首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon films with a diamondlike structure that are chemically bonded to surfaces have been deposited by means of low-energy C(+) ion beams. When mass-selected C(+) beams at energies in the range from 20 to 200 electron volts impinge on atomically clean surfaces, the first carbon monolayer grows as a carbide structure that is chemically bonded to the surface. As deposition continues, the structure evolves over the next several atomic layers into a diamondlike structure. These pure carbon films are strongly adhered to the surface through the carbide bonds, which also provide for an intimate interface. There are significant applications for such films, particularly as insulators and doped semiconductors.  相似文献   

2.
Ceramics are a distinct class ofmaterials whose properties range from extreme hardness to unique electrical behavior. New methods of creating thin films of complex oxides and electronic ceramics allow the integration of these properties with semiconductor technology and raise the possibility of a new range of electronic devices.  相似文献   

3.
4.
Monte Carlo and molecular dynamics methods have been used to study the shearing behavior of an atomic fluid between two plane-parallel solid surfaces having the face-centered cubic (100) structure. A distorted, face-centered cubic solid can form epitaxially between surfaces that are separated by distances of one to five atomic diameters. Under these conditions a critical stress must be overcome to initiate sliding of the surfaces over one another at fixed separation, temperature, and chemical potential. As sliding begins, a layer of solid exits the space between the surfaces and the remaining layers become fluid.  相似文献   

5.
An experimental technique is described for simultaneously measuring the static and dynamic interactions of very thin liquid films between two surfaces as they are moved normally or laterally relative to each other. Film thickness can be measured and controlled to 1 angstrom. Initial results are presented of the transition in the physical properties of liquid films only one molecular layer thick to thicker films whose properties are practically indistinguishable from the bulk. In particular, the results show that two molecularly smooth surfaces, when close together in simple liquids, slide (shear) past each other while separated by a discrete number of molecular layers, and that the frictional force is "quantized" with the number of layers.  相似文献   

6.
A freely floating polymer film, tens of nanometers in thickness, wrinkles under the capillary force exerted by a drop of water placed on its surface. The wrinkling pattern is characterized by the number and length of the wrinkles. The dependence of the number of wrinkles on the elastic properties of the film and on the capillary force exerted by the drop confirms recent theoretical predictions on the selection of a pattern with a well-defined length scale in the wrinkling instability. We combined scaling relations that were developed for the length of the wrinkles with those for the number of wrinkles to construct a metrology for measuring the elasticity and thickness of ultrathin films that relies on no more than a dish of fluid and a low-magnification microscope. We validated this method on polymer films modified by plasticizer. The relaxation of the wrinkles affords a simple method to study the viscoelastic response of ultrathin films.  相似文献   

7.
Pool R 《Science (New York, N.Y.)》1988,241(4862):163-164
Superconducting thin films will be essential to any practical application of superconductivity to microelectronics. Scientists have now succeeded in putting these thin films onto silicon, which is the base element in most integrated circuits.  相似文献   

8.
We demonstrate the assembly of biohybrid materials from engineered tissues and synthetic polymer thin films. The constructs were built by culturing neonatal rat ventricular cardiomyocytes on polydimethylsiloxane thin films micropatterned with extracellular matrix proteins to promote spatially ordered, two-dimensional myogenesis. The constructs, termed muscular thin films, adopted functional, three-dimensional conformations when released from a thermally sensitive polymer substrate and were designed to perform biomimetic tasks by varying tissue architecture, thin-film shape, and electrical-pacing protocol. These centimeter-scale constructs perform functions as diverse as gripping, pumping, walking, and swimming with fine spatial and temporal control and generating specific forces as high as 4 millinewtons per square millimeter.  相似文献   

9.
Mercury detection by means of thin gold films   总被引:1,自引:0,他引:1  
The adsorption of elemental mercury vapor on a thin (several hundred angstroms) gold film produces resistance changes in the film. An instrument for the detection of mercury based on this phenomenon is simple and rapid and requires no chemical separations other than passage of the vapor sample through a few standard dry filters. The instrument is portable, and the technique is directly applicable to environmental problems and geochemical prospecting. The limit of detection of the prototype instrument is 0.05 nanogram of mercury.  相似文献   

10.
Antiferromagnetic domains in an epitaxial thin film, LaFeO(3) on SrTiO(3)(100), were observed using a high-spatial-resolution photoelectron emission microscope with contrast generated by the large x-ray magnetic linear dichroism effect at the multiplet-split L edge of Fe. The antiferromagnetic domains are linked to 90 degrees twinned crystallographic regions in the film. The Neel temperature of the thin film is reduced by 70 kelvin relative to the bulk material, and this reduction is attributed to epitaxial strain. These studies open the door for a microscopic understanding of the magnetic coupling across antiferromagnetic-ferromagnetic interfaces.  相似文献   

11.
With the combination of the height sensitivity of atomic force microscopy and the strain sensitivity of transmission electron microscopy, it is shown that near singular stress concentrations can develop naturally in strained epitaxial films. These crack-like instabilities are identified as the sources of dislocation nucleation and multiplication in films of high misfit. This link between morphological instability and dislocation nucleation provides a method for studying the basic micromechanisms that determine the strength and mechanical properties of materials.  相似文献   

12.
Electric field effect in atomically thin carbon films   总被引:16,自引:0,他引:16  
We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10(13) per square centimeter and with room-temperature mobilities of approximately 10,000 square centimeters per volt-second can be induced by applying gate voltage.  相似文献   

13.
Biaxial compressive strain has been used to markedly enhance the ferroelectric properties of BaTiO3 thin films. This strain, imposed by coherent epitaxy, can result in a ferroelectric transition temperature nearly 500 degrees C higher and a remanent polarization at least 250% higher than bulk BaTiO3 single crystals. This work demonstrates a route to a lead-free ferroelectric for nonvolatile memories and electro-optic devices.  相似文献   

14.
Stabilization against the rupture and breakup of thin, nonwetting liquid films spread on surfaces is generally sought by modification of equilibrium interfacial properties. A mechanism for suppressing rupture in such films that uses surface-attached polymers togetherwithfree chains in the bulk of the film is reported. Films of an oligostyrene liquid, which rupture within several minutes when spread on a silicon wafer, may be stabilized for many months by a polystyrene brush attached to the substrate, together with some free polystyrene in the liquid. The effect may arise from entanglements of the free chains with the immobilized brush.  相似文献   

15.
In nanocrystalline metals, lack of intragranular dislocation sources leads to plastic deformation mechanisms that substantially differ from those in coarse-grained metals. However, irrespective of grain size, plastic deformation is considered irrecoverable. We show experimentally that plastically deformed nanocrystalline aluminum and gold films with grain sizes of 65 nanometers and 50 nanometers, respectively, recovered a substantial fraction (50 to 100%) of plastic strain after unloading. This recovery was time dependent and was expedited at higher temperatures. Furthermore, the stress-strain characteristics during the next loading remained almost unchanged when strain recovery was complete. These observations in two dissimilar face-centered cubic metals suggest that strain recovery might be characteristic of other metals with similar grain sizes and crystalline packing.  相似文献   

16.
Thin films of monatomic fluid constrained between two plane-parallel structured solid walls have been modeled by Monte Carlo simulation under conditions (fixed temperature, chemical potential, and normal stress or load) prevailing in high-precision measurements of surface forces. Several states of the film, corresponding to different numbers of layers of fluid parallel with the walls, are generally consistent with these conditions, but only one is thermodynamically stable; the others are metastable. When the walls are properly aligned, epitaxial solid phases are stable. These melt under shear, eventually becoming metastable, whereupon a drainage (or imbibition) transition occurs, leading to a stable phase with fewer (or more) layers.  相似文献   

17.
The defect structure of in situ pulsed, laser-deposited, thin films of the high-transition temperature superconductor Y-Ba-Cu-O has been observed directly by atomic resolution electron microscopy. In a thin film with the nominal composition YBa(2)Cu(3)O(7) (123), stacking defects corresponding to the cationic stoichiometry of the 248, 247, and 224 compounds have been observed. Other defects observed include edge dislocations and antiphase boundaries. These defects, which are related to the nonequilibrium processing conditions, are likely to be responsible for the higher critical currents observed in these films as compared to single crystals.  相似文献   

18.
采用溶胶-凝胶法在石英衬底上制备掺铟氧化锌薄膜,研究不同退火温度对薄膜结构及发光性能的影响.结果表明,掺铟氧化锌薄膜仍为六角纤锌矿结构的ZnO相,在大于450 nm的波段薄膜样品的透射率都较高;随着退火温度的升高,透射率先增后减,600℃时达到最大;薄膜样品的光学带隙都小于纯ZnO的理论值(3.37 eV),且随退火温度的升高呈先减后增趋势;样品的结晶度与发光强度随着退火温度的升高而增强.  相似文献   

19.
The polarization force between an electrically charged atomic force microscope tip and a substrate has been used to follow the processes of condensation and evaporation of a monolayer of water on mica at room temperature. Condensation proceeds in two distinct structural phases. Up to about 25 percent humidity, the water film grows by forming two-dimensional clusters of less than a few 1000 angstroms in diameter. Above about 25 percent humidity, a second phase grows, forming large two-dimensional islands with geometrical shapes in epitaxial relation with the underlaying mica lattice. The growth of this second water phase is completed when the humidity reaches about 45 percent. The reverse process of evaporation has also been imaged.  相似文献   

20.
Ferroelectric oxide materials have offered a tantalizing potential for applications since the discovery of ferroelectric perovskites more than 50 years ago. Their switchable electric polarization is ideal for use in devices for memory storage and integrated microelectronics, but progress has long been hampered by difficulties in materials processing. Recent breakthroughs in the synthesis of complex oxides have brought the field to an entirely new level, in which complex artificial oxide structures can be realized with an atomic-level precision comparable to that well known for semiconductor heterostructures. Not only can the necessary high-quality ferroelectric films now be grown for new device capabilities, but ferroelectrics can be combined with other functional oxides, such as high-temperature superconductors and magnetic oxides, to create multifunctional materials and devices. Moreover, the shrinking of the relevant lengths to the nanoscale produces new physical phenomena. Real-space characterization and manipulation of the structure and properties at atomic scales involves new kinds of local probes and a key role for first-principles theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号