首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Acute central lipoprivation suppresses pulsatile luteinizing hormone (LH) release and increases blood glucose levels through noradrenergic input to the hypothalamic paraventricular nucleus (PVN) in female rats. The present study was conducted to identify adrenergic receptor subtypes involved in central lipoprivation-induced suppression of pulsatile LH secretion and increases in plasma glucose levels in female rats. Acute hindbrain lipoprivation was produced by injection into the fourth cerebroventricle (4V) of 2-mercaptoacetate (MA), an inhibitor of fatty acid oxidation, in estradiol-implanted ovariectomized rats. Two min before MA injection, alpha1-, alpha2- or beta-adrenergic receptor antagonist was injected into the PVN. Injection of MA into the 4V suppresses pulsatile LH release in PVN vehicle-treated rats, whereas pretreatment of animals with injection of alpha1- or alpha2-adrenergic antagonist into the PVN blocked the effect of the 4V MA injection on LH pulses. beta-Adrenergic antagonist did not affect MA-induced suppression of LH pulses. The counter-regulatory increase in plasma glucose levels after 4V MA injection was also partially blocked by pretreatment with alpha1- and alpha2-adrenergic receptor antagonists. These results suggest that alpha1- and alpha2-adrenergic receptors in the PVN mediate hindbrain lipoprivation-induced suppression of LH release and counter-regulatory increases in plasma glucose levels in female rats.  相似文献   

2.
The bed nucleus of the stria terminalis (BNST) is one of the brain areas densely innervated by noradrenergic neurons originating in the brain stem. The present study aims to determine the role of noradrenergic receptors in the BNST in regulating pulsatile luteinizing hormone (LH) secretion in female rats. Ovariectomized (OVX) or estrogen-primed OVX (OVX+E2) rats received three 1-h-interval injections of 0.05 micromol of noradrenaline (NA), phenylephrine (alpha1-adrenergic receptor agonist), clonidine (alpha2-agonist), or isoproterenol (beta-agonist) into the BNST. Injection of NA or alpha1-adrenergic agonist into the BNST strongly suppressed pulsatile LH secretion in OVX+E2 rats with a significant (P < 0.05) decrease in the mean LH level for 3 h and LH pulse frequency, but alpha2-and beta-agonists did not affect any of the LH pulse parameters. In OVX animals, alpha1- and alpha2-adrenergic agonists caused a significant change in LH pulse frequency and amplitude, respectively, though the effect was not as apparent as the NA- or alpha1-agonist-induced changes in OVX+E2 animals. These results indicate that NA inputs to the BNST suppress pulsatile LH secretion via alpha1-adrenergic receptors and that estrogen enhances this suppression.  相似文献   

3.
Glucoprivation induced by 2-deoxy-D-glucose (2DG) suppresses pulsatile luteinizing hormone (LH) secretion in female rats. The suppression is enhanced in the presence of estrogen. In the present study, 2DG-induced Fos expression was examined in the solitary tract nucleus (NTS), hypothalamic paraventricular nucleus (PVN), raphe obscurus nucleus (ROb) and raphe pallidus nucleus (RPa), which have been previously suggested to be involved in glucoprivation-induced suppression of LH secretion in female rats. Ovariectomized (OVX) or estrogen-primed ovariectomized (OVX+E(2)) rats were injected intravenously with 2DG (400 mg/kg BW). The brain was removed 1 h after the injection. The number of Fos-like-immunoreactive (Fos-li) cells in the PVN and NTS was significantly increased in OVX+E(2) rats compared with control groups, but did not show a significant increase in the OVX group. Few Fos-li cells were observed in the ROb and RPa in all groups. All of the Fos-li cells in the PVN and NTS were neurons because they had immunoreactivities to microtubule-associated protein 2. Some Fos-li cells (8.3%) had tyrosine hydroxylase-like immunoreactivities in the NTS in 2DG-treated OVX+E(2) rats. These results suggest that neurons in the PVN and NTS are involved in the estrogen-dependent neural cascade mediating glucoprivic suppression of LH secretion in female rats.  相似文献   

4.
The present study examined the effect of acute lipoprivation on pulsatile luteinizing hormone (LH) secretion in both normal-fat diet, ad libitum-fed and fasted female rats. To produce an acute lipoprivic condition, mercaptoacetate (MA), an inhibitor of fatty acid oxidation, was administered intraperitoneally to ad libitum-fed or 24-h fasted ovariectomized (OVX) rats with or without an estradiol (E2) implant, that produces a negative feedback effect on LH pulses. The steroid treatment was performed to determine the effect of estrogen on lipoprivic changes in LH release, because estrogen enhances fasting- or glucoprivation-induced suppression of LH pulses. Pulsatile LH secretion was suppressed by MA administration in a dose-dependent manner in the ad libitum-fed OVX and OVX+E2 rats. LH pulses were more severely suppressed in the 24-h-fasted OVX and OVX+E2 rats compared to the ad libitum-fed rats. Estrogen slightly enhanced lipoprivic suppression but the effect was not significant. In the present study, increased plasma glucose and free-fatty acid concentrations may indicate a blockade of fatty acid metabolism by the MA treatment, but food intake was not affected by any of the MA doses. Acute vagotomy did not block lipoprivic suppression of LH pulses. Thus, the present study indicates that lipid metabolism is important for maintenance of normal reproductive function even in rats fed a normal-fat diet and lipoprivation may be more critical in fasted animals that probably rely more heavily on fatty acid oxidation to maintain appropriate metabolic fuel levels. In addition, failure of blockade of lipoprivic LH inhibition by vagotomy suggests that lipoprivic information resulting in LH suppression is not transmitted to the brain via the vagus nerve.  相似文献   

5.
Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin (KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative feedback on pulsatile GnRH/LH release. The effect of the injection of nor-binaltorphimine (nor-BNI), a kappa-opioid receptor (KOR) antagonist, into the third cerebroventricle (3V) on LH pulses was determined in ovariectomized (OVX) adult female rats with/without replacement of negative feedback levels of estradiol (low E2). The mean LH concentrations and baseline levels of LH secretion in nor-BNI-injected, low E2-treated rats were significantly higher compared with vehicle-treated controls. On the other hand, the nor-BNI treatment failed to affect any LH pulse parameters in OVX rats without low E2 treatment. These results suggest that Dyn is involved in the estrogen negative feedback regulation of pulsatile GnRH/LH release. The low E2 treatment had no significant effect on the numbers of ARC Pdyn (Dyn gene)-,Kiss1- and Tac2 (NKB gene)-expressing cells. The treatment also did not affect mRNA levels of Pdyn and Oprk1 (KOR gene) in the ARC-median eminence region, but significantly increased the ARC kisspeptin immunoreactivity. These findings suggest that the negative feedback level of estrogen suppresses kisspeptin release from the ARC KNDy neurons through an unknown mechanism without affecting the Dyn and KOR expressions in the ARC. Taken together, the present result suggests that Dyn-KOR signaling is a part of estrogen negative feedback action on GnRH/LH pulses by reducing the kisspeptin release in female rats.  相似文献   

6.
Previous studies have suggested the presence of a glucose-sensing mechanism in the hindbrain that appears to regulate reproductive function as well as feeding behavior. The ependymocytes lining the ventricular wall of the hindbrain showed immunoreactivities to pancreatic glucokinase (GK), a key enzyme for glucose sensing in pancreatic B cells. Our goal in the present study was to test whether the GK-immunopositive ependymocytes in the wall of the fourth cerebroventricle (4V) play a role in regulating gonadal activity. Our approach was to determine the effect of injecting alloxan, a GK inhibitor, into the 4V on pulsatile luteinizing hormone (LH) secretion. Estrogen-primed ovariectomized rats received an injection of alloxan (10 or 20 microg/animal) into the 4V and blood samples were collected every 6 min for 3 h for measurement of blood LH, corticosterone and glucose levels. Pulsatile LH secretion was suppressed after alloxan injection and all pulse parameters were significantly (P<0.05) inhibited by 20 microg alloxan. Plasma corticosterone levels were increased significantly (P<0.05) by 20 microg alloxan, suggesting that LH pulse suppression by alloxan may be at least partly mediated by activation of the hypothalamo-pituitary-adrenal axis. The present results suggest that acute suppression of GK activity in the hindbrain inhibits pulsatile LH secretion in female rats, and supports the idea that GK-immunopositive ependymocytes may sense glucose levels in the cerebrospinal fluid and play a role in regulation of LH secretion.  相似文献   

7.
Prepubertal beef heifers at 60 and 200 d of age, born in the fall or spring, were assigned randomly to one of three treatment groups: (1) intact = 1; (2) bilateral ovariectomy (OVX); or (3) OVX plus estradiol-17 beta(E2) administered in silastic implants (OVX + E2). Luteinizing hormone (LH) was measured in serum samples collected at 20-min intervals for 4 h from heifers on -1, +7, +21, +35 and +49 d after OVX. Luteinizing hormone concentrations increased in the serum by 7 d after OVX in heifers at both 60 and 200 d of age (P less than .001; time X treatment). Prior to OVX, the LH patterns were characterized by low levels and infrequent episodic pulses. By 49 d after OVX, the mean LH concentrations increased and the pattern changed to one of rhythmic LH pulses with a periodicity of 1 h (P less than .001; time X treatment). Estradiol-treated OVX heifers did not exhibit a postovariectomy rise in serum LH concentrations. Serum E2 concentration 49 d after OVX in OVX heifers was threefold greater than in 1 or OVX heifers, thus demonstrating that E2 exerted negative feedback on pituitary LH secretion in prepubertal heifers. There was no measurable difference in serum E2 concentrations between I and OVX heifers; however, the contrast in the concentration and pattern of serum LH between the two groups was dramatic and suggested gonadal factors in addition to E2 are involved in controlling LH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The working hypotheses in this experiment were: that ovarian estradiol would inhibit luteinizing hormone (LH) secretion in heifers that were anestrus as a result of restricted dietary energy intake and the responsiveness of LH secretion to estradiol negative feedback would decrease during the period when restoration of estrous cycles occurred following feeding of diets adequate in energy. Fifteen heifers weighing 341 +/- 12 (mean +/- SE) kg were fed a diet containing 50% of the energy required for maintenance until 40 to 50 d following cessation of estrous cycles. Heifers were assigned to intact control (C, n = 5), ovariectomized (OVX, n = 5) or ovariectomized-estradiol-17 beta-implanted (OVX + E2, n = 5) treatments. Heifers were subsequently provided a high-energy (HE) diet until termination of the study. Progesterone concentrations indicating cessation of corpus luteum function were detected after heifers had lost 71 +/- 8 kg body weight over 186 +/- 28 d. Control heifers re-initiated estrous cycles as indicated by increased progesterone concentrations in serum at 49 +/- 9 d after initiation of feeding the HE diet (360 +/- 18 kg body weight). Initiation of pulsatile LH secretion was observed in heifers by d 12 following OVX. Estradiol suppressed LH secretion in OVX + E2 heifers during the period of nutritional anestrus in C heifers. Suppressive effects of E2 on LH secretion continued in OVX heifers after C heifers had initiated corpus luteum function. Therefore, the working hypothesis that LH secretion is inhibited by E2 in the nutritionally anestrous heifer is accepted but responsiveness to estradiol does not subside with re-initiation of estrous cycles, thus this working hypothesis is rejected.  相似文献   

9.
The present study aimed to determine estrogen feedback action sites to mediate prepubertal restraint of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release in female rats. Wistar-Imamichi strain rats were ovariectomized (OVX) and received a local estradiol-17β (estradiol) or cholesterol microimplant in several brain areas, such as the medial preoptic area (mPOA), paraventricular nucleus, ventromedial nucleus and arcuate nucleus (ARC), at 20 or 35 days of age. Six days after receiving the estradiol microimplant, animals were bled to detect LH pulses at 26 or 41 days of age, representing the pre- or postpubertal period, respectively. Estradiol microimplants in the mPOA or ARC, but not in other brain regions, suppressed LH pulses in prepubertal OVX rats. Apparent LH pulses were found in the postpubertal period in all animals bearing estradiol or cholesterol implants. It is unlikely that pubertal changes in responsiveness to estrogen are due to a change in estrogen receptor (ER) expression, because the number of ERα-immunoreactive cells and mRNA levels of Esr1, Esr2 and Gpr30 in the mPOA and ARC were comparable between the pre- and postpubertal periods. In addition, kisspeptin or GnRH injection overrode estradiol-dependent prepubertal LH suppression, suggesting that estrogen inhibits the kisspeptin-GnRH cascade during the prepubertal period. Thus, estrogen-responsive neurons located in the mPOA and ARC may play key roles in estrogen-dependent prepubertal restraint of GnRH/LH secretion in female rats.  相似文献   

10.
Fifteen prepuberal Holstein heifers were utilized to examine pulsatile luteinizing hormone (LH) secretion before and after ovariectomy. Heifers were ovariectornized at 3, 6 or 9 months of age (n=5/group) and scheduled for blood sampling at 1 week before, 1 week after and 4 weeks following ovariectomy. During each 8 hr sampling period (0600–1400 hr), blood samples (10 ml) were collected via indwelling jugular canulae at 10 min intervals. Prior to ovariectomy, mean plasma LH concentration and both number and amplitude of LH pulses per 8 hr sampling period were similar (P>.05) among age groups, and the absence of a pulsatile LH secretion profile was accompanied by a low mean LH concentration. Within 1 week after ovariectomy, both number of LH pulses and mean LH concentrations increased (P<.O1) in all age groups. Between 1 and 4 weeks after ovariectomy, both amplitude of LH pulses and mean LH concentrations increased (P<.O1) when the data from the three age groups were combined. We conclude that ovarian inhibition of pulsatile LH secretion is established by 3 months of age and is maintained through 9 months of age. In addition, the initial elevation mean plasma LH concentration is due to greater pulse frequency, while the subsequent rise in mean LH concentration reflects increased amplitude of LH pulses.  相似文献   

11.
The secretion of luteinizing hormone-releasing hormone (LHRH) and its temporal association with pulses of luteinizing hormone (LH) was examined in ovariectomized prepuberal gilts. Push-pull cannulae (PPC) were implanted within the anterior pituitary gland and LHRH was quantified from 10 min (200 microliters) perfusate samples. Serum LH concentrations were determined from jugular vein blood obtained at the midpoint of perfusate collection. Initial studies without collection of blood samples, indicated that LHRH secretion in the ovariectomized gilt was pulsatile with pulses comprised of one to three samples. However, most pulses were probably of rapid onset and short duration, since they comprised only one sample. Greater LHRH pulse amplitudes were associated with PPC locations within medial regions of the anterior pituitary close to the median eminence. In studies which involved blood collection, LH secretion was not affected by push-pull perfusion of the anterior pituitary gland in most gilts, however, adaptation of pigs to the sampling procedures was essential for prolonged sampling. There was a close temporal relationship between perfusate LHRH pulses and serum LH pulses with LHRH pulses occurring coincident or one sample preceding serum LH pulses. There were occasional LHRH pulses without LH pulses and LH pulses without detectable LHRH pulses. These results provide direct evidence that pulsatile LHRH secretion is associated with pulsatile LH secretion in ovariectomized gilts. In addition, PPC perfusion of the anterior pituitary is a viable procedure for assessing hypothalamic hypophyseal neurohormone relationships.  相似文献   

12.
Saline solution or dexamethasone (DXM, 35 micrograms/kg bodyweight) was injected intramuscularly twice daily for four days into five ovariectomized sows and five castrated boars. Blood samples from an indwelling jugular vein catheter were taken at 15 min intervals for 12 h prior to DXM injection and on the fourth day of treatment in order to compare the effect on variables describing the pulsatile secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH). Dexamethasone treatment caused a decrease (p less than 0.05) in the number of pulsatile episodes of LH secretion in both gonadectomized boars and sows resulting in a significant decrease in mean concentrations. Follicle stimulating hormone secretion parameters appeared to be unaffected by DXM injection in both groups of animals. It is concluded that previously described differences in LH suppression in boars and sows given glucocorticoids may be attributed to the influence of gonadal hormones.  相似文献   

13.
The working hypothesis was that the amount of increase in secretion of luteinizing hormone (LH) that results from positive feedback of 17 beta-estradiol (E2) is dependent on season of the year in mature bovine females. Seven beef cows, ovariectomized approximately 2 mo before the initiation of the experiment, were used in the initial year (1983) of the study. Three of the ovariectomized cows (OVX-E2) received an sc E2 implant, which provided low circulating levels of E2. The remaining four cows (OVX) were not implanted. Blood samples were collected serially (at 10-min intervals for 6 h) at each spring and fall equinox and at each summer and winter solstice. This protocol was replicated with a different group of cows in 1985 (OVX-E2, n = 4; OVX, n = 6). Concentration of LH in blood serum was quantified in all samples. Concentration of E2 in blood serum was measured in pools of samples from each serial blood collection. Concentrations of E2 were higher (P less than .05) in the implanted cows. Mean concentration of LH and amplitude of pulses of LH were higher (P less than .05) at each season of the year in cows that were ovariectomized and implanted with E2 than in cows that were ovariectomized and did not receive E2. An effect of season of the year on mean concentration of LH was detected (P less than .01). No influence of season or E2 was detected for frequency of pulses of LH. There was no significant treatment X season interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an 1-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50 μg) was injected (i.m.) and Doxazosin (100 nmol/h) or vehicle was infused into the third ventricle 2–26 h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-β-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.  相似文献   

15.
Changes in luteinizing hormone (LH) secretion after 17β-estradiol (E(2)) injection were evaluated during sexual maturation in 10 prepubertal Nelore heifers. Heifers were divided into 2 groups: intact (I) and ovariectomized (OVX). 17β-estradiol (2 μg/kg) was administered to both groups at 10, 13, and 17 mo of age. Only at 10 mo of age was there a greater mean LH concentration in OVX heifers (1.33 ± 0.29 ng/mL) compared with the I group (0.57 ± 0.15 ng/mL). At 13 and 17 mo of age there was no significant difference between the 2 groups in any of the evaluated variables (number of peaks, total peak area, greatest peak area, and time to greatest peak occurrence). This suggests a decrease in negative E(2) feedback associated with an increase in positive feedback to LH secretion during sexual maturation, and these were likely the key factors that determined the time of first ovulation in Nelore heifers.  相似文献   

16.
Prolonged restriction of dietary energy delays onset of puberty, disrupts cyclicity in sexually mature animals, and lengthens the postpartum anestrous period in domestic ruminants. One important mechanism by which energy restriction impairs reproductive activity seems to be suppression of the increase in LH pulse frequency that is necessary for growth of ovarian follicles to the preovulatory stage. Under-nutrition apparently inhibits pulsatile secretion of LH by reducing LHRH secretion by the hypothalamus. The ability of an animal to sustain a high-frequency mode of pulsatile LH release is related to its metabolic status. Mechanisms linking metabolic status to LHRH secretion have not been fully characterized. Changes in body fat have been associated with changes in reproductive activity, but it is unlikely that body fat per se regulates LHRH secretion. It is possible that pulsatile LHRH release is regulated by specific metabolites and(or) metabolic hormones that reflect nutritional status. Alternatively, availability of oxidizable metabolic fuels, such as glucose and nonesterified fatty acids, may influence activity of neurons that control LHRH release. Our understanding of how the central nervous system transduces information about nutritional status into neuroendocrine signals that control reproduction in cattle and sheep is limited by a lack of information concerning the nature of neurons controlling LHRH release in these species.  相似文献   

17.
It has recently been shown that neurokinin B, a tachykinin, is associated with GnRH pulse generation in sheep and goats. The aim of the present study was to clarify the role of tachykinin receptors in the control of LH secretion in rats. To this end, we evaluated the effect of CS-003, an antagonist for all three neurokinin receptors (NK1, NK2 and NK3 receptors), on pulsatile LH secretion in both sexes of rats with different routes of administration. Both oral and third ventricular administration of CS-003 suppressed LH secretion in both sexes of gonadectomized animals. Furthermore, intact male rats with oral administration of CS-003 showed decreased serum testosterone levels, which might be due to suppressed LH secretion. None of the three subtype-specific neurokinin receptor antagonists showed a significant effect on LH secretion in ovariectomized rats when each antagonist was singly administered. The present results suggest that neurokinins play a role in the control of pulsatile GnRH/LH secretion via multiple neurokinin receptors in both male and female rats.  相似文献   

18.
Mice have become more important as genetically-modified model animals for analysis of physiological functions. The establishment of a frequent blood sampling system in conscious mice would provide a powerful tool for a better and more detailed understanding of the physiological status of circulating hormonal changes, such as pulse or surge modes of luteinizing hormone (LH) secretion. Frequent blood sampling, however, is considered problematic in mice because of the limited blood volume for their small body size. The present study, therefore, aims to establish a blood sampling protocol to determine the pulse and surge modes of LH secretion using intra-atrial cannulation and frequent blood sampling in free-moving conscious mice. Ovariectomized mice were bled every 3 min for 1.5 h to detect LH pulses. Blood glucose levels, an indicator of stress, were kept constant throughout the 1.5-h sampling period, suggesting that sampling can be performed under stress-free conditions. Obvious LH pulses were observed in ad lib-fed ovariectomized mice, whereas they were significantly suppressed after a 24-h fast. This indicates that the present sampling protocol is suitable for detecting physiological changes in pulsatile LH secretion. In addition, 1-h-interval blood collections in proestrous mice between 1300 and 2200 h revealed that individual preovulatory LH surges occur in the evening of proestrous days. Thus, the present study has developed a blood sampling protocol to detect individual profiles of pulse and surge modes of LH secretion in mice.  相似文献   

19.
Secretion of luteinizing hormone (LH) and effects of estradiol were evaluated during and after the prepubertal decline in negative feedback of estradiol on secretion of LH. Prepubertal heifers (269 ± 4 days of age; n=10) were ovariectomized on February 6, 1981 (Day 0). Five ovariectomized heifers were administered a subcutaneous implant on Day 0 which provided physiological serum concentrations of estradiol (OVX-E2). The remaining 5 heifers were not implanted (OVX). A second estradiol implant was administered to OVX-E2 heifers on Day 164 (n=3) or Day 206 (n=2) of the study. Blood samples were collected sequentially (every 12 min for 8 hr) at approximately two week intervals from Days 0 to 232 of the experiment. The experimental period spanned from approximately 100 days before (269 days of age) to 100 days after (501 days of age) the expected age at puberty. Mean serum concentration of LH and frequency of LH pulses increased rapidly from Days 0 to 36 in OVX heifers and were followed by a further gradual rise in pulse frequency (Day 50 to 232) and a reciprocal decline in mean LH and pulse amplitude. The rapid post-ovariectomy increase in secretion of LH was blocked by estradiol in OVX-E2 heifers. All characteristics (mean, frequency and amplitude) of secretion of LH increased gradually during the experimental period in OVX-E2 heifers (Days 0 to 232). Mean concentration and amplitude of pulses were higher in OVX-E2 than in OVX heifers by Days 148 and 134, respectively. These differences were maintained for the remainder of the experimental period. No acute effects of the second estradiol implant on secretion of LH were observed in OVX-E2 heifers. Results of this study indicate that long-term changes in secretion of LH occur following prepubertal ovariectomy in heifers and suggest that the previously documented prepubertal decline in negative feedback of estradiol on secretion of LH is followed by a period of positive feedback after pubertal age is surpassed.  相似文献   

20.
Hourly pulses of gonadotropin-releasing hormone (GnRH) or bi-daily injections of estradiol (E2) can increase luteinizing hormone (LH) secretion in ovariectomized, anestrous pony mares. However, the site (pituitary versus hypothalamus) of positive feedback of estradiol on gonadotropin secretion has not been described in mares. Thus, one of our objectives involved investigating the feedback of estradiol on the pituitary. The second objective consisted of determining if hourly pulses of GnRH could re-establish physiological LH and FSH concentrations after pituitary stalk-section (PSS), and the third objective was to describe the declining time trends of LH and FSH secretion after PSS. During summer months, ovariectomized pony mares were divided into three groups: Group 1 (control, n = 2), Group 2 (pulsatile GnRH (25 μg/hr), n = 3), and Group 3 (estradiol (5 mg/12 hr), n = 3). All mares were stalk-sectioned and treatment begun immediately after stalk-section. Blood samples were collected every 30 min for 8 h on the day before surgery (DO) and 5 d post surgery (D5) to facilitate the comparison of gonadotropin levels before and after pituitary stalk-section. Additionally, jugular blood samples were collected every 12 hr beginning the evening of surgery, allowing for evaluation of the gonadotropin secretory time trends over the 10 d of treatment. On Day 10, animals were euthanized to confirm pituitary stalk-section and to submit tissue for messenger RNA analysis (parallel study). Plasma samples were assayed for LH and FSH by RIA. Mean LH secretion decreased from Day 0 to Day 5 in Groups 1 and 3, whereas LH secretion tended (P < 0.08) to decrease in Group 2 mares. On Day 5, LH was higher (P < 0.01) in Group 2 (17.26 ± 3.68 ng/ml; LSMEANS ± SEM), than either Group 1 (2.65 ± 4.64 ng/ml) or group 3 (4.28 ± 3.68 ng/ml). Group 1 did not differ from Group 3 on Day 5 (P < 0.40). Similarly, mean FSH levels decreased in all groups after surgery, yet Group 2 mares had significantly (P < 0.001) higher FSH concentrations (17.66 ± 1.53 ng/ml) than Group 1 or Group 3 (8.34 ± 1.84 and 7.69 ± 1. 63 ng/ml, respectively). Regression analysis of bi-daily LH and FSH levels indicated that the time trends were not parallel. These findings indicate: 1) Pituitary stalk-section lowered LH and FSH to undetectable levels within 5 d after surgery, 2) pulsatile administration of GnRH (25 μg/hr) maintained LH and FSH secretion, although concentrations tended to be lower than on Day 0, and 3) E2 did not stimulate LH or FSH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号