

17.
离心泵叶轮内二维PIV非定常流动测量   总被引:1,自引:0,他引:1  
采用二维PIV对离心泵蜗舌附近旋转叶轮内的流场进行了测量,获得了5个不同相位的二维相对速度场.结果显示:在流量Q/Qbep=0.52时,叶轮内压力面存在逆时针方向的回流,叶片在靠近蜗舌时,吸力面存在顺时针方向的回流.在流量Q/Qbep=1.0时,叶轮出口存在射流/尾迹现象.研究表明:小流量工况下,蜗舌对叶轮内的相对速度场有显著影响,而在最优工况下影响较弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号