首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

2.
3.
Air temperature and photoperiod play an important role in the seedling development for tropical forest species.Both variables are sensitive to climate,and so evaluating thermal and photoperiodic effects on seedling development is fundamental,especially for climate change studies.Methods to quantify thermal time and the energy required for plants to reach a development stage include air temperature and cardinal temperatures.The photoperiod will also affect physiological reactions of a plant and t...  相似文献   

4.
5.
《林业研究》2021,32(2)
Acid rain has become a major concern due to increasing atmospheric pollution,particularly in China.We investigated whether acid rain inhibits the germination of seeds and subsequent emergence of seedling of four tree species from southern China:Cunninghamia lanceolata,Fokienia hodginisi,Pinus massoniana and Phoebe zhennan by simulating acid rain with pH of 2.5,3.5,4.5 and 5.5.We hypothesized that the inhibitory effect of acid rain on germination of seeds and emergence of seedling varies between species and the degree of acidity.A solution of 1 N H_2 SO_4 and 1 N HNO_3 in the ratio of 10-1 was prepared and diluted to four pH levels,and seeds were supplied with solutions of these pH values and distilled water as control and tested for germination in a controlled growth chamber.The results revealed that simulated acid rain of pH 2.5 adversely affected the germination capacity of F.hodginisi and P.zhennan;while all acid solutions significantly increased germination of P.Massoniana;but had no effect on germination of C.Lanceolata seeds.Strong acid solution(pH of 2.5) adversely affected elongation of radicle and hypocotyl as well as fresh and dry weights of radicle and hypocotyl of tender seedlings.The result demonstrated that seedling emergence is more sensitive than seed germination to simulated acid rain,and germination of conifer species are less sensitive than broad leaved species to simulated acid rain.As a whole,acid rain of pH of 3.5 is the threshold level and acid rain below this value will have a detrimental effect on seed germination and seedling emergence.  相似文献   

6.
Background: Many tree species in tropical forests have distributions tracking local ridge-slope-valley topography. Previous work in a 50-ha plot in Korup National Park, Cameroon, demonstrated that 272 species, or 63% of those tested, were significantly associated with topography. Methods: We used two censuses of 329,000 trees ≥1 cm dbh to examine demographic variation at this site that would account for those observed habitat preferences. We tested two predictions. First, within a given topographic habitat, species specializing on that habitat ('residents') should outperform species that are specialists of other habitats ('foreigners'). Second, across different topographic habitats, species should perform best in the habitat on which they specialize ('home') compared to other habitats ('away'). Species' performance was estimated using growth and mortality rates. Results: In hierarchical models with species identity as a random effect, we found no evidence of a demographic advantage to resident species. Indeed, growth rates were most often higher for foreign species. Similarly, comparisons of species on their home vs. away habitats revealed no sign of a performance advantage on the home habitat. Conclusions" We reject the hypothesis that species distributions along a ridge-valley catena at Korup are caused by species differences in trees _〉1 cm dbh. Since there must be a demographic cause for habitat specialization, we offer three alternatives. First, the demographic advantage specialists have at home occurs at the reproductive or seedling stage, in sizes smaller than we census in the forest plot. Second, species may have higher performance on their preferred habitat when density is low, but when population builds up, there are negative density-dependent feedbacks that reduce performance. Third, demographic filtering may be produced by extreme environmental conditions that we did not observe during the census interval.  相似文献   

7.
免耕育苗技术以前茬为水稻的稻田为苗圃地,免耕作床、插种育苗。较常规育苗而言,可提高单位面积的优质壮苗产量、产值,减少劳动量,降低育苗成本等。免耕育苗操作简单易行,在长江流域的砂质壤土地区均可推广。  相似文献   

8.
Soil salinity is becoming an increasingly serious constraint to plant growth in many parts of the world;this is particularly common in semi-arid and arid zones. This study was conducted to evaluate the...  相似文献   

9.
10.
Lopez OR  Kursar TA 《Tree physiology》1999,19(14):925-932
Many seasonally flooded habitats in the tropics are dominated by one or a few tree species. We tested the hypothesis that the inability to tolerate flooding restricts most species from becoming established in flood-prone habitats. We compared morphological and physiological responses to flooding in seedlings of Prioria copaifera Griseb., a species that forms monodominant stands in seasonally flooded habitats, and in three species confined to flood-free sites; namely, Calophyllum longifolium Willd., Virola surinamensis Aubl. and Gustavia superba (H.B.K.) Berg. Flooding reduced photosynthesis at Day 45 in all species by 10-30%. By Day 90, photosynthesis returned to the control rate in Prioria, but not in the other species. Flooding reduced stomatal conductance by 25-35% in all species except Calophyllum, and it reduced leaf area growth by 44% in Virola, but not in the other species. All species survived 90 days of flooding without mortality, leaf chlorosis, leaf necrosis, or leaf abscission. Flooding reduced root:shoot ratio significantly in Gustavia and Calophyllum, but not in the other species, and it reduced maximum root depth by 29% in Prioria, but by 61% or more in the species from flood-free habitats.  相似文献   

11.
Tree plantations are often used to compensate for the destruction and conversion of natural forests in the tropics. An important question is whether these plantations allow for the regeneration of indigenous tree species and are expected to transform into more natural forests in the future. To evaluate the potential of differently managed forest types for seedling recruitment of indigenous tree species we studied structural characteristics as well as tree and seedling communities in stands of natural forest, different types of tree plantations and secondary forest in Kakamega Forest, western Kenya. Forest types differed considerably in structural characteristics and tree composition with stands of natural forest significantly differing from all other forest types in vertical foliage height diversity and number of late-successional tree species. By contrast, total seedling species richness and number did not differ among the forest types. Yet, number of seedlings of late-successional species decreased from natural forest and plantations of a mixture of indigenous tree species towards monocultures and secondary forests while number of seedlings of early-successional species increased in the same order. A joint Principal Component Analysis (PCA) corroborated higher similarity among seedling communities than among tree communities. Our results indicate a convergence of recruiting seedling communities in different forest management types suggesting that tree plantations might buffer forest loss to a certain extent and may have the potential to develop into more natural forest over time.  相似文献   

12.
13.
  • ? In the dense tropical rainforest understorey, saplings exhibit different growth strategies aiming at reaching light levels better fitting their ecology. Investing mainly in height growth, at the expense of their width, a lot are close to mechanical instability. Tachigali melinonii, a long living heliophilic tree species, is frequently observed to be extremely slender and supported by neighbours. Such observations suggest an active growth control through the perception of mechanical environment.
  • ? Mechanical environment or light availability, which one is the most influent on growth and slenderness (H/D)? To test this question, we recorded growth of control and staked saplings of two species with contrasting habits and ecology: T. melinonii, and Dicorynia guianensis, along a natural light gradient.
  • ? Dicorynia, the more stable, responded more clearly to the staking treatment, showing slenderness increase when light is available, whereas for Tachigali, only light availability governed growth.
  • ? For Tachigali, growth allocation is mainly governed by light availability and ontogeny, whereas Dicorynia is probably similar to the average tree strategy, using the thigmomorphogenetic physiological process to control its stability.
  •   相似文献   

    14.
    The degree to which variation in species distribution is predictable from topographic variation is of considerable current interest. In this paper, canonical correspondence analysis (CCA), linear regression and principal coordinates of neighbour matrices (PCNM) models were used to explain the variation in the distributions of the 13 dominant species in a 20-ha tropical rain-forest plot in China. The results showed that: (1) Tree distribution maps show that some species are mainly found in the gullies of the plot, whereas others occur on the slopes. Which indicates topographic variables are important factors for the distribution pattern of species. (2) Both linear regression and CCA results show that convexity and elevation are the most important variables effecting distribution of trees. For saplings, elevation, convexity and aspect explain 15.3%, 9.0% and 10.1% of the total variation of species abundance. For poles, elevation and convexity explain 19.3% and 11.4% respectively. However, only 5.3% of the total variation is explained for adults. (3) The PCNM results showed that topography alone explained 20%, 24% and 5% of the total variation of species abundance for saplings, poles and adults, respectively. Overall evidence for topographic control of the tropical tree distribution is strong, but the explanatory power of topographic variables was a small part of the total of variation.  相似文献   

    15.
    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.  相似文献   

    16.
    We studied two pairs of congeneric species (Dipterocarpus hispidus, Dipterocarpus zeylanicus, Mesua ferrea, and Mesua nagassarium). These species are canopy trees of rain forest in south-west Sri Lanka that exhibit differing topographic affinities. We hypothesized that topographic affinity is related to successional status and species ability to endure drought. We tested for these changes by measuring morphology of seedlings growing with each other in differing combinations of light and water. We constructed shade houses with a range of photosynthetic photon flux densities (PFD) and red:far red (R:FR) ratios. Two watering regimes within shade treatments created soil conditions that were either evermoist or periodically dry. Seedlings of the four species were inter-planted at equal spacing within large flats. They were allowed to grow amongst each other for a 2-year period. The more shade-intolerant Dipterocarpus spp. exhibited greater morphological responsiveness to increases in irradiance than the more shade-tolerant Mesua spp. We also demonstrate that all four species differ substantially from each other when morphological attributes (height, dry mass, leaf area) are compared together. Differences among these four species can be logically explained by their sequential competitive exclusion in relation to increasingly limited resources of light and soil water. In high light and evermoist soil conditions D. zeylanicus performs best. Under deep shade Mesua spp. have greater height than Dipterocarpus spp. When soil water is limiting, and the level of shade intermittent, M. nagassarium has greater height than the other three species. These results conform to species observed topographic distribution in the forest. Further studies are needed of wild populations growing across a range of forest sites to confirm whether these four species differ when grown under natural field conditions.  相似文献   

    17.
    云南热区七种乡土阔叶树种容器育苗试验研究   总被引:1,自引:0,他引:1  
    针对云南热区乡土阔叶树种容器育苗中存在的主要问题,提出了7种目的树种容器育苗的育苗基质配制、苗期施肥方法以及苗木质量分级标准,在育苗容器选择上,建议选择中、小容器,以降低育苗成本。  相似文献   

    18.
    To estimate the potential bonding performance of bonded wood products from tropical fast-growing tree species, a study on the bondability of Paraserianthes falcataria L. Nielsen, Pinus merkusii Jungh et. De. Vriese, and Acacia mangium Willd from Indonesia was conducted. Two-ply laminations were produced using polyvinyl acetate emulsion (PVAc), urea formaldehyde (UF), resorcinol formaldehyde (RF), and water-based polymer isocyanate (API) adhesives. In order to determine the bonding performance, the block-shear test was applied according to the Japanese Agricultural Standard for structural glued laminated timber under normal conditions and after accelerated-aging treatments. To support this study, the wettability of each wood species was also investigated through contact-angle measurement. The results showed that the bonding performance of low-density P. falcataria was better than that of medium-density P. merkusii and medium-density A. mangium, while the bonding performance of medium-density P. merkusii was better than that of medium-density A. mangium. Furthermore, compared with A. mangium, the small contact angle and good wettability in P. falcataria and P. merkusii result in better adhesion and more intimate contact between the wood surfaces and adhesive.  相似文献   

    19.
    Waiboonya  Panya  Elliott  Stephen 《New Forests》2020,51(1):81-99
    New Forests - Direct seeding (sowing seeds directly into ground) is potentially a cost-effective method of forest restoration that could replace or complement conventional tree planting, under...  相似文献   

    20.
    Liu TW  Wu FH  Wang WH  Chen J  Li ZJ  Dong XJ  Patton J  Pei ZM  Zheng HL 《Tree physiology》2011,31(4):402-413
    We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR?×?Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号