首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

2.

? Key message

The optimal management of larch (Larix olgensis) plantations in Northeast China consisted of 2 or 3 thinnings and a rotation length of 55–61 years when economic profitability, wood production, and carbon sequestration were simultaneously maximized. Wood production ranged from 5.4 to 11.7 m3 ha?1 a?1, depending on site quality.

? Context

L. olgensis is an important tree species in the northeast forest region of China, playing a significant role in the establishment of fast-growing and high-yielding plantation forests in China. However, the management of these plantations has not been optimized in previous studies.

? Aims

The objective of the study was to find the optimal combinations of thinning times, thinning types, and rotation length for L. olgensis stands when both timber production and carbon stock are considered.

? Methods

First, a growth and yield model was developed to simulate the dynamics of larch plantations. Then, the models were linked with the Hooke and Jeeves optimization algorithm to optimize forest management for two commonly used planting densities and three site qualities.

? Results

Two thinnings were found to be suitable for larch plantations when the stand density at 10 years was 2125 trees/ha (corresponding to a planting density of 2500 trees/ha) whereas three thinnings were recommended when the density at 10 years was 2800 trees/ha (planting density of 3300 trees/ha). When the stand density was 2800 trees/ha, the optimal rotation length was 61, 58, and 55 years for site indices (SI) 12, 16, and 20 m (dominant height at 30 years), respectively. The mean annual wood production was 5.4 m3 ha?1 for SI 12, 8.2 m3 ha?1 for SI 16, and 11.7 m3 ha?1 for SI 20. The results were nearly the same for the lower initial stand density. The better the site quality of the stand, the earlier the thinnings were conducted.

? Conclusion

In multifunctional forestry, optimal rotation lengths of larch plantations were 10–20 years longer than advised in the current silvicultural recommendations for Northeast China.
  相似文献   

3.
Determining the optimal rotation period was a crucial component of forest sustainable management strategies, especially under climate change. This paper had two objectives: (1) to determine the economic benefits and optimal rotation periods for timber production when coupled to carbon sequestration, as predicted by time series prediction models for Pinus tabulaeformis plantations in China; and (2) to evaluate how different carbon prices and interest rates affected optimal rotation periods using the forest land expectation value. The results suggested that time series prediction models were valuable for estimating timber volumes and carbon sequestrations based on surveys of different-aged stands. Importantly, since integrating carbon sequestrations into timber production benefits did not increase optimal rotation periods, this should promote P. tabulaeformis plantation management. In the sensitivity analysis, a higher carbon price increased the profitability of carbon sequestration and timber production, but not optimal rotation periods, though they were reduced under higher interest rates. In conclusion, incorporating both timber production and carbon sequestration benefits would sharply increase forest-based revenues, while realizing the carbon sequestration potential of P. tabulaeformis plantations. This approach was clearly useful to the development of reforestation/afforestation projects trying to mitigate climate change and also provided a theoretical basis for sustainable forest management.  相似文献   

4.

Context

Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

Aims

The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

Methods

The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

Results

Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

Conclusion

Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

5.
The effects of silvicultural treatments on carbon sequestration are poorly understood, particularly in areas like the Mediterranean where soil fertility is low and climatic conditions can be harsh. In order to improve our understanding of these effects, a long-term thinning experiment in a stand of Mediterranean maritime pine (Pinus pinaster Ait.) was studied to identify the effects of thinning on soil carbon (forest floor and mineral soil), above and belowground biomass and fine and coarse woody debris. The study site was a 59-year-old pinewood, where three thinnings of differing intensities were applied: unthinned (control), moderate thinning and heavy thinning. The three thinning interventions (for the managed plots) involved whole-tree harvesting. The results revealed no differences between the different thinning treatments as regards the total soil carbon pool (forest floor + mineral soil). However, differences were detected in the case of living aboveground biomass and total dead wood debris between unthinned and thinned plots; the former containing larger amounts of carbon. The total carbon present in the unthinned plots was 317 Mg ha?1; in the moderately thinned plots, it was 256 Mg ha?1 and in the case of heavily thinned plots, 234 Mg ha?1. Quantification of these carbon compartments can be used as an indicator of total carbon stocks under different forest management regimes and thus identify the most appropriate to mitigate the effects of global change. Our results indicated that thinning do not alter the total soil carbon content at medium term, suggesting the sustainability of these silvicultural treatments.  相似文献   

6.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

7.
Biodiversity loss is a major problem in terms of loss of genetic and ecosystem services and more specifically via impacts on the livelihoods, food security and health of the poor. This study modeled forest management strategies that balance economic gains and biodiversity conservation benefits in planted tropical forests. A forest-level model was developed that maximized the net present value (NPV) from selling timber and carbon sequestration while maintaining a given level of biodiversity (as per the population density of birds). The model was applied to Eucalyptus urophylla planted forests in Yen Bai Province, Vietnam. It was found that the inclusion of biodiversity conservation in the model induces a longer optimal rotation age compared to the period that maximizes the joint value from timber and carbon sequestration (from 8 to 10.9 years). The average NPV when considering timber values plus carbon sequestration was 13 million Vietnamese Dong (VND) ha 1 (765 USD ha 1), and timber, carbon sequestration and biodiversity values were 11 million VND (676 USD) ha 1. Given this differential, governments in such tropical countries may need to consider additional incentives to forest owners if they are to encourage maximizing biodiversity and its associated benefits. The results also have some implications for implementing the climate control measure of “Reducing Emissions from Deforestation and Forest Degradation-plus (REDD +)” in developing countries, i.e., payment for carbon sequestration and biodiversity benefits in planted forests.  相似文献   

8.

Timber use in central Europe is expected to increase in the future, in line with forest policy goals to strengthen local wood supply for CO2-neutral energy production, construction and other uses. Growing stocks in low-elevation forests in Switzerland are currently high as exemplified by the Swiss canton of Aargau, for which an average volume of 346 ± 16 m3 ha−1 was measured in the 3rd Swiss National forest inventory (NFI) in 2004–2006. While this may justify a reduction of growing stocks through increased timber harvesting, we asked whether such a strategy may conflict with the sustainability of timber production and conservation goals. We evaluated a range of operationally relevant forest management scenarios that varied with respect to rotation length, growing stock targets and the promotion of conifers in the regeneration. The scenarios aimed at increased production of softwood, energy wood, the retention of potential habitat trees (PHTs) and the conversion to a continuous cover management system. They were used to drive the inventory-based forest simulator MASSIMO for 100 years starting in 2007 using the NFI sampling plots in Aargau. We analyzed model outputs with respect to projected future growing stock, growth, timber and energy yield and harvesting costs. We found growing stock to drop to 192 m3 ha−1 in 2106 if business-as-usual (BAU as observed between the 2nd and 3rd NFI) timber volumes were set as harvesting targets for the whole simulation period. The promotion of conifers and a reduction of rotation lengths in a softwood scenario yielded 25% more timber over the whole simulation period than BAU. An energy wood scenario that reduced growing stock to 200 m3 ha−1 by 2056 and promoted the natural broadleaved regeneration yielded 9% more timber than BAU before 2056 and 30% less thereafter due to decreasing increments. The softwood scenario resulted in higher energy yield than the energy wood scenario despite the lower energy content of softwood. Retaining PHT resulted in a reduction of timber harvest (0.055 m3 ha−1 yr−1 per habitat tree) and higher harvesting costs. Continuous cover management yielded moderate timber amounts throughout the simulation period, yet sustainably. Considering climate change, we discuss the risks associated with favoring drought- and disturbance-susceptible conifers at low elevations and emphasize that continuous cover management must allow for the regeneration of drought-adapted tree species. In conclusion, our simulations show potential for short-term increases in timber mobilization but also that such increases need to be carefully balanced with future forest productivity and other forest ecosystem services.

  相似文献   

9.
Although agrosystems are recognized for their socio-economic value, few works have been conducted to assign its sequestration potential and ecological services. Accordingly, this study aimed to evaluate the ecological services of the eucalyptus stands in order to permit to small producers the access in carbon credit market. Three stands were selected according to age. Data were compared to that of a savannah (control). In total, 12,817 individuals belonging to 30 families, 53 genera and 70 species were identified in the plantations against 7107 individuals belonging to 24 families, 36 genera and 42 species in the savannah. Gmelina, Annona, Hymenocardia, Allophyllus, Daniellia, Terminalia and Piliostigma were the most represented genera. There was no significant difference between Savannah and plantations in terms of diversity (p > 0.05). The largest stock of carbon was found in oldest stands (108.51 ± 26.46 t C/ha) against 13.62 ± 3.03 t C/ha in Savannah. Eucalyptus saligna stored 39.66 t C/ha (4 t C ha?1year?1) in young stands; 57.28 t C/ha (6 t C ha?1year?1) in medium stands and 85.46 t C/ha (9 t C ha?1year?1) in old stands. The sequestration potential was higher in eucalyptus stands (398.25 t CO2eq/ha) than savannah (50.05 t CO2eq/ha). In total 956.82 t CO2eq/ha were sequestered for an economic value of $9568.45/ha against 50.05 t CO2eq/ha corresponding to $500.56/ha in Savannah. Eucalyptus stands are carbon sinks and could be an opportunity for financial benefits in the event of payment for environmental services in the context of the CDM process.  相似文献   

10.
India launched National Agroforestry Policy on 10th February, 2014 which has the potential to substantially reduce poverty in rural India and revive wood based industry, besides integrating food production with environmental services. The policy is not only crucial to India’s ambitious goal of achieving 33 per cent forest and tree cover but also to mitigate GHG emissions from agriculture sector. Dynamic CO2FIX-v3.1 model has been used to estimate the carbon sequestration potential (CSP) of existing agroforestry systems (AFS) for simulation period of 30 years in twenty six districts from ten selected states of India. The observed number of trees on farmers’ field in these districts varied from 1.81 to 204 per hectare with an average value of 19.44 trees per hectare. The biomass in the tree component varied from 0.58 to 48.50 Mg DM ha?1, whereas, the total biomass (tree and crop) ranged from 4.96 to 58.96 Mg DM ha?1. The soil organic carbon ranged from 4.28 to 24.13 Mg C ha?1. The average estimated carbon sequestration potential of the AFS, representing varying edapho-climatic conditions, on farmers field at country level was 0.21 Mg C ha?1yr?1. At national level, existing AFS are estimated to mitigate 109.34 million tons CO2 annually, which may offsets one-third (33 %) of the total GHG emissions from agriculture sector.  相似文献   

11.
Hybrid aspen is an interesting tree species for wood production in northern Europe. In this study we examined growth dynamics over the whole rotation period. Height and diameter development, as well as annual growth of stem volume and stem biomass, were repeatedly recorded in 14 planted and 2 root sucker stands, aged up to 26 years, in southern Sweden. A main aim was to study the productivity level for hybrid aspen forestry with an expected rotation period of about 25 years. The study verified earlier prognoses, showing a mean annual increment (MAI) of 19.5 m3 of stem wood ha?1 yr?1 after 25 years. This corresponds to a dry weight of stem biomass of 7.2 tons dry matter (DM) ha?1 yr?1. Maximum MAI was still not reached after 25 years, although the growth curve was flattening out. If branch biomass is included, MAI is estimated to about 9 tons DM ha?1 yr?1 and further improvements in growth is expected by using the best genotypically selected clones available. Results from three different thinning regimens showed that thinning intensity provided significantly larger diameter growth, while no significant yield effects were seen among the thinning regimens.  相似文献   

12.
The introduction of carbon finance as an incentive in forestry farming has a potential of increasing the amount of carbon sequestered. However, this has created a daunting task among investors in forestry to optimise the joint production of wood and carbon sequestration. For instance, investors might find it profitable to give up some timber returns in exchange for carbon credits. This study evaluated expected income from growing Cupressus lusitanica Mill., Pinus patula Schiede ex Schltdl. & Cham., Eucalyptus saligna Sm. and Juniperus procera Hochst. ex Endl. for wood and/or the carbon market in central Kenya. The global average unit price of carbon and stumpage royalty were used to estimate expected returns from sale of carbon credits and wood, respectively. There were significant differences (p < 0.01) in the expected amount of income from sale of carbon and wood among the four species. Specifically, at economic rotation of 30 years with stand density of 532 trees ha?1 P. patula and C. lusitanica yielded US$28 050 and US$23 650, respectively, from sale of carbon compared with US$59 000 and US$51 000, respectively, from sale of wood. This was twice the value investors receive from clear-felling as compared with sales from carbon. Similarly, at economic rotation of 33 years with stand density of 150 trees ha?1, a forest investor in E. saligna would earn US$15 400 from sale of carbon compared with US$33 000 from sale of wood. Overall, the amount expected to be realised from sale of carbon was lower compared with that from sale of wood. This demonstrates that the price dynamics of carbon offsets in the voluntary and the compliance markets need to remain competitive and attractive for the forest owners to give up some timber returns in exchange for carbon income or to modify forest management regulation in order to increase carbon sequestration.  相似文献   

13.
Abstract

Quercus semecarpifolia, Smith. (brown oak) forests dominate the high altitudes of central Himalaya between 2400 and 2750 m and the timber line areas. The species is viviparous with short seed viability and coincides its germination with monsoon rains in July–August. These forests have large reserves of carbon in their biomass (above and below ground parts) and soil. We monitored the carbon stock and carbon sequestration rates of this oak on two sites subjected to varying level of disturbance between 2004 and 2009. These forests had carbon ranging between 210.26 and 258.02 t ha?1 in their biomass in 2009 and mean carbon sequestration rates between 3.7 and 4.8 t ha?1 yr?1. The litter production in both the sites ranged from 5.63 to 7.25 t ha?1 yr?1. The leaf litter decomposition of species took more than 720 days for approximately 90% decomposition. Even at 1 m soil depth soil organic carbon was close to 1.0%.  相似文献   

14.
Wood products are considered to contribute to the mitigation of carbon dioxide emissions. A critical gap in the life cycle of wood products is to transfer the raw timber from the forest to the processing wood industry and, thus, the primary wood products. Therefore, often rough estimates are used for this step to obtain total forestry carbon balances. The objectives of this study were (1) to examine the fate of timber harvested in Thuringian state forests (central Germany), representing a large, intensively managed forested region, and (2) to quantify carbon stocks and the lifetime of primary wood products made from this timber. The analyses were based on the amount and assortments of actually sold timber, and production parameters of the companies that bought and processed this timber. In addition, for coniferous stands of a selected Thuringian forest district, we calculated potential effects of management, as expressed by different thinning regimes on wood products and their lifetimes. Total annual timber sale of soft- and hardwoods from Thuringian state forests (195,000 ha) increased from about 136,893 t C (~0.7 t C ha−1 year−1) in 1996 to 280,194 t C (~1.4 t C ha−1 year−1) in 2005. About 47% of annual total timber harvest went into short-lived wood products with a mean residence time (MRT) < 25 years. Thirty-one per cent of the total harvest went into wood products with an MRT of 25–43 years, and only 22% was used as construction wood and glued wood, products with the longest MRT (50 years). The average MRT of carbon in harvested wood products was 20 years. Thinning from above throughout the rotation of spruce forests would lead to an average MRT in harvested wood products of about 23 years, thinning from below of about 18 years. A comparison of our calculations with estimates that resulted from the products module of the CO2FIX model (Nabuurs et al. 2001) demonstrates the influence of regional differences in forest management and wood processing industry on the lifetime of harvested wood products. To our knowledge, the present study provides for the first time real carbon inputs of a defined forest management unit to the wood product sector by linking data on raw timber production, timber sales and wood processing. With this new approach and using this data, it should be possible to substantially improve the net-carbon balance of the entire forestry sector.  相似文献   

15.
The effects of timing and intensity of precommercial thinning were studied in three Scots pine artificially regenerated stands on Vaccinium forest sites in southern Finland. A two-level factorial design (3×3) was used in each stand: thinning at dominant height of 3, 6 and 9 m to 1000, 1600 and 2200 stems ha?1. The effects of the treatments were analysed after a period of 23–25 yrs when the dominant height was 14–15 m. Early thinning resulted in the highest standing volume and amount of merchantable wood, and also in slightly accelerated height development. Thinning to 1000 stems ha?1 caused a considerable production loss, but there were no differences between the densities of 1600 and 2200 stems ha?1. Branches became thicker after early thinning, but the differences between the treatments were negligible for crop trees. Crown ratio was lowest as the result of early or moderate thinning (2200 stems ha?1).  相似文献   

16.
Abstract

An integrated simulation tool, formed by integrating the InnoSIM sawing simulation system with the RetroSTEM simulator, was used to convert available wood raw materials from final felling into sawn timber, allowing for calculation of the three-dimensional wood properties of individual stems (stem geometry, heartwood formation, knottiness) as well as the volume, quality and value of sawn timber in a Norway spruce stand with different thinning regimes (unthinned, normal and intensively thinned). Based on the input data of sawing patterns, the simulations indicate that there are relatively small differences (<8%) in the volume yield (m3ha?1) of sawn goods resulting from sawlogs available from final felling with different thinning practices. However, intensive thinning yielded the largest stem diameters and the greatest volumes (m3ha?1) of large-sized centre goods (thickness: 50, 63, 75 mm) of rather poor quality. Normal thinning yielded the largest volume of A-grade side boards and centre goods (m3ha?1), as well as the best total value ([euro]ha?1) of sawn timber. Differences observed in sawn timber quality distribution can contribute to even more significant variation in value yields, if pricing mechanisms of timber products change to favour higher grade timber products.  相似文献   

17.
This study analyses the trade-off between bioenergy production and soil conservation through thinning operations in Norway spruce (Picea abies L. Karst) plantations in Denmark. Thinning operations were evaluated under different regimes and intensities for a complete rotation period of sixty years and for different site qualities (site-classes I–VI). Applying a dynamic forest growth modeling tool, evolution of forest structure was predicted to observe the potentials for biomass production and inevitable soil degradation. Results showed thinning from below, with a higher utilization (maintenance of a minimum basal area of 25 mha?1) could produce more bioenergy. However, these operations require simultaneous severe forest soil degradation. Therefore, the optimum thinning for bioenergy production under preservation constraints was thinning from above with a lower intensity (maintenance of a minimum basal area of 45 m2 ha?1). The ratio of bioenergy win (kWh) to soil-loss (mha?1) was calculated for this regime varying between 74,894 kWh m?3 in a high quality site (site-class I) and 6,516 kWh m?3 in a low quality site (site-class VI) with an average of 44,282 kWh m?3. However, this could not always preserve the highest amount of growing stock essential for natural dynamics of forest ecosystem with an exception of the low quality sites (site-class VI). Thus, when aiming at bioenergy production through thinning operations, trade-offs with soil conservation and growing stock preservation should be regarded to prevent environmental degradation.  相似文献   

18.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

19.
Terrestrial ecosystems represent a major sink for atmospheric carbon (C) and temperate forests play an important role in global C cycling, contributing to lower atmospheric carbon dioxide (CO2) concentration through photosynthesis. The Intergovernmental Panel of Climate Change highlights that the forestry sector has great potential to decrease atmospheric CO2 concentration compared to other sectoral mitigation activities. The aim of this study was to evaluate CO2 sequestration (CO2S) capability of Fagus sylvatica (beech) growing in the Orfento Valley within Majella National Park (Abruzzo, Italy). We compared F. sylvatica areas subjected to thinning (one high-forest and one coppice) and no-management areas (two high-forests and two coppices). The results show a mean CO2S of 44.3 ± 2.6 Mg CO2 ha?1 a?1, corresponding to 12.1 ± 0.7 Mg C ha?1 a?1 the no-managed areas having a 28% higher value than the managed areas. The results highlight that thinning that allows seed regeneration can support traditional management practices such as civic use in some areas while no management should be carried out in the reserve in order to give priority to the objective of conservation and naturalistic improvement of the forest heritage.  相似文献   

20.
The impacts of wood harvest, biomass removal and inter-rotation site management practices on productivity of Acacia mangium in South Sumatra were studied over 12 years across successive rotations. The productivity measured as MAI increased from 29.4 m3 ha?1 year?1 in the first to 48.0 m3 ha?1 year?1 in the second rotation. Whole tree harvesting (total stem, branches and leaves) caused a 21 % reduction in volume compared to harvesting merchantable wood alone in the next rotation. The rates of nutrients accumulation in trees were highest during the first year of growth, and declined from age 2 years. Significant amounts of nutrients were recycled through litter fall from 1 year after planting. Results highlight the importance of management which promotes nutrient supply on stand growth. Removal of slash and litter lowered soil pH, by about 0.1 unit. A small reduction was also found in soil organic carbon and nitrogen in the top soil during the first 3–4 years but values returned to pre-harvest levels by the end of the rotation. Extractable soil phosphorus and exchangeable cations decreased by the end of second rotation but these measures underestimate the nutrient pools available for A. mangium. These findings along with results from other studies have helped to implement operations which promote conservation of site resources for sustainable production in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号