首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tea tree oil is extracted from the leaves and twigs of Melaleuca alternifolia (Maiden & Betche) Cheel, and it is widely used in medicines, food preservatives, cosmetics and health care products. Traditional propagation of M. alternifolia from seeds does not necessarily transfer the desired characteristics from their mother trees, the seedlings are not uniform, and the multiplication rate from cuttings is relatively low. For these reasons, it is necessary to develop tissue culture techniques for this species. This study showed that an efficient explant initiation medium for M. alternifolia was MS 1/2 + BA 0.6 mg L?1 + NAA 0.1 mg L?1 + sucrose 30 g L?1, which yielded a 75.9 % initiation rate. An efficient multiplication medium was MS + BA 0.3 mg L?1 + NAA 0.15 mg L?1 + sucrose 30 g L?1, which yielded a 4.3 multiplication rate and 3.2 cm shoot length. The rooting medium was MS 1/2 + IBA 0.1–0.25 mg L?1 + sucrose 15 g L?1, which yielded a 100 % rooting rate, 2.94–3.32 roots per individual and 1.36–1.44 cm root length. Local red-core soil was suitable as a transplant medium, and yielded 98 % survival. This study improved the tissue culture technique for mass-propagation of M. alternifolia, enabling the production of high quality plants for market.  相似文献   

2.
Nitraria sibirica Pall. is a shrub that grows in saline-alkali soil and has traditional medicinal value and potential commercial value. The objectives of this study include induction and multiplication of callus, establishment of a suspension cell line, and isolation of protoplasts from cell suspensions. Murashige and Skoog (MS) medium was used for callus induction from mature seeds of N. sibirica. Seed-derived calluses were further multiplied on MS medium augmented with 0.5 mg L?1 6-benzylaminopurine (6-BA) and 1.0 mg L?1 2,4-dichlorophenoxy (2,4-D) acetic acid. Suspension cultures of N. sibirica were initiated by transferring friable calli to the same liquid multiplication medium. Characterization of the suspension culture was assessed based on fresh mass, dry mass, cell viability and pH value of the culture. A typical growth curve was observed after inoculating 1.5 g of callus in 40 mL liquid medium, including a lag phase, an exponential growth phase, a stationary phase, and a negative acceleration phase. The effect of factors such as pre-plasmolysis, enzyme combination, enzymolysis time and mannitol concentration, on the isolation of cell-derived protoplasts were evaluated to determine the usefulness of suspension cultures. The maximum yield (9.79 × 106 cells/g) and highest viability (79.97%) of protoplast were reached when approximately 1 g of cell suspension (cultured for 6 days) was inoculated for 12 h in cell and protoplast washing solution made of 0.8 mol L?1 mannitol mixture solution, cellulose onozuka R-10 2% (w/v), hemicellulose 0.2%, macerozyme R-10 1%, and pectolyase Y-23 0.5%. Protoplast yield was significantly influenced by pre-plasmolysis and cellulose onozuka R-10 (P < 0.05).  相似文献   

3.
With embryogenic callus of Larix olgensisis, we investigated the effects of inositol, glutamine, casein hydrolysate, carbohydrate, abscisic acid and silver nitrate concentration on the maturation of the somatic embryo. Three dominant factors emerged, and we developed a response surface model based on the Box–Behnken design. We defined the optimal conditions for the maturation of somatic embryos. The contents of abscisic acid, silver nitrate, sucrose and casein hydrolysis significantly affected the amount of maturing embryos, but inositol, maltose and glutamine had no effect. By establishing a response surface model with multiple factors, we predicted that the optimal number of L. olgensis somatic embryos was 204?±?4 g?1 on basal medium, containing 18.28 mg L?1 abscisic acid, 5.46 mg L?1 silver nitrate and 82.67 g L?1 sucrose. In the verification experiments, the addition of 20 mg L?1 abscisic acid, 5 mg L?1 silver nitrate and 80 g L?1 sucrose to BM yielded an average of 202.06 somatic embryos per gram. These results should guide large-scale breeding of L. olgensis.  相似文献   

4.
Cerasus humilis is a species of small, perennial, drought-resistant and multipurpose deciduous shrub grown in arid and semi-arid conditions in northern China. In this study, an efficient protocol for the rapid micropropagation of C. humilis has been standardized using stem and/or leaf explants. Direct multiple shoot induction was observed when the stem explants were cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators. The highest shoot induction was obtained when stem explants from adult trees were cultured on MS medium supplemented with 2.0 mg L?1 6-benzyladenine (6-BA) and 0.9 mg L?1 α-naphthaleneacetic acid (NAA). The leaf and stem explants cultured on MS medium with 1.0 mg L?1 6-BA and 0.6 mg L?1 NAA, and 0.5 mg L?1 6-BA and 0.8 mg L?1 NAA, respectively, produced the highest induction frequency of callus. Maximum proliferation of callus was observed on MS medium containing a combination of 0.5 mg L?1 6-BA with 0.6 mg L?1 2,4-dichlorophenoxyacetic acid (2,4-d). Optimal shoots differentiated from callus were obtained on MS medium supplemented with 5.0mg L?1 6-BA and 0.9 mg L?1 NAA. In vitro rooting was achieved on half-strength (1/2) MS medium containing 0.5 mg L?1 NAA. Rooted plantlets were hardened under control conditions and successfully acclimatized under field conditions.  相似文献   

5.
Eucalyptus is very recalcitrant to in vitro culture. In this research, an efficient shoot organogenesis system was developed using 60-day-old plants of Eucalyptus globulus grown in vitro and non-aerated liquid medium to improve shoot proliferation. Cultures were initiated with hypocotyls and leaf segments from plantlets cultivated on semisolid ½ MS modified medium supplemented with 4.44 µM 6-Benzyladenine (BA) and 16.1 µM 1-Naphthaleneacetic acid (NAA). Calli were transferred to shoot induction medium, with either 0.5 or 2.7 µM NAA. Shoot multiplication was carried out on 4.44 µM BA + 0.5 µM NAA medium, and semisolid and non-aerated liquid systems were compared for improving shoot proliferation. Rooting of adventitious shoots was evaluated on medium containing NAA or Indole-3-butyric acid -IBA (5 and 16 µM). Callogenesis was obtained from both types of explants, although shoot formation was only obtained from leaf-derived calli. Shoot proliferation on 4.44 µM BA + 0.5 µM NAA resulted in the most shoots/callus. Non-aerated liquid medium was more efficient in promoting shoot multiplication (53.5 shoots/callus) than was semisolid medium (28.5 shoots/callus). Levels of phenolic compounds were significantly reduced in the shoots cultivated in liquid medium. Efficient rooting (76%) was obtained using 16 µM IBA.  相似文献   

6.
Cinchona officinalis (Rubiaceae) is an endemic species of the Loja Valley in southern Ecuador with medicinal uses. Because of over-exploitation in the nineteenth century and more recent disturbances to its ecosystem, C. officinalis populations are threatened. Currently, natural regeneration of the populations is low, despite its high plant regeneration and seed formation capacity. In the present study, an efficient protocol for germination, shoot proliferation and plantlets regeneration was developed for this species. Phenolic content and germination rate of C. officinalis seeds were compared with a control species, C. pubescens. Nodal segments from seedlings of C. officinalis were cultured on Gamborg medium supplemented with different combinations of plant growth regulators. Because the phenol content is high in C. officinalis, the phenolic should be removed with hydrogen peroxide or water washes to stimulate germination. Shoots and callus developed from nodal segments within 45 days using most of the tested combinations of plant growth regulators. The best rates of shoot proliferation, callus formation and adventitious buds were obtained in medium supplemented with 5.0 mg L?1 6-benzyl-aminopurine and 3.0 mg L?1 indole-3-butyric acid.  相似文献   

7.
An efficient protocol has been developed for in vitro propagation of Enicostema axillare using shoot tip explants. The shoot tip explants were cultured on MS medium supplemented with various combinations of (BAP, KIN) and (NAA/IAA & IBA) in different concentrations between 0.5 and 2.0 mg/l for multiple shoot bud induction. The highest percent of (98.51 %) was observed at 1.0 mg/l BAP in combination with 0.2 mg/l KIN while maximum number of shoot buds (8.41 shoots/explant) was noticed on MS medium containing 1.0 mg/l BAP and 0.2 mg/l KIN combination. The highest frequency (90.82 %) of multiple shoot bud regeneration was observed at 1.0 mg/l BAP and 0.5 mg/l IBA with 15.12 ± 2.12 shoots/explants. The regenerated multiple shoots were transferred to half-strength MS medium augmented with different concentration of 0.5–2.5 mg/l IBA for rooting. Among the different concentrations of IBA tested, maximum percentage of rooting (100 %) was observed in MS medium augmented with 1.5 mg/l IBA. The rooted plantlets were successfully transferred into plastic cups containing soil and sand in the ratio of 1:1. Subsequently established in the field conditions with 90 % of survival rate. The protocol developed can be utilized for both large scale plant production and conservation of germplasm of this species. The described method can be successfully employed for large-scale multiplication and in vitro conservation as well as production of secondary metabolites of E. axillare.  相似文献   

8.
Khaya anthotheca is a hardwood species from Africa and recently introduced to Brazil. This species yields high-quality wood for diverse applications, but little has been done toward an effective propagation method for large-scale production in nurseries. We evaluated the effects of different concentrations of macro and micronutrients (i.e., 100, 50 and 25% of the concentration of a referenced solution) combined with indole-3-butyric acid (IBA) at 0 and 2 g L?1 on the survival rate of mini-stumps and the survival and adventitious rooting of K. anthotheca mini-cuttings. The mini-stumps were grown from a source of seeds imported from Ghana, West Africa. The mini-stumps survived at a high rate (97%). Consistently high shoot yields were obtained from the mini-stumps (average of 1.8 per mini-stump). High survival percentage of mini-cuttings and adventitious rooting were observed when solutions with 100 and 50% of the nutrients concentration were combined with 2 g L?1 IBA. Histological sections analyzed through optical microscopy indicated the tissues from mini-cutting stems were juvenile, which might have stimulated adventitious rooting. These results have important implications for further work aimed at establishing propagation strategies for K. anthotheca, which are of prime importance for assisting breeding programs of this species.  相似文献   

9.
A reliable in vitro regeneration procedure for Populus tomentosa is a prerequisite for its trait improvement through genetic transformation. We established a systematic protocol for indirect regeneration of P. tomentosa using in vitro petioles of Chinese poplar cultivar ‘fasta-3’. A high frequency of callus induction (>97 %) was obtained from isolated petioles cultured on the modified 1/2MS basal medium supplemented with 0.5 mg/L ZT and 1.0 mg/L NAA, and the tested calli were subsequently plated on 1/2MS basal medium supplemented with 0.25 mg/L BA, 0.25 mg/L ZT, 0.25 mg/L NAA, 0.01 mg/L TDZ, and 0.5 mg/L KT for efficient regeneration of shoots after being cultured for 6 weeks. The regenerated shoots were vigorously rooted on the tested media supplemented with 1.0 mg/L IBA and 0.5 mg/L NAA. These results can facilitate genetic transformation of P. tomentosa for trait improvements in future.  相似文献   

10.
Since the generation of full-sib artificial triploid families, rapid clone establishment and genetic improvements have been needed. Here, we report an in vitro method of direct shoot regeneration of a triploid hybrid poplar [(Populus simonii × P. nigra ‘Italica’) × (P. × ‘popularis’)]. Using different randomized block designs, we selected one triploid to evaluate the explant type, optimal concentrations of plant growth regulators and agar, and culture time under light or dark conditions over 60 days. The highest rate of shoot induction, 80.0%, was obtained using Murashige and Skoog (MS) medium supplemented with 0.2 mg/L benzyladenine, 0.04 mg/L naphthaleneacetic acid (NAA), and 5.5 g/L agar for the first 30 days in the dark, then 3 g/L agar for the next 30 days in light. This last medium yielded the best rate of shoot induction (6.32 shoots/explant). These three media were also used to evaluate the influence of the genotypes of the parents and hybrid triploids on regeneration. Two parents and three of the four full-sib triploids were regenerated successfully; different genotypes and explant types significantly affected the rate of shoot induction and average number of shoots. Leaves but not petioles were a suitable explant. One genotype produced the highest rate of shoot induction of 96.67%. Half-strength MS medium supplemented with 0.2 mg/L indole butyric acid and 0.04 mg/L NAA was the most effective for rooting; rooting rate was 96.67%, survival rate of transplants was 73.33%, and rooting frequency surpassed 85% for each genotype. Overall, this in vitro regeneration system will be useful for the propagation and genetic modification of triploid poplars.  相似文献   

11.
We investigated the effects of two commercial diatomaceous earth based insecticides (DE), Protect-It® and SilicoSec®, the nano-structured silica product AL06, developed by the section for Urban Plant Ecophysiology at Humboldt University Berlin, and the monoterpenoids, eugenol, and cinnamaldehyde on two stored product pests, Callosobruchus maculatus and Sitophilus oryzae. Protect-It® was more effective than SilicoSec® against C. maculatus while the reverse was true for S. oryzae. Generally C. maculatus was more sensitive towards DE and silica treatment than S. oryzae. Mortality rate of both pest species increased when DE’s were applied to food commodities previously treated with a monoterpenoid. In admixture experiments, the toxicity of SilicoSec® + cinnamaldehyde (LD50 = 42.73 ppm), SilicoSec® + eugenol (LD50 = 24.30 ppm), and Protect-It® + eugenol (LD50 = 2.60 ppm) was increased over DE alone against S. oryzae. Both substances showed a synergistic effect considering their co-toxicity coefficient relative to the LD50-value. In contrast, we could not find any synergistic effects in experiments with C. maculatus. Here only Protect-It® + cinnamaldehyde (LD50 = 20.84 ppm) showed an additive effect while all other combinations of monoterpenoid and DE indicated antagonistic effects. In addition to contact insecticidal effects both monoterpenoids showed a strong fumigant action. The presented results indicate that the natural product DE has great potential to replace synthetic pesticides commonly used in stored product pest management. Efficacy of DE can be improved by adding certain monoterpenoids against certain insect pests.  相似文献   

12.
Plant-based products, namely essential oils (EOs), are environmentally friendly alternatives for the control of disease vectors, hosts and/or parasites. Here, we studied the general toxicity and biopesticidal potential of EOs and phenylpropanoids from Foeniculum vulgare var. vulgare (bitter fennel), a perennial plant well adapted to temperate climates. EO/compound toxicity was tested against a freshwater snail and potential intermediate host of Fasciola hepatica (Radix peregra), a mosquito and former European malaria vector (Anopheles atroparvus) and one of the most damaging plant-parasitic nematodes, the root-knot nematode (Meloidogyne javanica). Lethal concentrations (LC50; LC90) of EOs (infrutescences/stems with leaves) and compounds were calculated by probit analysis. All displayed noteworthy activity against R. peregra adults (LC50 21–39 µg ml?1) and A. atroparvus larvae (LC50 16–56 µg ml?1). trans-Anethole revealed acute nematicidal activity after 24 and 48 h (LC50 310 and 249 µg ml?1, respectively), and estragole (1,000 µg ml?1) showed some effectiveness against M. javanica hatching and juveniles after 15 days. Plant and EO yields were determined to evaluate the bitter fennel productivity. The chemical composition of the EOs was analyzed by gas chromatography coupled to mass spectrometry. EOs extracted from whole plants, infrutescences and stems with leaves were characterized by estragole-dominant profiles (28–65 %), considerable amounts of phellandrene (10–34 %) and fenchone (6–16 %), and minor trans-anethole contents (1–4 %). Although additional toxicological studies against nontarget organisms are required, our study demonstrates that bitter fennel is a productive source of molluscicides and larvicides, and thus a potential sustainable biological agent to control particular host species, namely freshwater snails and mosquitoes.  相似文献   

13.
Pinus halepensis has been described as a drought-tolerant species with high plasticity to growth in different environments. Its eco-physiological characteristics could facilitate the use of this species in large afforestations in the future scenery of climate change. Somatic embryogenesis is a biotechnological tool with potential for large-scale clonal propagation. In order to establish an improved regeneration protocol for Pinus halepensis, the effects of different temperatures (18, 23, and 28 °C) and water availability conditions (2, 3, and 4 g L?1 Gelrite®), during initiation of embryonal masses on the rate of initiation, proliferation, maturation, and the number of embryos developed, were evaluated. It was found that environmental conditions during the initiation stage of Pinus halepensis somatic embryogenesis influence the success of initiation and proliferation. In contrast, there was no effect of these conditions on the maturation rates and the number of somatic embryos. Somatic embryos were obtained in all treatments tested, indicating that plants can be produced from extreme conditions of induction, such as high temperatures (28 °C) and low water availability conditions (4 g L?1).  相似文献   

14.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

15.
The objective of this work was to evaluate the effect of different water deficiency and rehydration levels on the concentrations of osmoregulators in two plant species (Hymenaea courbaril and H. Stigonocarpa) in the Amazon. We adopted a 2 × 5 × 5 factorial system, referring to 2 species (H. courbaril and H. stigonocarpa) and 5 stages of hydration and rehydration. The five hydration and rehydration stages were established in: (1) Control treatment E0; (2) Plants with 13 days of stress after incubation—E13; (3) Plants with 26 days of stress E26; (4) The plants that were established after 26 days after incubation and rehydrated for two days (RD2); (5) rehydrated for two days (RD4). The plants that were established after 26 days after incubation and rehydrated for four days. The experiment totaled fifty young plants with five replicates. Biochemical measurements were performed at the beginning of the experiment (E0) at 13 (E13) and 26 (E26) days after the water stress, in which the plants were rehydrated, repeating the analyses after two (RD2) and four (RD4) days. Both species increased the sucrose concentration by 18%, with a decrease of 52% in starch content. The RD4 time presented the highest mean starch concentration (0.19 mmol g?1 of the residue for H. courbaril and 0.27 mmol g?1 of residue for H. stigonocarpa). Increased proline concentrations were recorded for controls until RD2 for both species. For glycine betaine, the highest increases in treatments E26 and RD2 were observed for the H. courbaril species. Our rehydration period was not sufficient for total recovery of pre-stress concentrations of all studied solutes.  相似文献   

16.
Bioactivity of essential oils (EOs) from Monarda species has never been investigated on phytoparasitic nematodes. In this study, the EOs from two Italian ecotypes of Monarda didyma and M. fistulosa and their main compounds, carvacrol, γ-terpinene, o-cymene, and thymol, were evaluated for their in vitro activity on the infective stages of phytoparasitic nematodes Meloidogyne incognita and Pratylenchus vulnus, as well as on M. incognita egg hatch. Soil treatments with the two EOs were also investigated for their suppressiveness on M. incognita on tomato. Both EOs were strongly active on M. incognita juveniles, as a only 1.0 μL mL?1 LC50 value was evaluated after a 24-h exposure to both EOs, whereas a lower activity was recorded on P. vulnus (15.7 and 12.5 μL mL?1 LC50 values for M. didyma and M. fistulosa EOs, respectively). Among the EOs’ main compounds, carvacrol was highly active also at a short exposure in low concentrations, whereas γ-terpinene and thymol were much less active on both nematode species and o-cymene showed a discrete activity on P. vulnus only at the highest concentration. Hatch percent of M. incognita eggs treated with M. didyma and M. fistulosa EOs was always significantly lower than in water or in Tween 20 and Oxamyl solutions. In the experiment in soil, the multiplication of M. incognita and gall formation on tomato roots was significantly reduced by soil treatments with both EOs. The strong nematicidal activity of both Monarda EOs may suggest them as potential sources of new sustainable nematicidal products.  相似文献   

17.
Sesbania sesban (L.) Merr is a perennial N2-fixing tree with high potential for use in agricultural production systems as a green manure and livestock forage. We studied the interactive effects of soil type and water level on the growth, biomass allocation, nutrient and mineral content of S. sesban. Four-week old seedlings of S. sesban were grown for 49 days (n = 5) in a factorial mesocosm set-up with six soil types (sediment, sand, alluvial, acid-sulfate, saline and clay) and three water levels (drained, water-saturated and flooded). The soils tested represent the predominant alluvial soil types of the Mekong delta, Vietnam. Sesbania sesban grew well with relative growth rates (RGR) around 0.08 g g?1 d?1 in all studied soil types, except the saline soil where plants died. In the low-pH (3.9) acid sulfate soil, that constitute more than 40 % of the Mekong delta, the RGR of the plants was slightly lower (0.07 g g?1 d?1), foliar concentration of calcium was 3–6 times lower, and concentrations of iron and sodium up to five times higher, than in other soils. The nutrient and mineral contents of the plant tissues differed between the soils and were also affected by the flooding levels. Foliar concentrations of nitrogen (50–74 mg N g?1 dry mass) and phosphorus (5–9 mg P g?1 dry mass) were, however, generally high and only slightly affected by water level. The results show that S. sesban can grow well and with high growth rates on most wet soils in the Mekong delta, except saline soils where the high salt content prevents establishment and growth. The nutrient and mineral contents of the plants, and hence the nutritional value of the plants as e.g. fodder or compost crops, is high. However, soil type and water level interactively affect growth and tissue composition. Hence, optimal growth conditions for S. sesban differ in the different regions of the Mekong delta.  相似文献   

18.
Thiamethoxam (ACTARA® 25WG) was evaluated for its insecticidal activities against the bamboo powder post beetle Dinoderus minutus Fabricius (Coleoptera: Bostrichidae). The study showed that thiamethoxam had contact toxicity against D. minutus. Based on dose-mortality responses, LC50 values for thiamethoxam against D. minutus ranged from 1.74 to 7.94 μg ml?1. Laboratory and field exposure tests showed that thiamethoxam at concentration of atleast 10 μg ml?1 may have anti-oviposition or anti-feeding effects on D. minutus and can protect post harvest Bambusa vulgaris Schrad. culms against the infestation of this bamboo boring beetle.  相似文献   

19.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

20.
Previous studies showed that Chaetomium globosum ND35 fungus fertilizer can improve the microbial community structure and enzyme activities of replanted soil. However, it remains unclear whether can improve the physiological and ecological characteristics of plants under successive rotation. In this study, we investigated the photosynthetic, physiological, and biochemical indexes including photosynthetic parameters, chlorophyll fluorescence, and chlorophyll content of 1-year-old poplar seedlings under seven different doses (range from 0 to 1.67 g kg?1) of C. globosum ND35 fungus fertilizer to study the effects of fungus fertilizer on photosynthesis of Poplar. Our results showed that: (1) With increasing application of fungus fertilizer in replanted soil, chlorophyll content of poplar leaves (Chl) increased, while physiological indexes such as electron transport rate (ETR), net photosynthetic rate (P n), quantum efficiency (Φ), nitrate reductase (NR) activity and root vigor initially increased and then declined. Meanwhile, heat dissipation that depended on the xanthophyll cycle declined and non-photochemical quenching (NPQ) initially increased and then decreased. When the dose of C. globosum ND35 fungus fertilizer was 0.67 g kg?1 (T3) and 1.00 g kg?1 (T4), excess light energy of photosynthetic apparatus was reduced, and photosynthetic apparatus distributed more light energy to the direction of photochemical reactions, which improved the efficiency of energy use. Plant height and biomass of leaves, stems, and roots were maximum at T3. We conclude that applying appropriate amounts of C. globosum ND35 fungus fertilizer can improve root physiological activity and capacity for use of light by poplar leaves. This can improve the operating states of the photosynthetic apparatus and lead to increased photosynthetic efficiency of poplar leaves and accumulation of dry matter. This suggests a strategy to alleviate the successive rotation obstacle of soil nutrient depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号