首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rhizosphere, distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. We investigated protease,invertase, cellulase, urease, and acid phosphatase activities in rhizosphere and bulk soils of six Nothotsuga longibracteata forest communities within Tianbaoyan National Nature Reserve, including N. longibracteata + either Phyllostachys pubescens, Schima superba, Rhododendron simiarum, Cunninghamia lanceolata, or Cyclobalanopsis glauca, and N. longibracteata pure forest. Rhizosphere soils possessed higher protease, invertase, cellulase, urease,and acid phosphatase activities than bulk soils. The highest invertase, urease, and acid phosphatase activities were observed in rhizosphere samples of N. longibracteata+ S.superba. Protease was highest in the N. longibracteata + R. simiarum rhizosphere, while cellulase was highest in the pure N. longibracteata forest rhizosphere.All samples exhibited obvious rhizosphere effects on enzyme activities with a significant linear correlation between acid phosphatase and cellulase activities(p \ 0.05) in rhizosphere soils and between protease and acid phosphatase activities(p \ 0.05) in bulk soils. A principal component analysis, correlating 13 soil chemical properties indices relevant to enzyme activities, showed that protease, invertase, acid phosphatase, total N, and cellulase were the most important variables impacting rhizosphere soil quality.  相似文献   

2.
The problem of salinized soils has become one of the most serious constraints to agricultural and forest productivity. With the purpose of enhancing salt stress tolerance of Populus tomentosa, we transformed this tree species with spermidine synthase (SPDS) genes derived from an apple by an Agrobacterium-mediated method. Four transgenic clones were confu'med by PCR and Southern blot analysis. As well, the expression of introduced SPDS genes was analyzed by real-time quantitative PCR.  相似文献   

3.
Indonesia’s pulp and paper industry needs a large area of sustainably grown plantations to support its continued development. Acacia mangium has been the key species underpinning the pulp and paper industries in Sumatra, however increased disease pressure on A. mangium is expected to require large-scale conversion of Acacia plantations to Eucalyptus in the near future. The effect of such a large scale change in plantation species on soil moisture, for both tree production, and catchment hydrology is unknown. In this study we sought to characterize the impacts of plantation species (Acacia or Eucalyptus) and nitrogen management, on soil moisture, soil water depletion and depth to groundwater under stands of Acacia mangium and Eucalyptus pellita over the first 2–3 years after establishment. The study was conducted in experiments at four sites in Sumatra, Indonesia. Soil moisture and soil water depletion were not influenced by plantation species or fertilizer treatment. Soil moisture content and soil water depletion were strongly influenced by shallow groundwater at two of the four sites, however depth to groundwater did not influence stem growth. Results from the field trials cautiously suggest that large scale conversion of Acacia mangium to Eucalypt species in these regions is unlikely to result in increased moisture stress, nor is conversion of plantation species likely to lead to substantial differences in catchment hydrology. This study demonstrated the importance of conducting multi-site studies when investigating biophysical relationships in forest/plantation systems.  相似文献   

4.
Red flour beetle Tribolium castaneum (Herbst) and rice weevil Sitophilus oryzae (L.) are considered to be the major insect pests in storage. Essential oils from aromatic plants are recognized as proper alternatives to fumigants. Thymus persicus (Ronniger ex Rech. f.) is one of these plants that have medicinal properties and is indigenous to Iran. The essential oil was obtained from aerial parts of the plant and analyzed by GC and GC–MS. Carvacrol (44.69%) and thymol (11.05%) were the major constituents of the oil extracted. In this experiment, fumigant toxicity of the essential oil was studied against T. castaneum, S. oryzae at 27 ± 1°C and 60 ± 5% RH in dark condition. The adult insects were exposed to the concentrations of 51.9, 111.1, 207.4 and 370.4 μl/l air to estimate median lethal time (LT50) values. The fumigant toxicity was increased in response to increased essential oil concentrations. The LT50 values at the lowest and the highest concentrations tested were ranged from 28.09 to 13.47 h for T. castaneum, and 3.86 to 2.30 h for S. oryzae. It was found that S. oryzae adults were much more susceptible to the oil than T. castaneum. After 24 h of exposure, the LC50 values (95% fiducial limit) for T. castaneum and S. oryzae were estimated to be 236.9 (186.27–292.81) and 3.34 (2.62–4.28) μl/l air, respectively. These results suggest that T. persicus essential oil merits further study as potential fumigant for the management of these stored-product insects.  相似文献   

5.
We examined the saccharification and fermentation of meals from Acacia mangium wood, Paraserianthes falcataria wood, and Elaeis guineensis trunk. The levels of enzymatic hydrolysis of cellulose and ethanol production were highest for P. falcataria wood and lowest for A. mangium wood. Ultrasonication pretreatment of meal further increased the rates of hydrolysis and ethanol production in meal from P. falcataria wood. Through this pretreatment, hemicelluloses (xylan and xyloglucan) and cellulose were released in the meal from P. falcataria wood. Loosening of hemicellulose associations can be expected to make P. falcataria wood more useful for bioethanol production.  相似文献   

6.
This study evaluated oxalic acid accumulation and bioremediation of chromated copper arsenate (CCA)-treated wood by three brown-rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus. The fungi were first cultivated in a fermentation broth to accumulate oxalic acid. Bioremediation of CCA-treated wood was then carried out by leaching of heavy metals with oxalic acid over a 10-day fermentation period. Higher amounts of oxalic acid were produced by F. palustris and L. sulphureus compared with C. puteana. After 10-day fermentation, oxalic acid accumulation reached 4.2 g/l and 3.2 g/l for these fungi, respectively. Fomitopsis palustris and L. sulphureus exposed to CCA-treated sawdust for 10 days showed a decrease in arsenic of 100% and 85%, respectively; however, C. puteana remediation removed only 18% arsenic from CCA-treated sawdust. Likewise, chromium removal in F. palustris and L. sulphureus remediation processes was higher than those for C. puteana. This was attributed to low oxalic acid accumulation. These results suggest that F. palustris and L. sulphureus remediation processes can remove inorganic metal compounds via oxalic acid production by increasing the acidity of the substrate and increasing the solubility of the metals.An erratum to this article can be found at  相似文献   

7.
The ecological effects of eucalypt plantations (EPs) have garnered increasing attention. To understand their effect on soil quality at a landscape scale, and to determine whether soil quality parameters differ due to different stand types, we evaluated soil characteristics in twenty-one groups of EPs, Pinus massoniana Lamb. plantations (PMPs) and natural broadleaved forests (NBFs) across Guangdong Province, China. Both the physical characteristics of soil hydrology and the properties of soil nutrients in A and B horizons were determined. Results showed that, compared to NBFs, EPs and PMPs produced a shallower litter layer, reduced canopy density, higher soil bulk density, significantly lower total porosity, non-capillary porosity, total water volume, and hygroscopic water in the A horizon (P < 0.05). Moreover, total N, available K, and soil organic carbon (SOC) in EPs and PMPs were significantly lower than in NBFs. EPs and PMPs did not differ significantly in N, P or K content, but PMPs had significantly lower SOC and boron in the A horizon than EPs. Low pH and poor capacity to buffer acidification generally occurred in all cover types. Both EPs and PMPs showed a decline in soil properties relative to NBFs, but EPs and PMPs exhibited no significant difference. These results indicate that actions are needed to ameliorate the potential negative effects on soil quality in forestry plantations.  相似文献   

8.

Key message

In the African rim of the Western Mediterranean Basin, cork oak forests and pine plantations coexist. Under similar fire regimes, cork oak forest is more resilient in terms of habitat structure (canopy, understory, and complexity of vegetation strata) than pine plantation. By contrast, both woodland types show similar resilience in plant species composition. Resilience in habitat structure varies between the two woodland types because of the resprouting and seeding strategies of cork oak and pine species, respectively. These differences can be relevant for the conservation of biodiversity of forested ecosystems in a future scenario of increased fire frequency and scale in the Mediterranean basin.

Context

Wildfires have major impacts on ecosystems globally. In fire-prone regions, plant species have developed adaptive traits (resprouting and seeding) to survive and persist due to long evolutionary coexistence with fire. In the African rim of the Western Mediterranean Basin, cork oak forest and pine plantation are the most frequently burnt woodlands. Both species have different strategies to respond fire: cork oak is a resprouter while pines are mostly seeders.

Aims

We have examined the hypothesis that pine plantations are less resilient in habitat structure (canopy, understory, diversity of vegetation strata) and plant composition than cork oak woodlands.

Methods

The habitat structure and plant species composition were measured in 30 burnt and 30 unburnt 700-m transects at 12 burnt sites from north-western Africa, where the two forest types can coexist. Habitat structure and plant species composition were compared between burnt and unburnt transects from cork oak and pine plantation woodlands with generalized linear mixed models and general linear models.

Results

The results showed significant interaction effect of fire and forest type, since cork oak forest was more resilient to fire than was pine plantation in habitat structure. By contrast, both forest types were resilient to fire in the composition of the plant communities, i.e., plant composition prior to fire did not change afterwards.

Conclusion

The higher structural resilience of cork oak forest compared to pine plantation is related to the resprouting and seeding strategies, respectively, of the dominant tree species. Differences in the responses to fire need to be considered in conservation planning for the maintenance of the Mediterranean biodiversity in a future scenario of changes in fire regime.
  相似文献   

9.
Pine wilt disease, caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), is a major threat to pine forests throughout East Asia. Nonetheless, its mechanism of invasion has not yet been described in detail. To better understand the pathology of this disease, it is important to examine the distribution of PWNs within pine tissue during the course of disease development. We attempted to stain nematodes with fluorescein-conjugated wheat germ agglutinin (F-WGA) as a means to locate and track the spread of PWNs. Although PWNs proliferated on Botrytis cinerea fungus were successfully stained only on their vulvas and spicule holes, PWNs extracted from inoculated Pinus thunbergii seedlings were stained on their surface. Stainability, or the percentage of PWNs stained with F-WGA over more than half of their surface, was about 20% by 1 day after inoculation, but increased to 80% at 10 days. The stainability of PWNs extracted from a 5-cm main stem segment that included the inoculation site was less than that of PWNs extracted from other parts of the main stem farther away (i.e., those that had dispersed). These results suggest that stainability is related to dispersal activity in time. Thus, to raise the stainability of PWNs at shorter timeframes after inoculation, PWNs with more than 80% stainability were re-inoculated into pine seedlings. This resulted in more than 70% stainability from 1 to 6 days after inoculation. In F-WGA stained thin paraffin sections of pine tissue of re-inoculated seedlings, PWNs brightly fluoresced under epifluorescence and were easily detected against the dark background of pine tissue. This staining technique with F-WGA is an excellent tool for detecting PWNs in pine tissue.  相似文献   

10.
The insecticidal activity of Illicium verum Hook. f. against Sitophilus zeamais Motschulsky adults were identified, and the underlying mechanisms were studied. Extracts from I. verum fruits in methyl alcohol (MA), ethyl acetate (EA), and petroleum ether (PE) were tested by fumigation in a hermetic container to determine their toxicity. The effects of the three extracts on the activity of acetylcholinesterase (AChE) and glutathione S-transferases (GSTs) of S. zeamais were determined in vivo. All extracts showed strong fumigant activity. The fumigant effects were enhanced with increased dosage and prolonged exposure time. 1.25, 2.50, 5.00, 10.00, and 20.0 mg/l doses of the MA, EA, and PE extracts caused the mortalities from 8.37 to 90.26 %, 21.81 to 95.89 %, and 15.84 to 92.57 %, respectively, at 72 h after treatment. Consequently, the most effective dose of the MA, EA, and PE extracts is the 20.0 mg/l. The LD50 of the MA, EA, and PE extracts at 72 h after treatment were 7.10, 3.93, and 4.55 mg/l, respectively. The activities of AChE and GSTs were notably inhibited by the three extracts, as compared with the control, with strong dose- and time-dependent effects. The inhibition strength of the three extracts on AChE and GSTs activities were in the following order: EA extract > PE extract ≥ MA extract. Therefore, I. verum extracts could be explored as novel natural fumigants for the future control of stored-product insect pests.  相似文献   

11.
Bursaphelenchus mucronatus Mamiya et Enda has been recovered for the first time from adults of the cerambycid beetle, Monochamus urussovi (Fischer), in Hokkaido, Japan. The nematode was also recovered from the inner bark of Picea jezoensis (Siebold et Zuccarini) Carrière and Abies sachalinensis (Fr Schmidt) Masters infested with M. urussovi larvae. PCR–RFLP analysis indicated that B. mucronatus in Hokkaido is the European type.  相似文献   

12.
Antifeedant activities of the isolated chemical compounds from Ajuga nipponensis, were studied against adult of striped leaf beetles. The methanol, petroleum ether, ethyl acetate and n-butanol extracts at 1.0 mg/ml, were used in this study. All four extracts exhibited more than 65 antifeedant index at 24 h and ethyl acetate extract showed significant activity against striped leaf beetles with 83.12 antifeedant index. Six compounds and one fraction were isolated by chromatography and their structures were identified by NMR, MS and FTIR spectra. At 2.0 mg/ml for 24 h the three compounds 20-hydroxyecdysone, acacetin and apigenin showed considerable activities with antifeedant indexes 59.29, 51.22 and 61.55, respectively. In contrast to this the antifeedant indexes of acacetin and apigenin, were sharply reduced as the time extended and that of 20-hydroxyecdysone remained unchanged. In addition, the synergistic effects of two mixtures of secondary metabolites, were studied and no sharp difference was observed.  相似文献   

13.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

14.
Generic equations are proposed for stem, branch and foliage biomass of individual trees in even-aged pure stands of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi. Biomass data was collected from a total of 1,016 individual trees from 247 stands throughout Japan, and five regression models were assessed by root mean square error, mean bias, fit index (FI), and AIC. The results show that a power equation using diameter at breast height (dbh) and height is the most suitable for all species and components. This equation is more accurate than the familiar power equation that uses ‘dbh2 height’, and it expresses the greater volume of branch and foliage mass of trees with a lower height/diameter ratio. A power equation using dbh is more reasonable for models with dbh as the only independent variable and more accurate than a power equation using ‘dbh2 height’ for estimating branch and foliage mass. Estimating error for branch and foliage mass is larger than that for stem mass, but the entire aboveground biomass can be estimated with an error of less than 19%, except in the case of small trees with dbh less than 10 cm.  相似文献   

15.

Key message

Water availability and soil pH seem to be major constraints for enzyme activities in calcareous soils under Pinus halepensis and acidic soils under Pinus sylvestris plantations respectively. Proposals for improving enzyme activities may include the promotion of broadleaf species to increase soil pH and the modulation of stand density or the implementation of soil preparation techniques to facilitate water infiltration.

Context

Soil enzymes play a key role in nutrient turnover in forest ecosystems, as they are responsible for the transformation of organic matter into available nutrients for plants. Enzyme activities are commonly influenced by temperature, humidity, nutrient availability, pH, and organic matter content.

Aims

To assess the differences between enzyme activities in calcareous soils below Pinus halepensis and acidic soils below Pinus sylvestris plantations in Spain and to trace those differences back to edapho-climatic parameters to answer the questions: Which environmental factors drive enzyme activities in these soils? How can forest management improve them?

Methods

The differences in climatic, soil physical, chemical, and biochemical parameters and the correlations between these parameters and enzyme activities in soils were assessed.

Results

Low pH and high level of phenols in acidic soils under Pinus sylvestris and water deficit in calcareous soils under Pinus halepensis plantations appeared to be the most limiting factors for enzyme activities.

Conclusion

Options such as the promotion of native broadleaf species in the Pinus sylvestris stands and the modulation of Pinus halepensis stand density or the implementation of soil preparation techniques may improve enzyme activities and, therefore, nutrient availability.
  相似文献   

16.

• Introduction  

Fargesia qinlingensis is the primary food source for the endangered giant panda during the summer months in the Qinling Mountains, but little is known about its spatial distribution and plant community associations.  相似文献   

17.
Our previous studies have revealed that the ThCAP gene plays a vital role in transgenic Populus (P. davidiana × P. bolleana) in response to cold stress. However, the regulatory mechanism of ThCAP gene expression has been unclear. In this study, the 5′ flanking region of the ThCAP promoter (PThCAP) was cloned using a genome-walking method. By analyzing cis-acting regulatory elements of PThCAP, a DRE motif and MYC and MYB elements were found to be located in the promoter. To identify the regulatory elements that control the expression of the ThCAP gene promoter, a series of deletion derivatives of PThCAP, P1–P5, from the translation start code (?1538, ?1190, ?900, ?718 and ?375 bp), were fused to the GUS reporter gene, and then each deletion was stably introduced into Arabidopsis thaliana plants. Deletion analysis of the promoter suggested that only the P2 fragment had strong GUS expression in leaves and roots of A. thaliana exposed to low temperature stress. These results suggest that this 290-bp region (?1190 to ?900 bp), as an important part in PThCAP, was associated with cold tolerance of A. thaliana. Our results provide evidence for the regulatory mechanism of ThCAP gene involved in the response to cold stress, and that the gene is promising candidate gene for genetic improvement of crops.  相似文献   

18.
The efficiency of the botanical insecticide (BI) NeemAzal T/S (containing 1% Azadirachtin A), on the basis of azadirachtin applied in a dose of 20 g a.i. ha−1 against Brassica pod midge (Dasineura brassicae), has been monitored for 4 years. The biological efficiency of BI was compared with the efficiency of some synthetic insecticides. It was ascertained that BI was very efficient in decreasing the number of damaged oilseed rape pods (ranging from 56.5 to 85.9% compared to untreated plants) and its efficiency was comparable with synthetic insecticides based on Chloronicotinyl (Thiacloprid) and Neonicotinoid (Acetamiprid). BI’s efficiency was, in some years, even significantly higher compared to pyrethroid (λ-cyhalothrin). The high biological efficiency of azadirachtin that we ascertained was significantly reflected in increasing potential crop yields. The yield increase of azadirachtin ranged between 9.3 and 19.4% compared to the control sample. Azadirachtin showed the highest yield for the whole time of experimentation, and in some years the yield increase was significantly higher compared to some synthetic agents.  相似文献   

19.
Nodal segments from secondary branches of saplings of Phyllostachys bambusoides were inoculated in MS medium to assess the in vitro morphogenic response of leaf sheath through the induction to callogenesis by Picloram(4-amino-3,5,6-trichloropicolinic acid) at different concentrations of carbohydrate under the same conditions with presence or absence of luminosity.In our experiment,secondary explants were kept in MS medium containing 8.0 mg·L-1 of Picloram for the callus formation.Calluses were transferred in MS medium supplemented with sucrose,fructose and glucose(control,2%,4% and 6%).Results show that Picloram induced the callogenesis in leaf sheath.The secondary embryogenesis was formed in yellow-globular callus.The sucrose as carbohydrate source in the absence of light was more efficient to induce rhizogenesis.Glucose was more efficiency in the presence of light.Callogenic induction and further embryogenesis evidenced the competence and determination of leaf sheath cells.  相似文献   

20.
The morphology of charcoals was investigated by scanning electron microscopy. Charcoal of Quercus variabilis was prepared in an electric furnace under nitrogen gas atmosphere at 400, 600, 800 and 1,000°C. Charring temperature greatly affects the structure of charcoal. In charcoal prepared at 400°C, most of the morphological characteristics remained relatively unchanged with the exception of the cell-wall layering. The cell walls appeared homogenous and glass-like. Above 400°C, there was an increase in cell-wall thinning and volumetric shrinkage with an increase in the charring temperature. These two factors were responsible for most of the observed changes in structure. Fracture surfaces became increasingly rough and disrupted. Vessel elements were increasingly distorted and tyloses disintegrated with increases in temperature. Parenchyma cells exhibited greater shrinkage except at the pits. This resulted in the appearance of distinctive small protuberances over the surface of the parenchyma cells. Rhomboidal calcium crystals were found to be abundant at all the temperatures studied, but at 800 and 1,000°C the crystals had a sponge-like appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号