首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响   总被引:2,自引:0,他引:2  
【目的】探讨不同浸渍后处理方式和干燥方式对MUF树脂浸渍材增重率和尺寸稳定性的影响,为树脂浸渍改性技术提供参考和借鉴。【方法】利用5%、10%、15%和25%浓度的MUF树脂真空加压浸渍毛白杨木材,每种浓度树脂浸渍后试样首先分别进行4种方式浸渍后处理(气干处理7天、高湿度环境中平衡处理7天、树脂溶液中平衡处理7天以及不进行气干或平衡处理),然后分别利用2种干燥方式(直接干燥和湿干燥)进行干燥处理,干燥处理后测量不同处理条件下树脂浸渍材的增重率和容胀率,最后将素材和树脂浸渍材置于蒸馏水中常压浸渍14天,测试树脂浸渍材的抗胀率和径弦向差异湿胀程度。【结果】木材增重率与树脂浓度呈正相关关系,4种浓度树脂浸渍后试样增重率分别为9.7%、19.1%、28.4%和50.0%;不同浸渍后处理试样间的增重率差别不大;相同浸渍后处理条件下,直接干燥试样的增重率略低于湿干燥试样的增重率。树脂浸渍后,置于高湿度环境或树脂溶液中处理的试样,细胞壁容胀率较高;相同浸渍后处理条件下(除气干处理外),直接干燥试样的细胞壁容胀率低于湿干燥试样的细胞壁容胀率。树脂浸渍材抗胀率的变化规律与其细胞壁容胀率的变化规律基本一致。随着增重率增加,树脂浸渍材的径弦向湿胀率均降低,而其径弦向差异湿胀程度呈增加趋势,低增重率时试样的径弦向差异湿胀程度低于素材,而增重率超过30%左右时试样的径弦向差异湿胀程度高于素材。【结论】1)相同浓度树脂浸渍条件下,干燥方式对增重率的影响大于浸渍后处理方式,湿干燥处理有利于树脂在木材内部良好固着,从而获得更高的增重率;2)细胞壁容胀率受浸渍后处理方式和干燥方式二者的共同影响,置于高湿度环境或树脂溶液中的浸渍后处理有利于树脂继续扩散到木材细胞壁,湿干燥处理有利于树脂进一步扩散到木材细胞壁中并良好固着,从而对细胞壁产生更好的容胀效应;3)树脂浸渍材的抗胀率与细胞壁容胀率密切相关,树脂对细胞壁的容胀是树脂浸渍材尺寸稳定性提高的前提;4)树脂浸渍材的径弦向差异湿胀程度随增重率增加而有所增加。  相似文献   

2.
以二价酸酯[dibasic esters,DBE(己二酸、戊二酸、丁二酸的混合酯)]与乙酸丁酯混合溶剂液化的苯甲基化木材溶液与三羟甲基丙烷甲苯二异氰酸酯预聚物为固化剂进行反应制备聚氨酯树脂.对树脂进行不同的热处理,利用FT-IR、DSC、DTA及TG等测试手段,研究了热处理方式对树脂的结构和热性能的影响.结果表明,不同热处理方式下的微相分离程度为:常温固化>退火处理>淬火处理;硬段初始分解温度为:常温固化>退火处理>淬火处理;软段的初始分解温度为:常温固化<退火处理<淬火处理.  相似文献   

3.
为提升人工林速生材的尺寸稳定性,以人工林尾巨桉(Eucalyptus urophylla×E. grandis)木材为研究对象,采用二羟甲基二羟乙基乙烯脲(DMDHEU)树脂进行真空-加压浸渍处理,分析树脂浓度和加压压力对木材增重率、密度的影响及增重率对木材尺寸稳定性的影响。结果表明,树脂浓度为30%、加压压力为1.2 MPa时,处理材增重率最大(23.85%);各密度均最高,其中基本密度比未处理材高出26.9%,气干密度高出19.9%,全干密度高出19.8%;气干抗缩率、全干抗缩率、抗胀率和抗吸水率均最大,分别为72.9%、46.6%、53.5%和65.5%。木材增重率和密度均随树脂浓度和加压压力的增加而增加。树脂浓度高于20%、加压压力≥0.9 MPa时,木材增重率和密度增速均减缓。树脂浓度对木材增重率和密度的影响高于加压压力。树脂浓度相同、加压压力≥0.9 MPa时,木材增重率基本保持不变。相同压力下,处理材的尺寸稳定性随增重率增加而增加;压力≥0.9 MPa时,增重率达到9%~10%左右,木材抗胀(缩)率增速减缓。增重率相近、加压压力增加时,木材抗胀(缩)率有所增加,木材抗吸水...  相似文献   

4.
为探讨浸注工艺对木材增重率的影响,以PF树脂为浸注材料,以树脂浓度、压缩次数、保压时间、浸渍时间和压缩率为试验因素,采用单因素试验方法在平压浸注装置上对杨木试件进行了浸注填充。结果显示:2次压缩较1次压缩,杨木木材增重率增加了20. 2%;保压时间从0 min延长至10 min,杨木木材增重率增加了11. 5%;浸渍时间从1 h延长至2 h,杨木木材增重率提高了8. 8%;再增加压缩次数、延长保压时间和浸渍时间,杨木木材增重率均变化不大;而杨木木材增重率随PF树脂浓度和杨木木材压缩率增加呈线性增加,PF树脂浓度与压缩率对杨木木材增重率具有显著影响。因此选择压缩次数为2次,保压时间为10 min,浸渍时间为1 h,PF树脂浓度与杨木木材压缩率由改性木材的用途决定。  相似文献   

5.
蓖麻油水性聚氨酯树脂的合成与性能的研究   总被引:21,自引:3,他引:18  
采用蓖麻油(C.O.)、聚醚(N210)、二异氰酸甲苯酯(TDI)和二羟甲基丙酸(DMPA)反应合成了聚氨酯脲水分散液,研究了C.O./N210的质量比、亲水单体含量、NCO/OH摩尔比和NH/NCO摩尔比对聚氨酯乳液及涂膜性能的影响,并应用傅立叶红外光谱仪(FT—IR)测定反应产物的结构。研究发现C.O.可提高水性聚氨酯涂膜的物理机械性能和耐水性,当C.O./N210的质量比为1:1、NCO/OH摩尔比为1.6:1、DMPA添加量为5.5%、NH2/NCO摩尔比为0.50:1时合成的水性聚氨酯涂料具有较好的成膜性、较高的硬度、优异的附着力和较好的耐水、耐油性。  相似文献   

6.
用低分子树脂进行泡桐木材表面强化的研究   总被引:2,自引:0,他引:2  
合成一种低分子三聚氰胺-甲醛树脂.对泡桐木材表面进行强化,测试改性后木材的硬度、耐磨性、抗胀缩率、容胀率及增重率等技术性能指标。经过分析,得出泡桐木材可用横向压密,化学试剂固定变形的方法,提高木材的有关物理性能参数的结论。  相似文献   

7.
通过调控糠醇树脂处理液的质量分数,制备不同增重率(WPG)的糠醇树脂改性竹材,研究增重率对改性竹材尺寸稳定性、吸水率、表面润湿性、抗弯强度和弹性模量、热降解性能等的影响。结果表明,随着增重率的增加,改性竹材吸水率和接触角呈先快速降低、后降幅变缓的趋势;抗胀缩系数(ASE)逐渐增大,当增重率达到20%以后,增大趋势变缓;竹材抗弯强度下降,弹性模量小幅升高;改性竹材残炭率增大,且增重率与残碳率呈现较好的线性相关性。因此,可通过合理控制糠醇树脂改性竹材的增重率,调控糠醇树脂改性竹材的综合性能。  相似文献   

8.
采用近红外光谱技术对乙酰化大青杨和樟子松木材的增重率进行快速预测。在近红外波长780~2500 nm范围内,利用偏最小二乘法( PLS)建立木材横切面原始光谱及不同预处理(一阶导数、二阶导数、归一化处理和消噪)光谱乙酰化木材增重率数学模型,并进行比较分析。结果表明:乙酰化大青杨和樟子松木材分别选用归一化处理光谱和消噪光谱建立的增重率校正模型预测效果较好,预测模型相关系数( R)分别为0.90和0.70,预测标准差(RMSEP)分别为1.0072和1.3012,其中乙酰化大青杨木材增重率预测模型实测能力较佳,表明利用木材横切面近红外光谱建立的数学模型可以实现乙酰化木材增重率的快速预测。  相似文献   

9.
笔者主要研究以硼砂和羟乙基纤维素改进甲苯二异氰酸酯(TDI)交联聚乙烯醇(PVA)木材粘合剂。采用正交试验法,探讨实验室制备该粘合剂的工艺条件:如羟乙基纤维素(HEC)、PVA、硼砂、交联剂TDI的加入量、合成反应的温度以及合成反应的时间等因素对该粘合剂粘结性能(包括压缩剪切强度、融冻性、颜色、黏度等)的影响。通过该改性过程能形成一种稳定的单组分、性能优良、原料成本合理、无环境污染的白色木材乳胶。通过正交试验分析得出在该试验设计范围内实验室制备该木材粘合剂最佳合成工艺:硼砂的加入量为0.1g/100 mL、HEC的加入量为0.4g/100 mL、PVA的加入量为10g/100mL、TDI的加入量为3mL/100mL、反应温度为30℃,搅拌反应时间为75min。聚乙烯醇粘合剂通过该改性过程,其压缩剪切强度达到6MPa以上,能形成一种稳定的单组分、性能优良、原料成本合理、无环境污染的白色木材乳胶。  相似文献   

10.
松香改性聚氨酯涂料的研制   总被引:7,自引:0,他引:7  
用松香改性的醇酸树脂多元醇与TDI反应合成聚氨酯预聚物,与羟基醇酸树脂交联制备聚氨酯涂料。讨论了醇酸树脂多元醇、氨酯化反应的工艺条件等因素对预聚物性能的影响,涂膜性能测试表明,该漆干燥快速、性能优异。  相似文献   

11.
Wood meals of Sugi (Cryptomeria japonica D.Don) passing 2.0 mm and retained on 1.0 mm mesh screens were milled along with acetic anhydride (AA) and pyridine as a catalyst in a high-speed vibration rod mill at ambient temperature. The weight percent gain (WPG) of the chemically modified wood was calculated based on the yield after washing with deionized water. The effects of amounts of AA and catalyst added, pulverization time, and saponification of the acetylated wood on WPG were examined. In addition, FT-IR analysis, and water vapor adsorption and desorption tests were performed as functions of the WPG. Increases in WPG, the acetyl contents of the acetylated wood after saponification, changes in the FT-IR spectra after pulverization, and the water vapor sorption isotherms showed that the one-step acetylation systematically modified the hydroxyl groups of the wood into acetyl groups. Up to 38 % WPG was obtained at 100 phr AA and 15 phr catalyst, and 120 min pulverization. Pulverization time and the amounts of AA and catalyst added to the wood meals could be adjusted to obtain acetylated wood meal with the desired WPG. These demonstrated that the mechanochemical acetylation is a method to prepare acetylated wood meals with high WPG at less reaction time and required AA addition.  相似文献   

12.
Ezomatsu wood blocks were impregnated with potassium acetate (KAc) and then exposed to acetic anhydride vapor at 25°C and 120°C. The KAc-impregnated wood was rapidly acetylated at 120°C, and only 6 min was needed to achieve 20% weight percent gain (WPG). The WPG increased with increasing catalyst loading (CL), but it turned to decrease above 20% CL probably because the diffusion of acetic anhydride vapor was hindered by excess KAc depositing in the cell lumina. Thus, careful control of CL is necessary in the vapor-phase acetylation. KAc was also effective in catalyzing the vapor-phase acetylation at 25°C: the KAc-impregnated wood attained 20% WPG within 7 days, whereas the WPG did not exceed 10% even after 1 month in the uncatalyzed system. Irrespective of treatment methods, the hygroscopicity of wood was reduced and its dimensional stability was improved with an increase of WPG. These results confirm that the use of KAc simplifies the acetylation process at room temperature with minimal loss of acetic anhydride.  相似文献   

13.
The catalytic effect of potassium acetate (KAc) on wood acetylation was investigated. Spruce wood specimens were impregnated with KAc and then heated in acetic anhydride at 120°C. The degree of acetylation was evaluated by the weight percent gain (WPG). In the presence of KAc, the reaction time to achieve a 20% WPG decreased by a factor of 200: 2 min was required in the KAc-catalyzed acetylation, while the uncatalyzed acetylation required at least 5 h. The hygroscopicity and dimensional stability of acetylated wood depended on the WPG irrespective of the treatment methods. This fact proved that KAc had no adverse influence on the dimensional stability of acetylated wood. As KAc is a cheap, water-soluble and non-toxic salt it can be a useful catalyst for the extraordinarily rapid acetylation of wood.  相似文献   

14.
For this study, an intercalation compounding method was used to prepare Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board to improve its properties such as surface mechanical properties, flame retardance and dimensional stability. By virtue of water-soluble phenolic resin (PF), Chinese fir wood and Ca-MMT were mixed by pressure and vacuum impregnation. The optimum impregnation technology of Chinese fir wood/Ca-MMT composite board was obtained by using an orthogonal design and a single factor design of pressure and vacuum impregnation, using weight percent gain (WPG) as the basic index. The results are as follows: 1) On the basis of the orthogonal design and an actual experiment, the optimum preparation technology of Chinese fir wood/Ca-MMT composite board is 20% PF resin dispersion concentration (wt%), 1.0 CEC amount of organic intercalation agent, 0.098 MPa vacuum degree, 5% concentration of Ca-MMT and 1.0 MPa pressure. 2) The WPG of the composite board samples of 450 mm length was much larger than that of the samples of 600, 750 and 900 mm length. Warm water extraction contributed little to WPG  相似文献   

15.
Scots pine sapwood was acetylated with ethyltriacetoxysilane using acetic acid as a solvent and sulfuric acid as a catalyst. A weight percent gain (WPG) of 14 % and cell wall bulking of 7 % were obtained after 5 h of reaction time. Pine specimens were acetylated with acetic anhydride in the presence of 1 % ethyltriacetoxysilane, dihydroxy-functional siloxane, acetoxy-functional siloxane, amino-functional siloxane and non-functional siloxane, respectively. Acetoxy-functional siloxane induced the greatest reduction in water uptake with a water repellent effectiveness after 24 h of up to 62 % as compared to acetylated wood. WPG and cell wall bulking increased compared to solely acetylated wood with increasing concentrations of acetoxy-functional siloxane in acetic anhydride; anti-shrink efficiency, however, did not increase. Fungal resistance of pine sapwood and beech as well as mechanical strength properties did not change when 20 % acetoxy-functional siloxane was added to acetic anhydride compared to solely acetylated specimens.  相似文献   

16.
本文基于BBD响应面优化方法,建立杨木强化材目标性能可评价工艺参数模型,并优化出室内家具用杨木强化材环保生产工艺,结果表明:以加压压力、加压时间、树脂质量分数作为响应因子,分别以MOE、WPG、TVOC释放量和甲醛释放量作为响应值的预测模型显著,模型决定系数大于0.9;当加压压力、加压时间、树脂质量分数分别为0.89 MPa、2.5 h、32%时,产品环保性能在考察工艺参数范围内最优。  相似文献   

17.
人工林软质木材表面密实化新技术   总被引:16,自引:7,他引:16  
采用一种新型木材改性处理剂,分别以改性异氰酸酯浓度5%、10%、15%、20%,对美国人工林火炬松(Pinus taeda)进行表面密实化处理。结果表明,随着树脂浓度的增加,无论是冷水浸泡还是煮沸,木材的吸水厚度膨胀率和压缩变形恢复率明显降低。表面密实化后,火炬松处理材的MOR和MOE值分别比素材提高43.9%和30.1%;水浸24h和煮沸2h后的湿状抗弯性能比素材略低,干状抗弯性能明显比素材高,MOR分别高28.0%和25.76%;MOE分别高22.55%和27.79%。改性异氰酸酯浸渍处理后的表面密实化木材,具有一定的阻燃效果;表面耐磨耗性能和表面硬度亦明显改善。  相似文献   

18.
Acetylated wood meals of Sugi (Cryptomeria japonica D.Don) wood were prepared by mechanochemical processing using a high-speed vibration rod mill. Weight percent gain (WPG) of the acetylated wood meals ranged from 7.0 to 35.5 %. Wood–plastic composites (WPCs) containing 50 % acetylated woods were produced by an injection molding technique. The polymer matrix used was polypropylene homopolymer. Maleic anhydride-grafted polypropylene (MAPP) was also used as a compatibilizing agent. The mechanical properties of WPCs in bending and tensile tests were independent of WPG of acetylated wood meals, and the test values for WPCs containing acetylated wood meals were lower than that of unmodified wood meal. The use of MAPP increased bending and tensile strength, but no effect on bending modulus was found. An increase in WPG significantly decreased water absorbability and thickness swelling of WPCs as measured by dimensional stability tests. These results demonstrated that mechanochemical processing is a promising technique for preparing WPC material with improved dimensional stability. The future challenge is to inhibit the decreases in mechanical properties of WPCs containing acetylated wood meals.  相似文献   

19.
European beech (Fagus sylvatica L.) is a major tree species of European forest which is underexploited because of its low dimensional stability and durability. Similarly to what has been developed with radiata pine, furfurylation might be the answer to optimize the utilization of local beech wood. Beech wood furfurylation process was studied using five different catalysts: maleic anhydride, maleic acid, citric acid, itaconic acid, and tartaric acid. Optimization of the furfurylation process was investigated for different catalyst and furfuryl alcohol (FA) contents, and different duration of polymerization. The following properties were studied: weight percent gain (WPG), leachability, anti-swelling efficiency (ASE), wettability, modulus of elasticity, modulus of rupture, Brinell hardness, and decay durability. Tartaric acid, never investigated up to now, was retained as catalyst to perform furfurylation due to its efficacy compared to other catalysts and its novelty. Wood modification with FA and tartaric acid as catalyst led to samples with high WPG even after leaching, improved ASE, and lower wettability with water. Increasing the polymerization duration increased the fixation of FA in treated wood. Most of all, treatment gave a significant improvement in mechanical properties and resistance to wood decaying fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号