首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

2.
Plantations of Eucalyptus species are expanding across South America into regions where drought conditions can reduce growth rate and result in substantial commercial loss. Understanding the mechanisms of drought tolerance in Eucalyptus is essential for the successful production in drought-regions. The main objectives of this study were to evaluate how water availability preceding a long-term drought period affects morphological, physiological and molecular traits of four Eucalyptus clones grown under field conditions. The study areas are located in north-eastern Brazil with an average rainfall of 800 and 1500 mm per year. At each rainfall regime, the following clones were evaluated: 1404 (Eucalyptus urophylla), 1407 (E. urophylla × E. camaldulensis), 1296 and 6500 (E. grandis × E. urophylla). Our results indicate that trees growing in the area with higher annual precipitation were more stressed after long-term drought, compared to those stands previously exposed to mild water-restriction period. The genetic materials showed distinct responses to drought, which allowed their separation in two groups: drought-tolerant (1404 and 1407) and drought sensitive (6500 and 1296). The former group shows some important adaptations to drought, such as decreased leaf area (avoiding excessive transpiration rates), higher antioxidant activity and carotenoid concentration (leading to lower lipid peroxidation). In conclusion, previous exposure to water deficit may provide the benefit of increased defense protection during future water deficit. From all measured variables, the leaf area, antioxidant compounds and changes in 13C and 18O isotope abundance reflect some of the most important morphological and physiological alterations in order to mitigate the water stress damage in drought-tolerant genotypes.  相似文献   

3.
Soil microbes may be critical players in determining the allelopathic potential of some plants. Low levels of plant community biodiversity in Eucalyptus plantations have been attributed to the allelopathic potential of these tree species. The role of soil microbes in the allelopathic effect of leaf leachates of the hybrid tree Eucalyptus grandis × E. urophylla, was tested in Petri dish assays with Brassica chinensis as a receiver plant. Soils were collected from either a local garden (soil A) or a Eucalyptus plantation (soil B) and half of each soil was sterilized to remove microbes. These soils were then treated with E. grandis × E. urophylla leachates for 0–72 h. Seed germination of B. chinensis was significantly inhibited in soils treated with leaf leachates relative to untreated soils. The inhibitory effect of the leaf leachates was more pronounced in sterilized soils. Total phenolic content was obvious lower in nonsterile leachate-treated soils than in sterile soils. Biomass of B. chinensis was negatively correlated with the total phenolic content in soils. Our findings suggest that soil microbes can alleviate the allelopathic potential of Eucalyptus and thereby its negative impact on plant growth.  相似文献   

4.
Microsporogenesis and flower development in Eucalyptus urophylla × E. grandis were examined using chromosome tableting to provide a method to predict the meiotic stages in this species. Although microsporogenesis was normal, cytokinesis during meiosis of pollen mother cells occurred simultaneously, with strong asynchronism observed in the two different lengths of stamens in a flower bud. In a single flower, the developmental period of microsporogenesis in anthers on the longer stamens was always ahead of those on the shorter stamens. Flower development was also asynchronous at different locations on a branch. Flower buds on the upper side of the branch were larger in diameter than those on the lower side. In addition, a correlation was observed between microsporogenesis development and flower bud diameter growth. The pachytene stage was first observed when the diameter of the flower buds increased to 3.0 mm, and the majority of the meiotic stages were observed when bud diameters ranged from 3.5 to 5.0 mm. This study showed that the developmental stages of microsporogenesis in Eucalyptus urophylla × E. grandis could be distinguished readily, which may be applicable to future breeding studies.  相似文献   

5.
Poplar species grow well across the temperate zone, but hybrid varieties have not previously been evaluated for planting in the Virginia Piedmont region. The top 12 clones in height growth and rust resistance from a screening trial involving 98 hybrid poplar varieties of three taxa (Populus deltoides × P. maximowiczii, DxM; P. deltoides × P. nigra, DxN; P. deltoides × P. trichocarpa, DxT) were selected for planting in replicated yield trials at two locations in the Virginia Piedmont. Results through the first four growing seasons showed that the DxM taxon had the most rapid height development. It was, however, the taxon most affected by a late spring frost at the Appomattox-Buckingham State Forest site and by Septoria stem canker at the Reynolds Homestead site. Analysis of variance of clonal and location effects showed highly significant differences among replicates within location and among clones within taxon. Among seven clones within the DxM taxon, pairwise comparison tests of height growth identified two groups: a group of four better clones that were significantly different (p = 0.05) from a second group of three. These early results suggest that multi-selection criteria, including growth, disease and frost resistance, are important when developing hybrid poplar clones for planting in the Piedmont region.  相似文献   

6.
The objective was to evaluate the animal thermal comfort indices from two integrated crop-livestock-forestry (ICLF) systems. For this, temperature–humidity index (THI), black globe temperature and humidity index (BGHI), and the radiant thermal load (RTL) were assessed. Two ICLF (ICLF-1 and ICLF-2) systems and one control system were established. On the ICLF systems, the arboreal component was the eucalyptus tree (Eucalyptus grandis × Eucalyptus urophylla; H13 clone), planted in simple wide-spaced rows. The ICLF-1 system had a tree spacing of 14 × 2 m with 357 trees per hectare, and the ICLF-2 had a tree spacing of 22 × 2 m with 227 trees per hectare. The control system had five scattered native trees per hectare, pertaining to Gochnatia and Dipteryx species. The forage component in all three systems was piatã-grass (Brachiaria brizantha cv. BRS Piatã). The experimental design was a randomized block in a sub-subplot design scheme with four replications. The presence of shade provided by the trees offered better conditions of animal comfort when compared with the condition of full sun. The ICLF-1 system, with higher tree density, provided better indicators for thermal comfort, THI, BGHI, and RTL when compared with the condition of full sun, while ICLF-2 was no different than ICLF-1 for BGHI.  相似文献   

7.
Irrigation of grasslands with potato starch wastewater causes changes in soil quality parameters, often resulting in decreased crop yields and sometimes causing animal diseases. Reduced agricultural income leads to designation of such grasslands for afforestation aimed at production of bioenergy crops and improvement of soil quality. In this study, Populus alba L. and seven different poplar clones were planted in 2009 on the grassland irrigated in 1973–2008 with potato starch wastewater and in non-irrigated, experimental forest. The survival, growth and wood production potential of planted poplars after 2–3 growing seasons were analyzed. Morphophysiological parameters of leaves, nutrients in leaves and fine roots, sugars in fine roots, leaf rust resistance, frost hardiness and their effects on growth were also determined. Stem diameter and stem volume index of poplars growing on the grassland were higher than in the experimental forest. Only Populus deltoides Bartr. × P. maximowiczii Henry clone ‘Eridano’ (in short ERI) had a survival rate of 100 % and the highest values of stem diameter (77 mm) and stem volume index (0.034 m3) in comparison with other poplars in both sites after 3 growing seasons. Clone ERI was also characterized by a high leaf rust resistance and frost hardiness. The results suggest that clone ERI is suitable as a bioenergy crop on grasslands irrigated with potato starch wastewater. Afforestation of the grassland improved the fertility of the soil by increasing concentrations of soil organic matter and availability of mineral nutrients (N, P, K, S and Fe).  相似文献   

8.
Early selection is an important method to shorten the breeding cycle for tree species, which may differ in the time for early selection. To evaluate the early selected time for Larix kaempferi, tree height and diameter at breast height of 57 L. kaempferi clones were measured over many different growth years. The results indicated that, except for age × clone interaction for diameter at breast height (P = 0.741), there were significant differences among all variation sources (P < 0.01). The coefficient of phenotypic variation ranged from 14.89 to 35.65% for height and from 19.17 to 23.86% for diameter at breast height in different growth years. The repeatability of height and of diameter at breast height among clones was high, ranging from 0.6181 to 0.8531 (height) and from 0.8443 to 0.8497 (diameter at breast height), in different growth years. There were significant positive correlations between all pairs of growth traits except between height in the 2nd growth year and height in the 30th growth year; and between height in the 2nd growth year × diameter at breast height in the 30th growth year. With a comprehensive evaluation method and a selection ratio of 10%, L65, L1, L62, L9, L15, and L78 were selected as excellent clones in the 30th growth year. Their average values of height and diameter at breast height were 9.81 and 16.57% higher than the overall average, representing genetic gains of 6.46 and 13.99%, respectively. This study provides a theoretical foundation for the genetic improvement of L. kaempferi.  相似文献   

9.
Most Eucalyptus plantations are intensively managed as short-rotation plantations and carbon (C) storage in plants and soils in stands older than 10 years is not well understood. We examined the changes in plant biomass C and soil organic C (SOC) storage across a chronosequence of E. urophylla × E. grandis forests (4-, 7-, 10-, 13-, and 21-year-old) in subtropical China. Biomass C stock significantly increased with stand age. SOC storage increased initially after afforestation, peaking in 10-year-old stands, and declined gradually. Ecosystem C pools in the five development stages were 111.76, 167.66, 234.04, 281.00, and 299.29 Mg ha?1, respectively. Trees and soils were the dominant C pools across all stand ages with the contribution of tree biomass C storage significantly increasing and SOC storage decreasing with age. Eucalyptus plantations are still in vigorous growth phase and have great potential for C sequestration at the end of the current rotation length (within 7 years). Considering the sharp decrease of annual biomass C increment rate and the gradual loss of SOC storage in stands older than 13 years, we recommend the optimal length for one full Eucalyptus plantation cycle should be 12–15 years in subtropical China to maximize land-use value and carbon sink value.  相似文献   

10.
Fasiakhali Wildlife Sanctuary is a protected area composed of tropical remnant rainforest that harbor substantial number of large,old Garjan(Dipterocarpus spp.)trees.The present study assessed composition,structure and diversity of the species in this protected area.A total of 32 trees species were recorded with DBH ≥ 11 cm belonging to 24 genera and 19 families.The forest is low in plant diversity as represented by Shannon–Wiener diversity and Simpson Dominance indices.Dipterocarpus turbinatus was the most dominant species with maximum relative density,frequency,dominance,and importance value index.Syzygium firmum and Tectona grandis followed in terms of dominance.The structural composition indicated higher number of individuals in the medium growth classes(41 to 511 cm DBH and 16–20 m height ranges),whereas D.turbinatus was the only species that dominated most of the growth classes.Poor stem density in lower growth classes indicated meager recruitment of regeneration which may be due to lower annual precipitation,increased grazing and encroachments.This study will help to understand the patterns of tree species composition and diversity in the remnant dipterocarp forests of Bangladesh.It will also contribute to identifying threatened plants to undertake D.turbinatus based conservation and sustainable management of the Fasiakhali Wildlife Sanctuary.  相似文献   

11.
The introduced tree species, Robinia pseudoacacia (black locust), has spread extensively in many countries. Because of its active regeneration and rapid initial growth, R. pseudoacacia has not been successfully eradicated despite many efforts. To manage this species, developing information on the growth of R. pseudoacacia as a biomass resource is desirable, and this will motivate logging and could contribute to the extermination or sustainable use of this species. In the present study, the stand volume and growth of R. pseudoacacia forests in riverbeds along the Chikumagawa River in Nagano Prefecture in Japan were examined by tree ring and stem analyses. Seven plots were established in R. pseudoacacia riparian forests of varying ages, and 611 measurements of diameter at breast height and 386 measurements of tree height were made. Stand volumes, which were estimated using equations of stem volume curve based on the results of stem analysis of 47 sample trees, were almost the same as or higher than those of native broadleaf forests in Japan. Stand volumes continued to increase for more than 20 years. Current annual increments of four plots (aged 13–22 years) indicated that it could take <5 years after regeneration for the annual increment of R. pseudoacacia forests to reach a maximum level. Growth of R. pseudoacacia was comparable to or faster than native broadleaved species in Japan, showing the possibility of short rotation harvesting.  相似文献   

12.
Young trees were harvested to explore non-destructive methodologies to estimate live branch dry weights in young fast-growing Eucalyptus species under different spacing and fertilizer treatments. Branch growth can vary with silvicultural management such as spacing, fertilizing and thinning, and over relatively short periods in response to environmental conditions. Many published regressions based on standard measurements of height and diameter are site, age and treatment specific. The aim of this study was to improve our capacity to predict woody crown dry weight, based on stem measurements, and to minimize (or eliminate) treatment effects on the resulting model. In young trees, branches are temporary support structures for foliage and are often discarded as the base of the green crown rises. As temporary structures they represent an investment of biomass and nutrient elements, and are subject to selection pressures to maximize the return on investment by the tree. Trees were harvested from existing plantation experiments located in south-eastern Queensland for E. grandis W. Hill ex Maiden (ranging from 0.28 to 15.85 m in height, to 5 years old) and south-western Australia for E. globulus Labill. (0.10–34.4 m in height, to 10.2 years) in order to examine the impact of spacing, nitrogen and phosphorus fertilization on early growth. Relationships to estimate crown woody biomass from non-destructive measurements were developed, and these relationships tended to have different slopes and intercepts for trees with predominantly juvenile foliage and those with intermediate or adult foliage. Dry weight of whole-crown live branch wood (Wbranch) was related to heights and/or diameter at breast height (DBH), but the regressions parameters were different, depending on treatment. The relationships became more generic (i.e. less dependent on treatment effects) between Wbranch and stem sectional area at the height of the base of the green crown (SACB), consistent with the pipe model theory (R2 > 0.91 for the two species for trees with intermediate/adult leaves). However, Wbranch was more closely related again to the stem volume above the base of the green crown and treatment effects were not significant (VCon,gc, R2 > 0.93). Branches exit the stem below the green crown, and for E. grandis the best relationship was on stem volume above the lowest live branch (VCon,llb, R2 0.94). Limited sampling from four other species with similar or contrasting crown characteristics indicated that the relationship could be applied quite generally. Individual E. grandis branch woody dry weight was closely related to the conical volume of the main (first order) branch (Vcon,br, R2 0.98). The whole crown equivalent, branch woody dry weight plus stem dry weight above the lowest live branch, was also closely related to the stem volume within the woody crown (VCon,llb, R2 0.97–0.99). While the slope of this relationship was still significantly different between trees with juvenile and intermediate/adult foliage, it had a similar form, suggesting that trees with juvenile foliage allocated a different proportion of their woody biomass within the crown to branches than older trees.  相似文献   

13.
The objective of this study was to evaluate biomass allocation and nutrient pools in aboveground biomass components in 18-month-old plantations of Eucalyptus saligna and E. urophylla × E. grandis (i.e. E. urograndis) in Brazil. The plantations were established by pulp companies in a large area comprising three soil types (Acrisols, Vertisols and Leptosols) in the grassland biome in southern Brazil, and an operational regime of planting and maintenance fertilization was used to ensure full availability of nutrients. Vertisols showed the highest availability of soil nutrients, and the P and Ca concentrations in aboveground biomass were also highest in this type of soil. The nutritional status of both species indicates great consumption of nutrients, particularly of P, K and Ca. At this early age, canopy biomass components still made the largest relative contribution, although debarked stem biomass already accounted for 41.5% and 37.4 of total aboveground biomass in E. saligna, and E. urograndis, respectively. Nutrient concentrations in biomass components were similar across species. For all macronutrients, except Ca and Mg, the concentration gradient followed the order wood < bark < branches < leaves. For all micronutrients, except Cu, the concentration gradient followed the order wood < branches ≈ bark < leaves. At the plantation stage studied, i.e. before canopy closure, the importance of the components as nutrient pools followed the order leaves > branches > wood > bark. The branches hold the majority of Ca reserves in biomass and are a very important pool of Mg, K, P and B. The bark makes a small contribution to total biomass, but stores a similar amount of Ca as leaves, being the second major pool after the branches. Comparison of the nutrients supplied by fertilization and the amounts stored in soil and aboveground indicates that the operational dose should be adjusted to each type of soil after further experimental fertilizer trials, as the supply of N and P appears to be too high, particularly for Vertisols. This is leading to the immobilization of P in biomass components that are not of importance in the biological or biochemical nutrient cycles, thus increasing the risk of larger exports of P during biomass removal.  相似文献   

14.
Feasibility of near-infrared (NIR) spectroscopy for developing multi-species model for plantation timber was explored for estimation of holocellulose in un-extracted milled wood samples. Six commonly planted species of Eucalyptus tereticornis, E. camaldulensis, E. grandis, Leucaena leucocephala, Dalbergia sissoo and Populus deltoides from a wide range of locations and varying age groups were taken for the present study. Few samples of E. hybrid between E. tereticornis and E. camaldulensis were also included in the study to make the model useful for practical application. NIR models were evaluated using partial least squares regression (PLSR-1—full cross-validation, PLSR-2—cross-validation which leaves more than one out) and by dividing the samples into calibration and prediction (test) sets and interchanging them from calibration to prediction sets. The predictive ability of the model was assessed by calculating four ratios of multivariate statistics for individual species model and combined species models. A final combined model for all the species having component range of 76.14–63.03 % and standard deviation of 2.586 % was developed in the spectral range of 7502–4246 cm?1 wave number using 1st derivative plus multiplicative scatter correction using factor of nine by removing samples with outliers found in all the PLSR-2 evaluation steps and in most of the models. The model remained stable even when 30 % of the samples were left out with no outlier detected.  相似文献   

15.
The naturally occurring Verticillium nonalfalfae shows promise for biocontrol of the highly invasive Tree of Heaven (Ailanthus altissima), but might also bear a risk for non-target tree species. In this study, we conducted inoculations on potted seedlings of A. altissima as well as on eight indigenous and two invasive tree species associated with Tree of Heaven in Austria. Although vascular discolourations developed in all inoculated tree species, V. nonalfalfae was reisolated from Ailanthus and eight of the ten non-target-species, whereas typical disease symptoms and mortality only occurred on A. altissima. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae but indicated tolerance (T) of Acer campestre, Acer pseudoplatanus and Quercus robur, possible resistance (PR) of Fraxinus excelsior, Populus nigra, Tilia cordata, Ulmus laevis and Ulmus minor and resistance (R) of Fraxinus pennsylvanica and Robinia pseudoacacia to this potential biocontrol agent. Results from seedling inoculations were confirmed by cursory field observations in Ailanthus-inoculated forest stands, where admixed A. campestre, A. pseudoplatanus, F. excelsior, Populus alba, R. pseudoacacia and U. laevis canopy trees remained asymptomatic, while mortality was induced in Ailanthus.  相似文献   

16.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

17.
The study aimed to test the potential anthelmintic activity of Salix babylonica (SB) extract for the control of gastrointestinal and pulmonary parasites in sheep and goats under field conditions. A representative sample of 20 % of all animals reared in 8 sheep and 7 goat farms was used in the study. Animals from each farm were randomly selected for a total number of 93 sheep and 75 goats. Animals suffered a natural gastrointestinal nematode infection and had never been treated with chemical anthelmintic drugs. The SB extract (20 mL) was orally administered weekly before the morning feeding to each animal for 60 days. Fecal eggs or oocysts were counted at 0, 1, 20, 40, and 60 days after starting the extract administration. Differences (P < 0.01) in the fecal oocyst and egg output of Eimeria, Dictyocaulus, and Moniezia were observed between sheep and goats. In addition, the treatment influenced (P < 0.05) egg outputs of Cooperia, Dictyocaulus, and Trichuris. Fecal egg or oocyst counts of Haemonchus contortus, Eimeria, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Ostertagia were time-dependent (P < 0.05). For sheep, administration of SB decreased (P < 0.05) the fecal eggs count of H. contortus, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Trichuris. After 20 days of treatment, H. contortus, Cooperia, or Moniezia were not detected. For goats, SB reduced (P < 0.05) the fecal egg counts of H. contortus, Cooperia, Chabertia, and Moniezia. Moreover, decreases were observed (P < 0.05) for Chabertia, Trichostrongylus, and Ostertagia. Eggs of H. contortus and Moniezia were not present in the feces after 1 day of administration of the extract. It could be concluded that the weekly administration of SB extract at 20 mL per animal can be used to treat gastrointestinal and lung nematodes of small ruminants in organic and traditional farming systems of tropical regions.  相似文献   

18.
Understanding the variation of mating patterns in disturbed habitats provide insight into the evolutionary potential of plant species and how they persist over time. However, this phenomenon is poorly understood in tropical dryland tree species. In the present study, we investigated how Acacia senegal reproduces in two different environmental contexts in Kenya. Open-pollinated progeny arrays of 10 maternal trees from each environmental context were genotyped using 12 nuclear microsatellite markers. Overall, A. senegal displayed a predominantly allogamous mating pattern. However, higher multilocus outcrossing rate (tm) was found in Lake Bogoria (tm = 1.00) than in Kampi ya Moto population (tm = 0.949). Higher biparental inbreeding (t m  ? t s  = 0.116) and correlation of outcrossed paternity (rp = 0.329) was found in Kampi ya Moto than in Lake Bogoria population (t m  ? t s  = 0.074, rp = 0.055), showing the occurrence of mating among relatives. Coefficient of coancestry (Θ = 0.208) showed that full-sibs constitute about 21% of the offspring in Kampi ya Moto population compared to about 14% (Θ = 0.136) in Lake Bogoria population. The results demonstrate that low adult tree density of A. senegal may be promoting seed production through consanguineous mating and suggest that man-made disturbance can affect mating patterns of the species. Despite these mating differences, trees from both populations can contribute as seed source for conservational plans, and to support effective genetic conservation and artificial regeneration programs of A. senegal. We suggest collection of seeds from at least 42 and 63 trees in Lake Bogoria and Kampi ya Moto populations, respectively, to retain a progeny array with a total effective population size of 150.  相似文献   

19.
Indonesia’s pulp and paper industry needs a large area of sustainably grown plantations to support its continued development. Acacia mangium has been the key species underpinning the pulp and paper industries in Sumatra, however increased disease pressure on A. mangium is expected to require large-scale conversion of Acacia plantations to Eucalyptus in the near future. The effect of such a large scale change in plantation species on soil moisture, for both tree production, and catchment hydrology is unknown. In this study we sought to characterize the impacts of plantation species (Acacia or Eucalyptus) and nitrogen management, on soil moisture, soil water depletion and depth to groundwater under stands of Acacia mangium and Eucalyptus pellita over the first 2–3 years after establishment. The study was conducted in experiments at four sites in Sumatra, Indonesia. Soil moisture and soil water depletion were not influenced by plantation species or fertilizer treatment. Soil moisture content and soil water depletion were strongly influenced by shallow groundwater at two of the four sites, however depth to groundwater did not influence stem growth. Results from the field trials cautiously suggest that large scale conversion of Acacia mangium to Eucalypt species in these regions is unlikely to result in increased moisture stress, nor is conversion of plantation species likely to lead to substantial differences in catchment hydrology. This study demonstrated the importance of conducting multi-site studies when investigating biophysical relationships in forest/plantation systems.  相似文献   

20.
Pericopsis elata (a.k.a. African teak) is one of the most valuable timber species in Central Africa. Like other shade intolerant tropical tree species, P. elata could play a vital role in economic development, and ecological sustainability, but regenerates poorly following selective logging. Now endangered, there is a critical need for sustainable silvicultural systems to restore this once prominent timber species. To assess management options for P. elata we analyzed growth performance and survival in primary and secondary forest plots under burning and weeding treatments in Yoko Forest Reserve, Ubundu Democratic Republic of Congo. We transplanted nursery-grown seedlings of P. elata to experimental gaps and followed their growth and survival for 1 year. Seedlings in large canopy gaps 50 × 50 m were taller (mean difference; P = 0.006) and more likely to survive (mean difference; P < 0.001). Weeding improved both diameter (P = 0.024) and height (P = 0.007) growth rates; however, burning alone did not significantly improve the performance of P. elata seedlings. Our data suggest that P. elata regeneration is compatible with shelterwood harvesting and traditional swidden agricultural systems widely practiced in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号