首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Spatial scale is an important consideration when managing forest wildlife habitat, and models can be used to improve our understanding of these habitats at relevant scales. Our objectives were to determine whether stand- or microhabitat-scale variables better predicted bird metrics (diversity, species presence, and abundance) and to examine breeding bird response to clearcut size and age in a highly forested landscape. In 2004-2007, vegetation data were collected from 62 even-aged stands that were 3.6-34.6 ha in size and harvested in 1963-1990 on the Monongahela National Forest, WV, USA. In 2005-2007, we also surveyed birds at vegetation plots. We used classification and regression trees to model breeding bird habitat use with a suite of stand and microhabitat variables. Among stand variables, elevation, stand age, and stand size were most commonly retained as important variables in guild and species models. Among microhabitat variables, medium-sized tree density and tree species diversity most commonly predicted bird presence or abundance. Early successional and generalist bird presence, abundance, and diversity were better predicted by microhabitat variables than stand variables. Thus, more intensive field sampling may be required to predict habitat use for these species, and management may be needed at a finer scale. Conversely, stand-level variables had greater utility in predicting late-successional species occurrence and abundance; thus management decisions and modeling at this scale may be suitable in areas with a uniform landscape, such as our study area. Our study suggests that late-successional breeding bird diversity can be maximized long-term by including harvests >10 ha in size into our study area and by increasing tree diversity. Some harvesting will need to be incorporated regularly, because after 15 years, the study stands did not provide habitat for most early successional breeding specialists.  相似文献   

2.
Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand and landscape-levels. We used data on bird communities collected under comparable sampling protocols on four managed forests located across the Southeastern US to develop logistic regression models describing relationships between habitat factors and the distribution of overall richness and richness of selected guilds. Landscape models generated for eight of nine guilds showed a strong relationship between richness and both availability and configuration of landscape features. Diversity of topographic features and heterogeneity of forest structure were primary determinants of avian species richness. Forest heterogeneity, in both age and forest type, were strongly and positively associated with overall avian richness and richness for most guilds. Road density was associated positively but weakly with avian richness. Landscape variables dominated all models generated, but no consistent patterns in metrics or scale were evident. Model fit was strong for neotropical migrants and relatively weak for short-distance migrants and resident species. Our models provide a tool that will allow managers to evaluate and demonstrate quantitatively how management practices affect avian diversity on landscapes.  相似文献   

3.
The limited spatial scales of many bird–habitat studies restrict inference regarding large scale bird–habitat relationships. A potential solution to this challenge is integrating the USFS Forest Inventory and Analysis (FIA) and USGS Breeding Bird Survey (BBS) databases. We describe a methodology for integrating these databases into a uniform dataset for modeling bird–habitat relationships at multiple spatial scales. We accumulated route-level BBS data for four species guilds (canopy nesting, ground-shrub nesting, cavity nesting, early successional), each containing a minimum of five bird species. We developed 43 forest variables at the county level using FIA data from the 2000 inventory cycle within 5 physiographic regions in 14 states. We examined spatial relationships between the BBS and FIA data at three hierarchical scales: (1) individual BBS routes, (2) FIA units, and (3) physiographic sections. At the BBS route scale, we buffered routes at 100 m, 1 km, and 10 km radii, intersected these buffers with county boundaries, and developed weighted averages for each forest variable within each buffer width. Weights were a function of the percent of area each county had within a buffer. We calculated 29 landscape structure variables from 1992 National Land Cover Data (NLCD) imagery using Fragstats within each buffer width. At the BBS route scale, we developed models relating variations in bird occupancy and abundance to forest and landscape structure within each buffer width using classification and regression trees (CART). We aggregated the FIA variables to the FIA unit and physiographic section scales and recalculated the landscape variables within each unit and section using NCLD imagery resampled to a 400 m pixel size. We used regression trees (FIA unit scale) and general linear models (GLM, physiographic section scale) to relate variations in bird abundance to the forest and landscape variables. At the BBS route scale, 80% of the best CART models accounted for >50% of the variation in bird occupancy and abundance. Among FIA units and physiographic sections, the regression trees accounted for an average of 54.1% and the GLMs accounted for an average of 66.3% of the variability in bird abundance, respectively. This methodology shows promise for integrating independent databases for evaluating bird–habitat relationships across broad spatial extents, and the hierarchical nature of these models provides a potentially consistent means of evaluating management options at varying spatial scales.  相似文献   

4.
We examined if clearcuts were selected as habitats by grizzly bears (Ursus arctos L.) in west-central Alberta during three seasons: hypophagia, early hyperphagia, and late hyperphagia. Our objectives were to describe seasonal habitat selection of clearcuts using resource selection functions at two scales. At the first scale, we assessed patch or third-order selection by comparing use (radiotelemetry) with study area-wide random locations and a dummy variable identifying whether locations occurred within or outside of clear-cut boundaries. At the second scale, we assessed within-patch or fourth-order selection by comparing locations (use and random) found within clearcuts and environmental covariates of terrain, silviculture, and landscape metrics. Finally, we examined diurnal versus crepuscular/nocturnal use of clearcuts by comparing the two with an expected 50:50 ratio.At the third-order scale, grizzly bears used clearcuts with respect to their availability for hypophagia and late hyperphagia, while selecting clearcuts more than expected during early hyperphagia. Fourth-order habitat selection revealed that landscape metrics, silviculture, and terrain were important predictors of grizzly bear use during hypophagia and late hyperphagia, while terrain appeared to be the most important predictor during early hyperphagia. Overall, grizzly bears avoided clear-cut interiors and preferred clearcuts with higher perimeter-to-edge ratios. Clearcuts were significantly more likely to be used during crepuscular/nocturnal periods. Intermediate-aged (∼30 years old) clearcuts were selected during hypophagia, whereas recent and old clearcuts were selected during late hyperphagia. Bears tended to avoid clearcuts with Donaren mound preparation, while selecting clearcuts with Bracke or shark-fin barrel dragging. These results suggest that landscape metrics, site preparation history, terrain, and season were important factors determining the use of clearcuts by grizzly bears. Future forest planning should strive to maximize habitat quality by: (1) increasing perimeter-to-edge ratio for clear-cut shapes; (2) using low impact and/or positively associated site preparation treatments like Bracke and shark-fin barrel dragging; and (3) limiting human access to areas predicted as high-quality habitat.  相似文献   

5.
Large-scale information on habitat suitability is indispensable for planning management actions to further endangered species with large-spatial requirements. So far, remote sensing based habitat variables mostly included environmental and land cover data derived from passive sensors, but lacked information on vegetation structure. This is a serious constraint for the management of endangered species with specific structural requirements. Light detection and ranging (LiDAR), in contrast to passive remote sensing techniques, may bridge this gap in structural information at the landscape scale. We investigated the potential of LiDAR data to quantify habitat suitability for capercaillie (Tetrao urogallus), an endangered forest grouse in Central Europe, in a forest reserve of 17.7 km2. We used continuous variables of horizontal and vertical stand structure from first and last pulse LiDAR data and presence–absence information from field work to model habitat suitability with generalized linear models (GLM). The two final habitat suitability models explained the observed presence–absence pattern moderately well (AUC of 0.71 and 0.77) with horizontal structure explaining better than vertical structure. Relative tree canopy cover was the most important variable with intermediate values indicating highest habitat suitability. As such, LiDAR allowed us to translate the results from habitat modeling at the landscape scale to effective management recommendations at the local scale at a level of detail that hitherto was unavailable for large areas. LiDAR thus enabled us to integrate individual habitat preferences at the scale of entire populations and thus offers great potential for effective habitat monitoring and management of endangered species.  相似文献   

6.
Numerous studies have explored the influence of forest management on avian communities empirically, but uncertainty about causal relationships between landscape patterns and temporal dynamics of bird communities calls into question how observed historical patterns can be projected into the future, particularly to assess consequences of differing management alternatives. We used the Habplan harvest scheduler to project forest conditions under several management scenarios mapped at 5-year time steps over a 40-year time span. We used empirical models of overall avian richness, richness of selected guilds, and probability of presence for selected species to predict avian community characteristics for each of the mapped landscapes generated for each 5-year time step for each management scenario. We then used time series analyses to quantify relationships between changes in avian community characteristics and management-induced changes to forest landscapes over time. Our models of avian community and species characteristics indicated habitat associations at multiple spatial scales, although landscape-level measures of habitat were generally more important than stand-level measures. Our projections showed overall avian richness, richness of Neotropical migrants, and the presence of Blue-gray Gnatcatchers and Eastern Wood-pewees varied little among management scenarios, corresponding closely to broad, overall landscape changes over time. By contrast, richness of canopy nesters, richness of cavity nesters, richness of scrub-successional associates, and the presence of Common Yellowthroats showed high temporal variability among management scenarios, likely corresponding to short-term, fine-scale changes in the landscape. Predicted temporal variability of both interior-forest and early successional birds was low in the unharvested landscape relative to that in the harvested landscape. Our results also suggested that early successional species can be sensitive to both availability and connectivity of habitat on the landscape. To increase or maintain the avian diversity, our projections indicate that forest managers need to consider landscape-scale configuration of stands, maintaining a spatially heterogeneous distribution of age classes. Our findings suggest which measures of richness or species presence may be appropriate indicators for monitoring effects of forest management on avian communities, depending on management objectives.  相似文献   

7.
Several species of woodland birds have recently declined in Britain and there is a need to understand better how species are distributed across a wide spectrum of habitat types in order to develop appropriate conservation management strategies. To assess habitat associations of 28 woodland species, a large-scale study was carried out across Great Britain. A total of 2668 stands embedded in 825 woodland sites were surveyed. The number of species recorded in each stand and the occurrence of each species was examined in relation to the unique (or marginal) effects of gross structural characteristics of stands (growth stage and understorey structure), plant species composition (floristics) expressed in terms of dominant tree, shrub layer and field layer species and both sets of variables considered together whilst controlling for the spatial distribution of sites and site identity. The number of species recorded was independently related to growth stage, understorey structure, tree composition and field layer type. Eighteen species showed at least one significant relationship in models containing structure variables only. Thirteen species showed at least one significant relationship in models containing floristic variables only. In models containing both structure and floristic variables; 14 species showed at least one significant relationship with a structure variable, 9 species with at least one floristic variable and 8 species with both at least one structure and at least one floristic variable. Different bird species showed individualistic patterns of association with habitat variables. Results suggest that structure and floristics have complex and inter-related effects on bird distribution across woodland stands. Some of the apparent relationships with structure were a consequence of between-stand differences in floristics and vice versa whilst in two cases relationships with structure variables became apparent after controlling for the masking effects of floristic variables. Both vegetation structure and floristics appear to be important determinants of composition in bird assemblages in British woodland, though gross structural factors have previously received most emphasis. The existence of species-specific responses to habitat variation suggests that habitat heterogeneity, embracing structure and floristics, should be a key element in conservation planning within forests especially in the light of uncertainty about future regional species pools due to climate change. We discuss how responses of birds to habitat variation at the level of stands can form a basis for developing large-scale conservation strategies within managed forests.  相似文献   

8.
In an earlier study (Franc et al., 2007), local species richness of saproxylic oak beetles (including red-listed beetles) in forests was predicted mainly by the landscape (area of woodland key habitat within 1 km of plots). Such results are important for conservation work, but need to be backed up well, for reliable advice. We tested a two-stage method that improved our earlier models and our advice for conservation planning. We studied temperate mixed forest, rich in oaks Quercus robur/Quercus petraea, in a large landscape in Sweden. Franc et al. (2007) analysed 21 forests. Here we selected the significant explanatory variables (predictors) and other biologically relevant predictors, used the earlier 21 forests and sampled 11 new forests such that we expanded the range on the axes of the predictors. We collected in total 320 species of saproxylic oak beetles (23,137 individuals) of which 65 and 38 were red-listed (IUCN criteria, Swedish list 2000 and 2005, respectively). We partly confirmed our original results, but the results also changed in important ways: local species richness is now predicted by a combination of local, landscape and regional factors. Moreover, a local variable (dead wood) was the main predictor of saproxylic oak beetles (all species included), while for red-listed saproxylic oak beetles the landscape (woodland key habitat within 1 km of plots) was the main predictor, of local species richness. Thus, species richness of red-listed saproxylic oak beetles seems to depend mainly on landscapes factors, while total species richness of saproxylic oak beetles seems to depend more on local stand factors. We conclude that a two-stage research design can be useful in landscape and conservation studies, especially for species-rich taxa that require large samples per site.  相似文献   

9.
In this study, we identified the distribution characteristics of a mixed forest of coniferous and broad-leaved trees (a typical forest type in Hokkaido, Japan) using landscape metrics and topographic factors, and attempted to apply this knowledge to examine forest management. This approach provides a new perspective (i.e., the landscape structure) on forest management, which traditionally has been determined on the basis of individual forest stands. We first created a cover type map of the study area by means of aerial photo interpretation. The characteristics of each cover type identified from the photographs were determined using landscape metrics for each cover class. We digitized a forest administrative map (1:20,000 scale) using 20-m contours, and imported this into GIS software to produce a terrain model; on this model, we overlaid the cover types. Our examination of landscape metrics showed that most of the natural forest could be managed similarly. However, our examination of topographic characteristics revealed exceptions (e.g., areas that are difficult to regenerate) that will require particular attention when managing the natural forest. Based on the information we obtained, we proposed a guideline for sustainable forest management. From the land cover map, we proposed an “improved” cover type map to illustrate the development of a high growing stock of forest based on forest management. We compared the current cover map with the “improved” cover map and demonstrated that the improved form would have more significant effects on fauna that do not recognize differences in the proportion of the dominant species types than on those that can recognize these differences. Our results show how the information obtained using landscape metrics and terrain models is an essential tool for various stages of forest management planning.  相似文献   

10.
Forest fragmentation has led to a decline in the population of many forest specialists, especially those with limited dispersal abilities. However, some of these species also occur in fragmented forests, and their response to fragmentation is crucial to understand the impact of this process in maintaining forest biodiversity. The objective of this study was to investigate the effects of habitat quality, quantity and configuration on the occurrence of Hazel Grouse as the model species. Studies were performed in the Carpathian Foothills (900?km2, 15?% forested). Between 2000 and 2010, Hazel Grouse were detected in 25 out of 53 forest patches with high repeatability over time. Among the indices of habitat quality, the most important factors were the presence of bilberries, clearings and pioneer trees. Greater number and length of valleys also had a positive effect on the occurrence of grouse. All habitat quantity and landscape configuration variables influenced the presence of grouse positively (related to forest connectivity) or negatively (related to forest isolation). Among the explanatory variables considered, habitat quantity and landscape variables were much more important in explaining the occurrence of Hazel Grouse than variables related to habitat quality. The study shows that habitat acreage and its connectivity are crucial for the conservation and management of Hazel Grouse populations in fragmented landscapes, and therefore, it is necessary to sustain wooded corridors between larger forest patches.  相似文献   

11.
Juniperus procera is the most preferred tree in Ethiopia. It is an endangered tree species enumerated in IUCN red list. Accordingly, this study investigates the future suitable habitat of the J. procera under climate change in northern Ethiopia. Three occurrence districts were visited and 124 presence observations were taken. The records, altitude, and 19 bio-climatic variables were used to run a species distribution model to account for the climate change effect on the species. Maxent, Diva-GIS, and ArcGIS were used to evaluate the outputs. Future suitable habitats were projected into mid and end-century time frames with two Representative Concentration Pathways (RCP2.6 and 8.5) under one General Circulation Model, namely the Climate Community System Model Version-4. Our results showed that minimum temperature of the coldest month and altitude are main predictors of the distribution of the species. Suitable habitats of the species will be decreased by 79.84%, 91.17%, 75.31%, and 96.25% in Mid-century RCP2.6, Mid-century RCP8.5, End-century RCP2.6, and End-century RCP8.5 when compared with current distributions, respectively. This indicates that climate change will affect the future distribution of the species. The results of the study indicate that appropriate management strategies must be taken to ensure the long-term survival of J. procera.  相似文献   

12.
Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans drafted for the Chequamegon-Nicolet National Forest in Wisconsin. We analyzed 20 response variables representing changes in landscape characteristics that relate to eight timber and wildlife management objectives. A MANOVA showed significant variation in the response variables among the alternative management plans. For most (16 out of 20) response variables, plans ranked either directly or inversely to the extent of even-aged management. The amount of hemlock on the landscape had a surprising positive relationship with even-aged management because hemlock is never cut, even in a clear cut. Our results also show that multiple management objectives can create conflicts related to the amount and arrangement of management activities. For example, American marten and ruffed grouse habitat are maintained by mutually exclusive activities. Our approach demonstrates a way to evaluate alternative management plans and assess if they are likely to meet their stated, multiple objectives.  相似文献   

13.
Plant distributions are thought to be controlled by climate at large scales, and by non-climatic factors including soil conditions, topography and biotic interactions at smaller scales. However, not all plant distributions are explained by the current environment. Lags between current plant distributions and suitable environment for them are suggested to exist, which is often called empty habitat. To identify the existence and cause of lags between current climate and the distribution of Tsuga diversifolia, climatic conditions for the species distribution were clarified and potential habitats under current and the last glacial maximum (LGM; 21 ka) climates have been projected. The relationships between T. diversifolia distribution and climatic variables were explored using a classification tree model and a generalized additive model based on high-resolution (ca. 1 km) climatic data and a nationwide distribution database. The models were highly accurate. We revealed that T. diversifolia requires high summer precipitation even in humid Japanese environments. Areas with cool and wet summers were classified as potential habitat. Empty habitat for the focal species was identified in Hokkaido. Meanwhile, no potential habitat was projected in Hokkaido under the LGM. Additional experiments that varied temperature and summer precipitation during the LGM showed that the potential habitat was projected in Hokkaido irrespective of temperature decrease if summer precipitation increased nearly equal to the current climate. These results suggest that T. diversifolia vanished from Hokkaido, where fossil evidence indicated its occurrence until the late Neogene, during the glacial periods of the Pleistocene because of increased summer dryness.  相似文献   

14.
Habitat loss and sometimes habitat fragmentation per se affect species survival, reproduction, dispersal, abundance and distribution. However, understanding the independent effects of fragmentation (i.e., landscape configuration) has been limited because it is frequently confounded with landscape composition (i.e., habitat amount). We assess the independent effects of landscape composition and configuration on the occurrence of northern flying squirrels (Glaucomys sabrinus) in New Brunswick, Canada after controlling for local site conditions. We measured landscape structure using an “organism-based” approach; landscape structure was characterized quantitatively using a spatially explicit local-scale distribution model for northern flying squirrels.  相似文献   

15.
The effect of fires on Cerambycidae, Buprestidae and Lucanidae were studied at 23 sites within a chestnut forest in southern Switzerland. We compared six unburnt sites, two freshly burnt sites, eight sites which burned once at different times in the last 30 years, and seven sites where fires occurred repeatedly in the last 30 years. The diversity and the species composition of the three xylobiont families were related to various ecological variables at two levels of spatial scale, a small scale of 0.25 ha and a large scale of 6.25 ha. These variables were: fire frequency, time since the last fire, clear cutting after the fire, forest structure, amount of dead wood, and habitat mosaic. The fire does not have a direct effect on the xylobiont beetles community at small scale; however, fire has an indirect effect by maintaining a relatively open forest structure. The mosaic of forest areas burnt with different frequencies and at different times was an important factor influencing species richness and species composition at the large spatial scale.Data presented here supports the strategy to conserve the diversity and includes species composition of xylobiont fauna in deciduous forests: (i) at small spatial scale, to maintain highly structured and relatively open stands with large amounts of dead wood and big oak trees; (ii) at large spatial scale, to favour a mosaic of different forest habitats and successional stages. A forest offering a good structural diversity is important for maintaining landscape complexity and thus a high species richness of xylophagous beetles.  相似文献   

16.
We conducted 600 ten-minute, fixed-radius point counts in two climatically different seasons in forest, abandoned cacao (Theobroma cacao), and managed cacao habitat from September 1997 through April 1998 in the Talamanca lowlands of Costa Rica. A total of 1,464, 1,713, and 1,708 individual birds and 130, 131, and 144 total species were detected in forest, abandoned cacao, and managed cacao, respectively. Independent of season, cacao habitats had a significantly greater number of individuals and species per point than forest. Community similarity analyses based on guild categorizations revealed a significant degree of similarity among all habitats; however, habitat affinity analyses showed cacao habitats having significantly less forest specialists than forest. A multiple linear regression model for actively managed cacao habitat using habitat and landscape variables revealed density and diversity of canopy tree species to be significantly correlated with numbers of forest specialist species detected per point. Although nearest distance to forest was negatively correlated with the number of forest specialist species per point, it was not a significant variable in the model, possibly indicating the complex and unpredictable nature of bird movements within the complex habitat mosaic of Talamanca. The present forest bird community of the Talamanca lowlands is poor in forest specialist species relative to other forested Caribbean lowland sites. The broad patterns of avifaunal distribution illustrated by our results suggest, therefore, that although cacao plantations cannot substitute for forest, they provide habitat for a large number of species which depend to some degree on forests. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Abstract

The management of forest ecosystems for sustainabil-ity requires knowledge of the abundance and distribution of all resources, including wood and wildlife, and the ability to predict the impact of management on these resources. Spatially explicit inventories for wildlife are lacking for the vast majority of species. We propose, with example, a method of rapid habitat assessment which can be conducted with available data to produce a spatially explicit inventory of habitat for a species. Information from the literature and some census data were used to construct a simple model of potential habitat for a boreal forest songbird. Available spatial data, including landcover from Landsat TM data, and a digital elevation model, were used to map the distribution of key habitat characteristics onto the landscape. We argue for the development of these preliminary wildlife habitat models using habitat characteristics that are map-pable with currently available remotely sensed data. Given the current trend toward the development of large scale databases of topography and extant land cover, spatially explicit potential habitat models can be efficiently and inexpensively developed to provide a framework for incorporating wildlife habitat into forest management. The relationships between rapid habitat assessment, long-term studies, monitoring, and population viability analysis are discussed.  相似文献   

18.
Woodpecker species have significantly expanded their ranges in the last decades of the twentieth century in Mediterranean Europe, which seems to be closely related to forest maturation following large-scale decline in traditional uses. Here we assess the explicit role of forest landscape connectivity in the colonization of the Great Spotted Woodpecker (Dendrocopos major) and the Black Woodpecker (Dryocopus martius) in Catalonia (NE Spain). For this purpose we combined data on breeding bird atlas (10 × 10 km; 1980–2000) and forest inventories (c. 1 × 1 km, 2000). Forest connectivity was measured through graph theory and habitat availability metrics (inter- and intra-patch connectivity) according to species median natal dispersal distances. The best regressions from a set of alternative models were selected based on AICc. Results showed that connectivity between areas of mature forests [diameter at breast height (dbh) ≥ 35 cm] affected Black Woodpecker colonization events. The probability of colonization of the Great Spotted Woodpecker was greater at localities near the sources of colonization in 1980 and with a high connectivity with other less developed forest patches (dbh < 35 cm). The spatial grain at which landscape connectivity was measured influenced the model performance according to the species dispersal abilities, with the species with the lower mobility (D. major) responding better to the forest connectivity patterns at finer spatial scales. Overall, it seems that both species could expand further in European Mediterranean forests in upcoming years but at slower rates if landscape connectivity according to species requirements does not continue to increase. Hence, a proactive and adaptive management should be carried out in order to preserve these species while considering the related major impacts of global change in Mediterranean Europe.  相似文献   

19.
Fires occur frequently in dry forests of the Inland West. Fire effects vary across the landscape, reflecting topography, elevation, aspect, slope, soils, and vegetation attributes. Patches minimally affected by successive fires may be thought of as ‘refugia’, islands of older forest in a younger forest matrix. Refugia support species absent within the landscape matrix. Our goal was to predict the occurrence of pre-settlement refugia using physiographic and topographic variables.We evaluated 487 plots across a 47000 ha landscape using three criteria to identify historical fire refugia: different structure from surrounding matrix; different fire regime from surrounding matrix; presence of old individuals of fire-intolerant tree species. Several combinations of aspect, elevation, and topography best predicted refugial presence.Less than 20% of the pre-settlement landscape was identified as historical fire refugia. Refugia were not connected except by younger stands within the matrix. Current management goals of increasing amounts and connectivity of old, refugia-like forests for the benefit of species associated with late-successional habitat increase the risk of insect and pathogen outbreaks and catastrophic wildfires.  相似文献   

20.
The extensive recovery from agricultural clearing of Puerto Rican forests over the past half-century provides a good opportunity to study tropical forest recovery on a landscape scale. Using ordination and regression techniques, we analyzed forest inventory data from across Puerto Rico’s moist and wet secondary forests to evaluate their species composition and whether the landscape structure of older forest affected tree species composition of recovering forests at this scale. Our results support conclusions from studies conducted in Puerto Rico at smaller scales and temperate forests at larger scales that timing of abandonment and land use history are of overwhelming importance in determining the species composition of recovering forests. Forest recovery is recent enough in Puerto Rico that previous land use is clearly evident in current species composition, and creates new forest communities. As demonstrated in other work, physical factors such as elevation and substrate co-vary with land use history, so that the species composition of the forest landscape results from the interplay between biophysical and socioeconomic forces over time. Our results also indicate that increasing the distance to the largest forest patches occurring in the landscape 12 years previous had a small negative impact on species richness but not species diversity or community composition. We conclude that land use history has as much influence in species composition as biophysical variables and that, at the scale of this study, there is no large influence of forest landscape structure on species diversity or composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号