首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
以椰壳为原料,采用热解活化法制备微孔发达活性炭.研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响.实验结果表明:活化温度为900℃,活化时间为4h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g.N2吸附结果表明活性炭的平均孔径在2nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%.对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低.  相似文献   

2.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

3.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

4.
以废弃的松子壳为原料,采用水蒸气活化法制备松子壳活性炭,系统研究了炭化温度、活化温度、活化时间、活化剂用量等关键工艺因素对活性炭产品性能的影响,分析其对碘吸附值和亚甲基蓝吸附性能的影响。结果显示,松子壳活性炭最佳工艺条件为:炭化温度为500℃、活化温度为860℃、活化时间为90 min、水蒸气流量为2.5 m L/min,此时松子壳活性炭得率为26.08%,碘吸附值为1 338 mg/g,亚甲基蓝吸附值为300 mg/g。松子壳活性炭孔径主要集中在3 nm左右,其平均孔径为2.396 nm,BET比表面积为105 2.68 m~2/g,总孔容积为0.630 6 cm~3/g,微孔容积为0.355 8 cm~3/g,占总孔容积的56.43%。  相似文献   

5.
为了提高万寿菊秸秆的利用价值,解决废弃秸秆污染环境的问题,笔者以万寿菊秸秆为原料、磷酸为活化剂,制备了万寿菊秸秆活性炭;检测分析了酸碳比、活化时间、活化温度对活性炭吸附性能的影响;比较分析了万寿菊秸秆的化学组分。结果表明,当酸碳比为2:1,活化时间为120min,活化温度为400℃,制得的活性炭的碘吸附值为1 145.38mg/g,BET比表面积为1 344.225m~2/g,HK吸附总孔容为0.72cm~3/g,平均孔径为0.59nm,制得的活性炭吸附性能优良。  相似文献   

6.
以超声波浸提法提取阿拉伯半乳聚糖后的兴安落叶松锯末为原料,KOH为活化剂,惰性气氛条件下程序升温活化,研制高比表面积活性炭.系统分析了碱料比、活化温度、活化时间、活化剂加入方式与种类、预炭化对活性炭比表面积、碘吸附值和得率的影响.以低温液氮吸附分析了活性炭的比表面积,通过苯酚的等温吸附测试了活性炭的吸附性能.结果表明浸提锯末为制造高比表面积活性炭的适宜原料,在最佳条件500℃预炭化1 h,750℃活化1 h,固体KOH为活化剂,碱料比41(质量比)时制得的活性炭比表面积为2 659.4 m2/g,对苯酚的吸附容量为570 mg/g.  相似文献   

7.
沙柳资源丰富且含有大量的纤维素和半纤维素,可作为制备活性炭的潜在原料。本研究以沙柳为原料、磷酸为活化剂,采用正交试验法确定沙柳基活性炭的制备工艺,探究浸渍比、活化温度和活化时间3个因素对沙柳基活性炭得率及亚甲基蓝吸附性能的影响。通过扫描电子显微镜(SEM)和X-射线衍射仪(XRD)对所制备活性炭的微观形貌和石墨层结构进行分析和表征,并利用氮气吸附和脱附曲线计算出BET比表面积、BJH孔径分布。试验结果表明:制备沙柳基活性炭的较理想工艺条件为,活化时间80 min,浸渍比3∶1(磷酸与原料的质量比),活化温度450℃;在此条件下制备的沙柳基活性炭平均得率为46.48%,亚甲基蓝吸附值为135.0 mg/g,BET比表面积为1 015.144 m2/g,孔径大小平均为4.23 nm。  相似文献   

8.
选用低温竹炭为原料、氢氧化钾为活化剂,制备不同炭碱比和不同活化时间的竹活性炭。运用傅立叶红外光谱议(FTIR)、比表面积测定仪(BET)等仪器对竹活性炭表面官能团、比表面积和孔径结构及比电容进行了测试和分析。结果表明,炭碱比1:4、活化温度700℃、活化时间3h条件下制备的竹活性炭,比表面积为2897.7m2/g,总孔容为1.340cm3/g,平均孔径为2.59nm,亚甲基蓝吸附值为27.7ml/0.1g,碘吸附值为1920mg/g,作为超级电容器(EDLC)的电极,其比电容为114.4F/g。  相似文献   

9.
以稻秆为原料,通过磷酸法活化制备得到了中孔活性炭,并采用氮气吸附、元素分析和扫描电镜对其进行了表征分析。实验结果表明:稻秆制备活性炭的工艺条件为10 g稻秆,浸渍比3∶1(质量比),在140℃下预活化60 min,活化温度450℃,活化时间60 min。在此条件下制备得到的活性炭得率为25%,亚甲基蓝吸附值215 mg/g,碘吸附值835 mg/g,A法焦糖值110%,灰分3.03%,其比表面积为967.7 m2/g,总孔容为1.12 cm3/g,平均孔径为4.6 nm,中孔率可以达到84.8%。  相似文献   

10.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号