首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前对于生物质成型燃料替代散煤减排效果的现场评估还非常缺乏,且均为基于短时间测试方法,无法反映炉具全天实际排放情况。该研究以黑龙江省某生物质成型燃料及配套炉具推广示范村为例,采用全天24 h实地测试的方法,研究了该地区的燃煤炉具以及推广的自动进料和手动进料生物质炉具的污染排放情况。结果表明:自动/手动进料生物质炉具相比燃煤炉具的PM2.5、CO、SO2排放因子分别降低41.2%、54.3%、40.0%和35.3%、22.1%、20.0%,NOx的排放因子没有降低。对不同取暖方式的户均排放总量核算发现:自动/手动进料生物质炉具排放的PM2.5、CO、SO2分别减排39.79%、52.77%、41.35%和33.41%、19.38%、27.01%;NOx分别升高46.14%和6.69%。此外,调研发现经济性和便利性是生物质炉具推广的重要影响因素。  相似文献   

2.
3.
4.
为探究农机驾驶室内非常规污染物分布特征,该研究以东方红1804型拖拉机为对象,通过Fluent仿真与实际测试进行非常规污染物排放研究。结果表明:23℃静止密闭状态下,驾驶室横截面呼吸带和进风口中间截面区域内苯的平均质量分数仿真值为2.70 和3.03 μg/m3;拖拉机驾驶室内检测出的挥发性有机物包括烷烃、烯烃、醇、醛酮、酯类及其他化合物共241种,检测出的苯、甲苯、二甲苯、乙苯、苯乙烯的浓度分别为3.08、30.49、46.84、8.39和2.43 μg/m3,低于相关标准规定的最大限值;驾驶室内人体呼吸区域的苯浓度试验值与仿真值误差范围在7.7%~10.0%之间,挥发性有机物浓度的变化趋势与仿真结果大致相同。研究结果可为进一步研究农机驾驶室内的空气质量提供理论依据。  相似文献   

5.
育肥猪舍甲烷排放浓度和排放通量的测试与分析   总被引:11,自引:4,他引:7  
畜禽养殖是重要的温室气体排放源,畜禽养殖的甲烷排放量受动物生长特性、粪便收集方式和气候条件的影响。为了探讨中国特有的饲养管理方式下育肥猪舍温室气体排放规律,为减少甲烷排放提供依据,该研究在北京选择一典型猪场,对不同季节育肥舍的甲烷排放浓度进行了试验测定,从2004年5月至2005年3月,每2个月一次连续采集72~80 h甲烷浓度和相关数据,并根据二氧化碳平衡原理,对猪场的甲烷排放量进行了估算。结果表明:育肥猪舍内甲烷浓度有明显的季节性和日变化特性,2005年1月舍内甲烷的平均浓度为(22.98±10.52)mg/m3,7月舍内甲烷浓度为(2.68±0.68)mg/m3;每日最低甲烷浓度出现在9:00 am~17:00 pm时段;冬季舍内二氧化碳浓度明显偏高,夜间比允许浓度高1倍;每头育肥猪饲养期间的甲烷排放量为68.10~207.01 mg/h,折合每标准动物单位排放量:436~1185 mg/h·(500 kg),在IPCC推荐的发展中国家猪呼吸代谢甲烷排放1.0 kg/(a·头)范围内。  相似文献   

6.
7.
为明确拔塞式清粪机械通风育肥猪舍夏季CO2和NH3的排放量及猪舍耗水量,并建立中国类似设施猪舍的气体排放及水的消耗量基线及寻求减排和节水空间,选择北京市拔塞式清粪机械通风育肥猪舍,设计机械通风系统的通风量测量系统,并测量机械通风量,从2015年7月25日至8月11日(共18d)监测猪舍NH3、CO2排放量和耗水量.试验结果表明,NH3排放量平均值为(23.4±11.0)g/(d·500kg),范围为4.3~49.5g/(d·500kg).NH3的排放量在08:00和14:00极显著高于10:00,12:00、16:00和18:00时的排放量(P<0.001),可能是人工清粪行为导致NH3排放量降低.CO2排放量平均值为2.73±0.78kg/(d·500kg),最大和最小排放量分别是5.00和1.00kg/(d·500kg),44%的日平均排放量为2.5~3kg/(d·500kg),92%的日平均排放量小于4.0kg/(d·500kg),日间CO2排放量在12:00达到高峰.育肥猪耗水量的最大值、最小值和平均值分别为90.0,19.6和47.0L/(d·pig).  相似文献   

8.
The zoning of the terrestrial ecosystems exposed to the aerial emissions from the Pechenganikel plant (Murmansk oblast) was performed; it was based on the state of the soil cover in 2012. The following parameters were determined: the pH, the contents of heavy metals (HMs) and exchangeable calcium and magnesium, the proportion between the organic and mineral soil components, and the state of the soil micro-biota. Three zones differing in the intensity of the soil pollution were distinguished: the zone of strong pollution (at a distance of 3 km from the source of the emission), the zone of medium pollution (16 km), and the zone of weak pollution (25–30 km to the southwest from the pollution source). In the last ten years, the soil pollution in the zone influenced by aerial emissions from the Pechenganikel plant has remained the same. The amount of bacteria and fungi in the air is directly related to that in the soil. The results obtained point to the bacterial pollution of the atmosphere nearby the industrial center. In the vicinity of the plant, gram-negative bacteria (Gracilicutes) predominate in the air; in remote areas, gram-positive bacteria (Fermicutes) are dominants. In the air nearby the industrial center, potentially pathogenic fungi (Gongronella butleri and Alternaria alternata) were revealed.  相似文献   

9.
10.
In 2009, the zoning of the terrestrial ecosystems in the area exposed to aerial emissions from the Severonikel Enterprise (Murmansk oblast) was performed on the basis of the parameters characterizing the state of the soils, including the contents of the main heavy metal pollutants and exchangeable calcium and magnesium, the soils’ pH, the ratio of the organic to mineral soil components, and the state of the soils’ microbiota. Three zones differing in the degree of the soil pollution were delimited. These were the zones of heavy, moderate, and weak pollution, which extended for up to 3, 25, and 50 km from the emission source in the prevailing wind direction. The data on the amount of bacterial and fungal biomass provided evidence of the profound degradation of the soils in the heavily polluted zone. In particular, the biomass of the soil microbiota, including its prokaryotic and eukaryotic components, was two to six times lower in this zone than in the background (control) area. The soils of the heavily polluted zone can be classified as strongly toxic for plants, and most of the soils of the moderately polluted zone also fall into the same category.  相似文献   

11.
12.
13.
养殖废水中高浓度污染物质主要来自于固态粪污的溶解或微生物的分解作用,在废水产生后立即进行固液分离,可以有效将废水中还未溶解的固态物质分离出去,从而降低废水中污染物的含量和减轻后续生化处理的压力。该研究以猪场废水为研究对象,采用离心分离方式对废水进行固液分离,主要考察废水中总固体、化学需氧量(chemical oxygen demand,COD)及氮磷化合物的去除效果。结果表明,离心分离可使废水中总固体去除50%~65%,COD去除效率在45%~55%,N、P元素的去除率在30%~50%之间。通过甲烷化潜力测试研究,发现离心分离可使废水中可厌氧生化物质去除50%以上,这可大幅节约生化处理池的建造体积和处理周期。以万头猪场日产100 t废水量为例,生化前离心处理较直接生化处理可节约45%的废水处理成本。该研究可为大中型养殖场就如何节约废水处理工程投资和处理成本上提供新的设计思路与参考依据。  相似文献   

14.
农田土壤N2O排放和减排措施的研究进展   总被引:6,自引:0,他引:6  
氧化亚氮(N2O)是一种受人类活动影响的重要温室气体。农业土壤是其主要的排放源之一,土壤中硝化和反硝化作用是N2O产生的主要过程。N2O的排放受多种因素的影响,农业活动尤其是施用化学氮肥是农田N2O排放量增加的主要因素。提高氮肥利用率,使用硝化抑制剂等措施将有助于减少N2O的排放量,更有效的减排措施还有待进一步的研究与应用。  相似文献   

15.
Abstract

Nitrous oxide (N2O) emissions from agricultural soils, mainly caused by chemical nitrogen (N) fertilizer inputs, are major sources of N2O in Chinese terrestrial ecosystems. Thus, attempts to reduce N2O emissions from agricultural soils by optimizing N applications are receiving increasing attention. Further, organic fertilizers are being increasingly used in China to improve crop production/quality and prevent or reduce soil degradation. However, organic and chemical fertilizers are often both applied in spring in northeast China, which promotes N2O emissions and may be sub-optimal. Therefore, we hypothesized that reducing applications of chemical fertilizer N and applying manure in autumn could be an effective strategy for mitigating N2O emissions from cropped soils in the region. To test this hypothesis, we established a field trial to investigate the effects of different combinations of chemical N fertilizer applications and animal manure in autumn on both N2O emissions and maize (Zea mays L.) grain yields in northeast China. The treatments, expressed as NxMy (where Nx and My denote the total amounts of chemical fertilizer nitrogen (N) and manure (M) applied in kg N ha?1 and m3 M ha?1, respectively), were N0M0, N230M0, N270M12, N230M15, N320M18 in 2010 and N0M0, N230M0, N200M12, N200M15, N280M18 in 2011. Measurements of the resulting N2O emissions showed that pulse fluxes occurred after each chemical N fertilizer application, but not after manure inputs in autumn or during soil-thawing periods in the following spring. Emission factors for the chemical fertilizer N were on average 1.07% (1.00?1.10%) and 1.14% (0.49?1.83%) in 2010 and 2011, respectively. Furthermore, by comparing the nine pairs of fertilization treatments, the relative increase in cumulative nitrous oxide-nitrogen (N2O-N) emissions was found to be proportional to the relative increase in urea application, but independent of the amount of autumn-applied manure. These findings imply that N2O emissions from fertilized agricultural soils in northeast China could be mitigated by supplying manure in the autumn and reducing the total amount of chemical N fertilizer applied in the following year. Although no significant difference in maize grain yield was found among the fertilization treatments, the grain yield-scaled N2O emissions for the treatments with a lower chemical N application (e.g., N230M15 and N200M15 treatments) were significantly lower than those with a higher chemical N application (e.g., N320M18 and N280M18 treatments). Meanwhile, under the condition of the same application amount of chemical fertilizer N, the grain yield-scaled N2O emission decreased with the increase of manure application rate. Thus, the results support the hypothesis that combining reductions in chemical N fertilizer and applying manure in autumn could be an effective strategy for mitigating N2O emissions from N-fertilized soils in northeast China.  相似文献   

16.
热应激会对猪产生不利影响,为探究猪舍适宜的夏季通风条件和合理的降温需求,该研究利用环境气象资料,结合能质平衡方程,对围护结构传热及通风散热占比进行了分析,构建了保育及育肥舍夏季最大通风量的计算公式,对五大气候区的典型城市:长春、北京、南宁、武汉、贵阳的保育及育肥舍夏季最大通风量取值进行了规范,并对这些城市的110 m×15 m的模型猪舍的热湿环境进行了分析。结果表明,5个地区使用湿帘的时长:南宁>武汉>北京>贵阳>长春;使用湿帘后舍内温度仍高于27 ℃的时长:南宁>武汉>北京>贵阳>长春;使用湿帘后的平均降温幅度:北京>长春>武汉>南宁>贵阳;使用湿帘后平均相对湿度增量:北京>长春>武汉>南宁>贵阳;使用湿帘后舍内温度降至27 ℃以下时间占比:长春>北京>贵阳>武汉>南宁。通过分析以上数据,该研究对五大气候区湿帘降温系统的购置及使用提出了建议,同时该研究为不同气候区商品猪舍的夏季小气候估算及湿帘降温系统运行使用效果评估提供了参考。  相似文献   

17.
18.
19.
A chitosanolytic enzyme was purified from a commercial ficin preparation by affinity chromatographic removal of cysteine protease on pHMB-Sepharose 4B and cystatin-Sepharose 4B and gel filtration on Superdex 75 HR. The purified enzyme exhibited both chitinase and chitosanase activities, as determined by SDS-PAGE and gel activity staining. The optimal pH for chitosan hydrolysis was 4.5, whereas the optimal temperature was 65 degrees C. The enzyme was thermostable, as it retained almost all of its activity after incubation at 70 degrees C for 30 min. A protein oxidizing agent, N-bromosuccinimide (0.25 mM), significantly inhibited the enzyme's activity. The molecular mass of the enzyme was 16.6 kDa, as estimated by gel filtration. The enzyme showed activity toward chitosan polymers exhibiting various degrees of deacetylation (22-94%), most effectively hydrolyzing chitosan polymers that were 52-70% deacetylated. The end products of the hydrolysis catalyzed by this enzyme were low molecular weight chitosan polymers and oligomers (11.2-0.7 kDa).  相似文献   

20.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号