首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater is being mined in much of the irrigated area of the central and southern High Plains of the USA. Profits and risks inherent in irrigation management depend on the association between crop yield and level of water application. Research was conducted over a 14 year period (1974–1987) to establish the yield vs. water application relationships of corn, grain sorghum, and sunflower. The research was located near Tribune, Kansas, USA on a Ulysses silt loam soil. Plots were level-basins to which water was added individually through gated pipe. Irrigation studies of the three crops were located adjacent to each other. Irrigation treatments were arranged in completely randomized blocks with three replications. As total irrigation amount increased from 100 to 200, 200 to 300, and 300 to 400 mm, sunflower yield increased by 0.53 Mg ha−1, 0.43 Mg ha−1, and 0.37 Mg ha−1, respectively. Corn outyielded grain sorghum at total irrigation amounts of 345 mm and above. Yield increase over continuous dryland was greater in corn than in grain sorghum at total irrigation amounts above 206 mm. Therefore, if grain mass is the consideration, grain sorghum is a better choice than corn at less than 206 mm of irrigation, whereas corn is a better choice than grain sorghum at more than 206 mm of irrigation.  相似文献   

2.
Summary Irrigated winter barley (Hordeum vulgare L.) can be a profitable alternative to some low profit major crops in the Texas High Plains. A six-year evaluation of yield response related to total spring irrigation water, applied by surface methods (furrow), and seasonal precipitation resulted in a multivariate function explaining 74% of the yield variation. Predicted yields varied from a low of 3.69 Mg ha–1 to a maximum 6.18 Mg ha–1 with 0 and 389 mm, respectively, based on average monthly precipitation quantities. Precipitation is skewed to less than average in th semi-arid Texas High Plains. Using modal precipitation amounts of 40% of average precipitation, yield estimates were reduced to 2.29 Mg ha–1 with zero spring irrigation and to 5.63 Mg ha–1 at the peak with 450 mm. A second multivariate yield response function related to alternative timings of single and multiple spring irrigations explained 76% of the variation in yields. Among all combinations of 1, 2, 3, and 4 spring irrigations, irrigation water-use efficiency was estimated to be highest with one application at the boot stage of development. All other single and combinations of multiple irrigations resulted in lower water-use efficiencies. A comparison of enterprise budgets of four irrigation timing alternatives and levels of application indicated highest profit over variable costs, $ 287 ha–1, was attained by applying a total of 307 mm in three spring applications at the boot, head, and milk stages. A lower level of 217 mm applied at boot and milk stages was $ 12 ha–1 less profitable and a higher level of 425 mm was $ 24 ha–1 less profitable. When fixed costs of irrigation facilities, land, and machinery were considered, returns to management and risk were highest, $ 101 ha–1, with 217 mm. Using 40% of average precipitation, profits were reduced $ 65 ha–1 with 217 mm and $ 69 ha–1 with 307 mm spring irrigation levels.Respectively, agricultural economist, research scientist, and research associate, Texas Agr. Exp. Station, Amarillo, Texas; Emeritus Extension agronomist, Texas Agr. Ext. Service, Amarillo, Texas; agricultural engineer, Texas Agr. Exp. Station, Amarillo, Texas  相似文献   

3.
Improvement of irrigation management in areas subjected to periods of water scarcity requires good knowledge of system performance over long time periods. We have conducted a study aimed at characterizing the behaviour of an irrigated area encompassing over 7000 ha in Southern Spain, since its inception in 1991. Detailed cropping pattern and plot water use records allowed the assessment of irrigation scheme performance using a simulation model that computed maximum irrigation requirements for every plot during the first 15 years of system operations. The ratio of irrigation water used to maximum irrigation requirements (Annual Relative Irrigation Supply, ARIS) was well below 1 and oscillated around 0.6 in the 12 years that there were no water supply restrictions in the district. The ARIS values varied among crops, however, from values between 0.2 and 0.3 for sunflower and wheat, to values approaching 1 for cotton and sugar beet. Farmer interviews revealed some of the causes for the low irrigation water usage which were mainly associated with the attempt to balance profitability and stability, and with the lack of incentives to achieve maximum yields in crops subsidized by the Common Agricultural Policy (CAP) of the European Union. The response to water scarcity was also documented through interviews and demonstrated that the change in crop choice is the primary reaction to an anticipated constraint in water supply. Water productivity (value of production divided by the volume of irrigation water delivered; WP) in the district was moderate and highly variable (around 2€ m−3) and did not increase with time. Irrigation water productivity (increase in production value due to irrigation divided by irrigation water delivered) was much lower (0.65€ m−3) and also, it did not increase with time. The lack of improvement in WP, the low irrigation water usage, and the changes in cropping patterns over the first 15 years of operation indicate that performance trends in irrigated agriculture are determined by a complex mix of technical, economic, and socio-cultural factors, as those that characterized the behaviour of the Genil-Cabra irrigation scheme.  相似文献   

4.
Field water supply (FWS) combines the three sources of water used by a crop for evapotranspiration (ET), and consists of available soil water at planting (ASWP), rainfall, and irrigation. Examining the grain yield and FWS relationship (Yg:FWS) may provide insight into the reported variability in crop water production functions such as water productivity (WP) and irrigation water productivity (IWP). Since water is most productive when entirely consumed in ET, diversion of FWS into non-ET losses such as drainage and excessive soil water evaporation results in declines in WP and IWP. The objective of this experiment was to examine the Yg:FWS and Yg:ET relationships of grain sorghum grown under a range of irrigation treatments (0, 25, 50, and 100% replacement of ET), beginning soil water contents, evaporative demands, in the Amarillo, Pullman, and Ulysses soils of the Great Plains. The purpose was to determine the amount of FWS beyond which declines in WP and IWP began to occur due to non-ET losses as indicated by a change in the slope and intercept of the Yg:FWS and Yg:ET relationships. Large amounts of non-ET irrigation application losses occurred in the finer-textured soils in the T-100 irrigation treatment. In both years, the T-100 irrigation application amounts and ASWP resulted in a FWS ranging from 750 to 870 mm which exceeded the maximum ET requirement of 530-630 mm and which reduced WP and IWP. Piecewise regression analysis of the Yg:FWS and Yg:ET relationships for the crops in the Pullman and Ulysses soils identified the knot point, or change in slope and intercept, in the FWS where both WP and IWP tended to be optimized. This was about 500 mm in both soils, and involved the utilization of about 250 mm in ASWP, irrigation applications averaging about 250 mm, and about 60-130 mm remaining in the soil at harvest. For the coarser-textured Amarillo soil, the yield response to increasing FWS was linear, because non-ET application losses such as drainage gradually increased with the irrigation application amount. The linear Yg response in the sandy Amarillo soil and the piecewise Yg responses in the clay and silt loams of the Pullman and Ulysses soils to FWS also reflected the difference in water-holding capacities of the soils that affected the amount of available water as irrigation increased. Irrigating without considering FWS resulted in non-ET irrigation application losses and declines in WP and IWP.  相似文献   

5.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

6.
Adoption of more uniform sprinkler systems involves a trade off between increased capital expenditure on equipment and the benefits associated with reduced water application when application is uniform. An empirical analysis of the economics of lettuce production, grown using sprinkler systems under the windy conditions of the Swan Coastal plain in Western Australia is presented, where the yield response to water exhibits eventual declining marginal productivity. A range of sprinkler designs that have been field-tested for performance were examined. The optimal per-crop water application for the least efficient system was up to double the application rate of the most efficient system. However, the economic analysis demonstrates that there are clear incentives for adopting more water-efficient systems despite the higher capital cost, because of the yield depressing effect of over-watering. Sensitivity analysis demonstrates substantially poorer incentives for improving irrigation efficiency when yield relationships follow a Mitscherlich functional form.
Donna BrennanEmail:
  相似文献   

7.
This paper focuses on irrigation schemes under rotational water supply in arid and semiarid regions. It presents a methodology for developing plans for optimum allocation of land area and water, considering performance measures such as productivity, equity and adequacy. These irrigation schemes are characterized by limited water supply and heterogeneity in soils, crops, climate and water distribution network, etc. The methodology proposed in this paper, therefore, uses a previously developed simulation–optimization model (Area and Water Allocation Model, AWAM) that considers the heterogeneity of the irrigation scheme in the allocation process, and modifies this to take account of equity and adequacy of supply to irrigated areas. The AWAM model has four phases to be executed separately for each set of irrigation interval over the irrigation season: 1. generation of irrigation strategies for each crop–soil–region combination (CSR unit), 2. preparation of irrigation programmes for each irrigation strategy, 3. selection of specified number of irrigation programmes for each CSR unit and 4. optimum allocation of land area and water to different parts of the irrigation scheme (allocation units) for maximizing productivity. In the modified AWAM model, the adequacy is included at Phase-2 (by including only the irrigation programmes for full irrigation of each CSR unit) and equity is included at Phase-4 (by including the constraints for equity). The paper briefly discusses the applicability of the modified AWAM model for a case study of Nazare medium irrigation scheme in Southern India. The results of the case study indicated that the performance measures of productivity, equity and adequacy conflict with each other.  相似文献   

8.
Population increase and the improvement of living standards brought about by development will result in a sharp increase in food demand during the next decades. Most of this increase will be met by the products of irrigated agriculture. At the same time, the water input per unit irrigated area will have to be reduced in response to water scarcity and environmental concerns. Water productivity is projected to increase through gains in crop yield and reductions in irrigation water. In order to meet these projections, irrigation systems will have to be modernized and optimised. Water productivity can be defined in a number of ways, although it always represents the output of a given activity (in economic terms, if possible) divided by some expression of water input. Five expressions for this indicator were identified, using different approaches to water input. A hydrological analysis of water productivity poses a number of questions on the choice of the water input expression. In fact, when adopting a basin-wide perspective, irrigation return flows often can not be considered as net water losses. A number of irrigation modernization and optimization measures are discussed in the paper. Particular attention was paid to the improvement of irrigation management, which shows much better economic return than the improvement of the irrigation structures. The hydrological effects of these improvements may be deceiving, since they will be accompanied by larger crop evapotranspiration and even increased cropping intensity. As a consequence, less water will be available for alternative uses.  相似文献   

9.
Research on crop response to deficit irrigation is important to reduce agricultural water use in areas where water is a limited resource. Two field experiments were conducted on a loam soil in northeast Spain to characterize the response of maize (Zea mays L.) to deficit irrigation under surface irrigation. The growing season was divided into three phases: vegetative, flowering and grain filling. The irrigation treatments consisted of all possible combinations of full irrigation or limited irrigation in the three phases. Limited irrigation was applied by increasing the interval between irrigations. Soil water status, crop growth, above-ground biomass, yield and its components were measured. Results showed that flowering was the most sensitive stage to water deficit, with reductions in biomass, yield and harvest index. Average grain yield of treatments with deficit irrigation around flowering (691 g m−2) was significantly lower than that of the well-irrigated treatments (1069 g m(2). Yield reduction was mainly due to a lower number of grains per square metre. Deficit irrigation or higher interval between irrigations during the grain filling phase did not significantly affect crop growth and yield. It was possible to maintain relatively high yields in maize if small water deficits caused by increasing the interval between irrigations were limited to periods other than the flowering stage. Irrigation water use efficiency (IWUE) was higher in treatments fully irrigated around flowering.  相似文献   

10.
Northeast of Brazil is a semi-arid region, where water is a key strategic resource in the development of all sectors of the economy. Irrigation agriculture is the main water consumer in this region. Therefore, policy directives are calling for tools to aid operational monitoring in planning, control and charging of irrigation water. Using Landsat imagery, this study evaluates the utility of a process that measures the level of water use in an irrigated area of the state of Ceará. The experiment, which models evapotranspiration (ET), was carried out within the Jaguaribe-Apodi irrigation scheme (DIJA) during two months of the agricultural season. The ET was estimated with the model Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC). The model uses the residual of the energy balance equation to estimate ET for each pixel in the image. The results of the estimates were validated using measurements of ET from a micrometeorological tower installed within a banana plantation located near the irrigation scheme. After evaluating the ET estimates, the average fraction of depleted water for a set of agricultural parcels combined with the monthly ET mapping estimates by METRIC provided a method for predicting the total water use in DIJA for the study period. The results were then compared against the monthly accumulated flow rates for all the pumping stations provided by the district manager. Finally, this work discusses the potential use of the model as an alternative method to calculate water consumption in irrigated agriculture and the implications for water resource management in irrigated perimeters.  相似文献   

11.
The growing necessity to develop more productive agriculture has encouraged the expansion of new irrigated lands. However, water use in agriculture may affect the natural regimes of water systems. This study aims to analyze, for the first time, water use and its dynamics during the creation of a newly irrigated land. Water use was studied through the development of water balances and subsequent application of quality indices for irrigation in two unirrigated years (2004–2005) and three years of gradual implementation of irrigation (2006, 2007 and 2008) in the Lerma basin (752 ha, Spain). Increases in evapotranspiration, drainage and water content in the aquifer were verified during the gradual transformation into irrigated land. Water balances closed adequately, giving consistency to the results and enabling the application of quality indices for irrigation. Irrigation quality analysis showed a use of available water resources equal to 84%. However, the estimated irrigation efficiency presented lower values, mainly due to irrigation drainage (15%) and combined losses by both evaporation and wind drift of sprinkler irrigation systems (13%). The results indicate that the use of water in the Lerma basin is at the same management level of other modern irrigation systems in the Ebro basin, although there is still margin for improvement in irrigation management, such as reducing the irrigation drainage fraction and the evaporation and wind drift losses of sprinkler irrigation systems.  相似文献   

12.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

13.
Castilla-La Mancha in Central Spain is a semi-arid area of extremely high interannual and seasonal rainfall variability. Average annual rainfall for the catchment of the Upper Guadiana using data from 60 rain gauges for October 1956–September 1991 varied from a minimum of 326 mm in October 1982–October 1983 to a maximum of 642 mm in October 1968–September 1969. The mean annual rainfall for the period was 495 mm with a coefficient of variation for annual rainfall of 26.4%. In addition to this the spatial variability of rainfall is particularly high. For example total annual rainfall varied from 200 to 1200 mm for the hydrological year October 1968–September 1969 over a distance of only 50 km. The mean annual rainfall for all 60 stations for the period 1956–1991 was 460 mm with a coefficient for spatial variation of 15%. Dryland farming which relies on these uncertain precipitation inputs is a high risk activity [Tarjuelo, J.M., de Juan, J.A., Valiente, M., Garcia, P., 1996. Agric. Water Manage. 31, 145–163] and over recent decades intensive irrigation has increased dramatically in order that precipitation inputs can be supplemented as required thereby allowing more stable agricultural productivity. The paper uses a coupled hydrology and vegetation growth model – PATTERN [Mulligan, M., 1996. Modelling hydrology and vegetation change in a degraded semi-arid environment. PhD. Thesis, University of London] to explore the relationship between irrigation and productivity for different soils typical of the Upper Guadiana catchment. Analysis of the model results shows that irrigation efficiency is highly sensitive to both soil texture and irrigation volume. Optimally efficient irrigation in terms of water losses occurs at the lowest volumes of applications. Fine grained soils are better suited to irrigation than coarse grained soils as losses to recharge are minimised. Coarse grained soils have large recharge losses and irrigation is also more sensitive to small changes in texture for coarser soils. Irrigation losses through recharge are also very sensitive to the interannual and spatial variability of rainfall.  相似文献   

14.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   

15.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

16.
The aim of this work was to evaluate long-term effects of different irrigation regimes on mature olive trees growing under field conditions. A 9-year experiment was carried out. Three irrigation treatments were applied: no irrigation, water application considering soil water content (short irrigation), or irrigation without considering soil water reserves and applying a 20% of extra water as a leaching fraction (long irrigation). Leaf water content, leaf area, vegetative growth, yield and fruit characteristics (fruit size, pulp:stone ratio and oil content) were determined yearly. Results showed that growth parameters did not show significant differences as a consequence of applied water. Yield was increased in irrigated trees compared to non-irrigated ones, but little differences between short and long irrigation were observed, only when accumulated yield from 1998 to 2006 was considered. Irrigation did not cause significant differences in fruit size or pulp:stone ratio either. Irrigation regimes similar to those applied in this experiment, under environmental conditions with relatively high mean annual precipitation, does not increase growth, yield or fruit characteristics when compared to rain-fed treatment, and consequently, the installation of a irrigation system could be not financially profitable.  相似文献   

17.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues.  相似文献   

18.
Irrigated agriculture notably increases crop productivity, but consumes high volumes of water and may induce off-site pollution of receiving water bodies. The objectives of this paper were to diagnose the quality of irrigation and to prescribe recommendations aimed at improving irrigation management and reducing the off-site pollution from a 15,500 ha irrigation district located in the Ebro River Basin (Spain). Three hydrological basins were selected within the district where the main inputs (irrigation, precipitation, and groundwater inflows) and outputs (actual crop's evapotranspiration, surface drainage outflows, and groundwater outflows) of water were measured or estimated during a hydrological year. The highest volume of water (I = 1400 mm/year) was applied in the basin with highly permeable, low water retention, flood irrigated soils where 81% of the total surface was planted with alfalfa and corn. This basin had the lowest consumptive water use efficiency (CWUE = 45%), the highest water deficit (WD = 5%) and the highest drainage fraction (DF = 57%). In contrast, the lowest I (950 mm/year), the highest CWUE (62%), and the lowest WD (2%) and DF (37%) were obtained in the basin with 60% of the surface covered with deep, high water retention, alluvial valley soils, where 39% of the cultivated surface is sprinkler irrigated and with only 48% of the surface planted with alfalfa and corn. We concluded that the three most important variables determining the quality of irrigation and the volume of irrigation return flows in the studied basins were (i) soil characteristics, (ii) irrigation management and irrigation system, and (iii) crop water requirements. Therefore, the critical recommendations for improving the quality of irrigation are to (i) increase the efficiency of flood-irrigation, (ii) change to pressurized systems in the shallow and highly permeable soils, and (iii) reuse of drainage water for irrigation within the district. These management strategies will conserve water of high quality in the main reservoir and will decrease the crop water deficits and the volume of irrigation return flows, therefore, minimizing the off-site pollution from this irrigation district.  相似文献   

19.
A research has been carried out to determine the effects of nutrition systems and irrigation programs on soilless grown tomato plants under polyethylene covered unheated greenhouse conditions. Two nutrition systems (open and closed) and three irrigation programs (high, medium and low) based on integrated indoor solar radiation triggering thresholds (1 MJ m−2 [0.4 mm], 2 MJ m−2 [0.8 mm] and 4 MJ m−2 [1.6 mm]) in both nutrition systems have been tested. Applied and discharged nutrient solution, evapotranspiration, total and marketable yield have been measured and water use efficiency has been calculated. The highest total yield has been obtained from the open system with respectively 11% and 7.2% increases in autumn and spring. Applied nutrient solution volume and seasonal ET have been modified between 47.8-180.4 l plant−1 and 41.7-145.5 l plant−1 respectively during both growing seasons. As average of two growing seasons, respectively 826.5 and 330.6 m3 ha−1 nutrient solutions have been discharged from the greenhouse in the open and closed systems. WUE of treatments varied between 33-55 kg m−3 in autumn and 26-35 kg m−3 in spring. Highest WUE values have been determined in 4 MJ m−2 and in the closed system in both growing seasons. Results showed that the closed system and infrequent irrigations increased water use efficiency while decreasing yield and discharged nutrient solution.  相似文献   

20.
Study of feasibility of night-closure of irrigation canals for water saving   总被引:1,自引:0,他引:1  
The feasibility of closing distributary canals at night was investigated in a recently modernized surface irrigation system in Pakistan, the Upper Swat-Pehur High Level Canal system. Increased water supply, greater delivery capacity and the introduction of downstream control potentially allow more flexible service. In the command area of Maira branch of this system, farmers are anyway abandoning night-time irrigation, as they can meet their needs from improved supply during the day. They practice night irrigation only during the times of peak crop water demand. The rotational delivery system, known as warabandi in the sub-continent and Dauran in Arabian countries, has even broken down in the day in some parts of the command area. This is believed to be typical of systems with more than adequate water supply.A simulation study was undertaken using the CanalMan software developed by Biological & Irrigation Department, Utah State University, Utah Logan, USA. Primary data collected in one distributary canal and the two minors connected to it was utilized for simulations. The feasibility of night-time closure depends on the speed of filling and emptying the canal each day, and the time required to meet full irrigation demand during the day. The results show that where canal lengths are less than 5 km, in this system, there is good potential to make savings, which can be realized at system level through reduced demand on supplemental supplies from Tarbela Dam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号