首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a five-year survey (2011–2015) of barley and wheat fields in Paraná state, Brazil, obtaining 754 Fusarium isolates from spikes with fusarium head blight (FHB)-symptoms. Multilocus genotyping and TEF-1α gene sequence analyses confirmed the dominance of the F. graminearum species complex (FGSC, 75.7%), but F. poae (11.5%), as well as F. avenaceum and related members of the F. tricinctum species complex (FTSC, 8.1%) appeared as substantial contributors to FHB. Within the FGSC, F. graminearum of the 15-ADON genotype was dominant (63%), followed by F. meridionale of the NIV genotype (23.1%), F. cortaderiae of the NIV (7%) or 3-ADON (2.6%) genotypes, and F. austroamericanum (3.8%) of the 3-ADON genotype. Substantial variation in pathogen composition was observed across years, with F. poae and F. meridionale frequencies significantly elevated in some years. Most F. poae strains produced DAS, diANIV, and butenolide, but not neosolaniol, T-2, or HT-2. All FTSC species produced moniliformin. Enniatin production was widespread among FTSC species, with the single F. acuminatum strain found to be the strongest producer of enniatins. Our findings confirm FGSC as a major contributor to FHB and expand considerably our knowledge of the presence, frequency, and conditions under which other pathogens may emerge, altering the spectrum of toxins that may accumulate in grain.  相似文献   

2.
为了明确陕西省小麦禾谷镰刀菌混合群(Fusarium graminearum species complex)的遗传多样性,利用4对E coRⅠ和M seⅠ引物对来自陕西省19个区县的162株小麦禾谷镰刀菌菌株进行了AFLP扩增。结果表明,4对引物均能扩增出数量不等的多态性条带,最少的6条,最多的20条,大部分扩增片段在100~750bp之间。利用NTSYS-2.1软件聚类分析表明,不同地区禾谷镰刀菌可分为两大类群,即类群A和类群B。这两大类群的分化和地理来源有明确相关性,类群A主要分布在关中地区,类群B主要分布在陕南地区。初步判断可能与两个地区生态环境和小麦主栽品种差异有关。各类群内的菌系与地理位置间的关系较为复杂,一些菌系与地理来源存在明确关系,而个别菌系与地理来源间的关系尚不能完全明确。还需进一步研究以明确各菌株与地理来源之间的关系。  相似文献   

3.
A series of experiments was conducted to determine whether type I resistance (resistance to initial infection) to fusarium head blight (FHB) in wheat could be assessed using fungal species/isolates that do not produce deoxynivalenol (DON), a mycotoxin critical to the spread of Fusarium graminearum in the wheat spike. It was shown that, while the non-toxin-producing species Microdochium nivale and M. majus could infect following spray inoculation of wheat spikes, they were unable to spread within the spike following point inoculation. However, although these species might reveal type I resistance, they are not highly pathogenic towards wheat. A nivalenol (NIV)-producing isolate of F. graminearum caused high levels of disease following spray inoculation, but spread only very slowly within the spike and rarely induced bleaching above the point of inoculation. It is proposed that spray inoculation with an appropriate, aggressive, non-DON-producing FHB pathogen may be used to characterize type I resistance to complement point inoculation with a DON-producing isolate to assess type II resistance (resistance to spread within the spike).  相似文献   

4.
The spatial pattern of Fusarium‐infected kernels and their mycotoxin contamination was studied in four wheat fields in Germany using geo‐referenced sampling grids (12–15 × 20–30 m, 28–30 samples per field) at harvest. For each sample, frequency of Fusarium‐infected kernels and spectrum of species were assessed microbiologically; mycotoxin contents were determined by HPLC‐MS/MS analysis. Spatial variability of pathogens and mycotoxins was analysed using various parameters including Spatial Analysis by Distance IndicEs (sadie® ). Microdochium majus, the most frequent head blight pathogen in 1998, was less frequent in 1999 and could not be detected in kernels from two fields in 2004. Fusarium avenaceum, F. graminearum and F. poae were the most frequent Fusarium species, with 7–8 species per field. The frequency of Fusarium‐infected kernels was 3–15% and the incidence of species showed considerable within‐field variability. Spatial patterns varied among Fusarium species as well as from field to field. Although pathogens and mycotoxin were often distributed randomly in the field, F. avenaceum, F. graminearum, F. poae, F. sporotrichioides, F. tricinctum and the mycotoxin moniliformin had an aggregated pattern in at least one field. Patterns are discussed in relation to spread of Fusarium species depending on inoculum sources, spore type, kind of dispersal, availability of susceptible host tissue and micro‐climate. Sampling of wheat fields for representative assessment of mycotoxins is complicated by random patterns of Fusarium‐infected kernels, especially where the frequency of infection is small.  相似文献   

5.
By carefully separating type I and type II resistances, the possible effects of plant height on fusarium head blight (FHB) resistance in wheat were assessed using near‐isogenic lines (NILs) for several different reduced‐height (Rht) genes. Tall isolines all gave better type I resistance than their respective dwarf counterparts when assessed at their natural heights. These differences largely disappeared when the dwarf isolines were physically raised so that their spikes were positioned at the same height as those of their respective tall counterparts. The effects of plant height on type II resistance was less clear. For those NIL pairs which showed significant differences, it was the dwarf isolines which gave better resistance. As the Rht genes involved in these NILs locate at different genomic regions, the differences in FHB between the dwarf and tall isolines are unlikely to be the result of linkages between each of the different Rht loci with a beneficial or a deleterious gene affecting type I or type II resistance. Rather, the different FHB resistances are probably caused by direct or indirect effects of height difference per se, and microclimate may have contributed to the better type I resistance of the tall plants. Thus, caution should be exercised when attempting to exploit any of the FHB resistant loci co‐located with Rht genes.  相似文献   

6.
The effect of small temperature differentials (16 vs. 20°C) on the pathogenicity of deoxynivalenol producing single isolates of Fusarium culmorum and F. graminearum and on the fusarium head blight (FHB) response of eight wheat cultivars was examined. Fusarium culmorum inoculation caused greater visual disease symptoms at 20°C than at 16°C, both overall and on an individual cultivar basis (overall AUDPC = 13·5 and 9·6, respectively) ( P  < 0·05). In contrast, F. graminearum inoculation caused greater overall visual disease symptoms at 16°C than at 20°C, both overall and at the individual cultivar level (overall AUDPC = 12·8 and 10·9, respectively) ( P  < 0·05). Results showed both F. culmorum and F. graminearum inoculations caused a greater loss in yield at 20°C (54·3 and 46·9% relative 1000-grain weight, respectively) compared with 16°C (73·3 and 66·9% relative 1000-grain weight, respectively) ( P  < 0·05). Fusarium culmorum -inoculated heads contained similar amounts of fungal DNA at both 16 and 20°C (1·9 and 1·7 ng mg−1 of plant material, respectively) (not significant), while for F. graminearum inoculation, plants contained higher amounts of fungal DNA at 20°C (2·0 and 1·0 ng mg−1 of plant material, respectively) ( P  < 0·05). Overall, there was a significant negative correlation between AUDPC and percentage relative 1000-grain weight at both 16 and 20°C ( r  =−0·693 and −0·794, respectively, P  < 0·01).  相似文献   

7.
为探明不同杀菌剂对小麦赤霉病和小麦籽粒DON毒素(包括DON、3-ADON和15-ADON)的控制效果, 采用菌丝生长速率法测定了12种药剂对禾谷镰刀菌野生型菌株PH-1的室内活性, 同时采用液相色谱-串联质谱法(LC-MS)测定了这些药剂对DON毒素的抑制效果, 并开展了小麦赤霉病及籽粒DON毒素的田间防治试验。结果表明, 12种原药对菌丝生长抑制活性强弱依次为氟唑菌酰羟胺>咪鲜胺>戊唑醇>丙硫菌唑>叶菌唑>氰烯菌酯>氟环唑>多菌灵>甲基硫菌灵>吡唑醚菌酯>嘧菌酯>井冈霉素A。氟环唑EC50和EC90离体胁迫均刺激DON毒素产生, 其他杀菌剂EC50和EC90胁迫均抑制DON毒素产生。田间试验结果表明, 200 g/L氟唑菌酰羟胺SC、30%丙硫菌唑OD和20%叶菌唑WP病指防效和DON防效为87.68%~94.77%; 430 g/L戊唑醇SC、25%氰烯菌酯SC、45%咪鲜胺EW、25%氟环唑SC、50%多菌灵WP和70%甲基硫菌灵WP病指防效和DON防效为57.63%%~85.49%; 250 g/L吡唑醚菌酯EC和250 g/L嘧菌酯SC病指防效分别为72.18%和51.98%, DON防效分别为43.06%和-7.96%; 24%井冈霉素A AS病指防效和DON防效分别为42.37%和62.87%。药剂离体和田间控毒效果不完全一致, 赤霉病有效防控是DON防控的前提, 病害防效与DON防效不完全一致, 本研究为小麦赤霉病及籽粒DON毒素防控提供了科学依据。  相似文献   

8.
In this study, the Arabidopsis thaliana NPR1 (non‐expressor of PR genes) gene was integrated into an elite wheat cultivar, and the response of the transgenic wheat expressing NPR1 to inoculation with Fusarium asiaticum was analysed. With seedling inoculation, the transgenic lines showed significantly increased fusarium seedling blight (FSB) susceptibility, whereas floret inoculation resulted in enhanced fusarium head blight (FHB) resistance. Quantitative real‐time PCR revealed that expression of two defence genes, PR3 and PR5, was associated with susceptible reactions to FSB and FHB, whereas the PR1 gene was activated in resistance responses. This inverse modulation by the constitutively expressed NPR1 gene suggests that NPR1 has a bifunctional role in regulating defence responses in plants. Therefore, it is unsuitable for improving overall resistance to FSB and FHB in wheat.  相似文献   

9.
为优化黄淮麦区小麦赤霉病抗性鉴定方法,于2020年在河南农业大学许昌校区试验田对4个小麦品种进行单花滴注赤霉病抗性鉴定,分析不同套袋保湿天数对病情严重度的影响,并利用与主效抗病基因Fhb1连锁的功能标记TaHRC-STS对其进行分子检测.结果显示:抗病品种'苏麦3号'宁麦9号'携带该基因,而感病品种不携带;套袋1~7...  相似文献   

10.
Environmental conditions in Sardinia (Tyrrhenian Islands) are conducive to fusarium root rot (FRR) and fusarium head blight (FHB). A monitoring survey on wheat was carried out from 2001 to 2013, investigating relations among these diseases and their causal agents. FHB was more frequently encountered in the most recent years while FRR was constantly present throughout the monitored period. By assessing the population composition of the causal agents as well as their genetic chemotypes and EF‐1α polymorphisms, the study examined whether the two diseases could be differentially associated to a species or a population. Fusarium culmorum chemotypes caused both diseases and were detected at different abundances (88% 3‐ADON, 12% NIV). Fusarium graminearum (15‐ADON genetic chemotype) appeared only recently (2013) and in few areas as the causal agent of FHB. In Fculmorum, two haplotypes were identified based on an SNP mutation located 34 bp after the first exon of the EF‐1α partial sequence (60% adenine, 40% thymine); the two populations did not segregate with the chemotype but the A‐haplotype was significantly associated with FRR in the Sardinian data set (= 0·001), suggesting a possible fitness advantage of the A‐haplotype in the establishment of FRR that was neither dependent on the sampling location nor the sampling year. The SNP determining the Sardinian haplotype is distributed worldwide. The question whether the A‐haplotype segregates with characters facilitating FRR establishment will require further validation on a specifically sampled international data set.  相似文献   

11.
Fusarium head blight in wheat spikes is associated with production of mycotoxins by the fungi. Although flowering is recognized as the most favourable host stage for infection, a better understanding of infection timing on disease development and toxin accumulation is needed. This study monitored the development of eight characterized isolates of F. graminearum, F. culmorum and F. poae in a greenhouse experiment. The fungi were inoculated on winter wheat spikes before or at anther extrusion, or at 8, 18 and 28 days later. Disease levels were estimated by the AUDPC and thousand‐kernel weight (TKW). The fungal biomass (estimated by qPCR) and toxin concentration (deoxynivalenol and nivalenol, estimated by UPLC‐UV‐MS/MS) were measured in each inoculated spike, providing a robust estimation of these variables and allowing correlations based on single‐individual measurements to be established. The toxin content correlated well with fungal biomass in kernels, independently of inoculation date. The AUDPC was correlated with fungal DNA, but not for early and late infection dates. The highest disease and toxin levels were for inoculations around anthesis, but early or late infections led to detectable levels of fungus and toxin for the most aggressive isolates. Fungal development appeared higher in kernels than in the chaff for inoculations at anthesis, but the opposite was found for later inoculations. These results show that anthesis is the most susceptible stage for FHB, but also clearly shows that early and late infections can produce significant disease development and toxin accumulation with symptoms difficult to estimate visually.  相似文献   

12.
Fusarium head blight (FHB), a devastating disease that affects wheat, is caused by a complex of Fusarium species. The overall impact of Fusarium spp. in wheat production arises through the combination of FHB and mycotoxin infection of the grain harvested from infected wheat spikes. Spike infection occurs during opening of flowers and is favoured by high humidity or wet weather accompanied with warm temperatures. Available possibilities for controlling FHB include the use of cultural practices, fungicides and biological approaches. Three cultural practices are expected to be of prime importance in controlling FHB and the production of mycotoxins: soil preparation method (deep tillage), the choice of the preceding crop in the rotation and the selection of appropriate cultivar.  相似文献   

13.
A large number of Fusarium graminearum and F. asiaticum isolates were collected from wheat spikes from all regions in China with a history of fusarium head blight (FHB) epidemics. Isolates were analysed to investigate their genetic diversity and geographic distribution. Sequence characterized amplified region (SCAR) analyses of 437 isolates resolved both species, with 21% being F. graminearum (SCAR type 1) and 79% being F. asiaticum (SCAR type 5). AFLP profiles clearly resolved two groups, A and B, that were completely congruent with both species. However, more diversity was detected by AFLP, revealing several subgroups within each group. In many cases, even for isolates from the same district, AFLP haplotypes differed markedly. Phylogenetic analyses of multilocus DNA sequence data indicated that all isolates of SCAR type 1, AFLP group A were F. graminearum , whilst isolates of SCAR type 5, AFLP group B were F. asiaticum , demonstrating that it is an efficient method for differentiating these two species. Both species seem to have different geographic distributions within China. Fusarium graminearum was mainly obtained from wheat growing in the cooler regions where the annual average temperature was 15°C or lower. In contrast, the vast majority of F. asiaticum isolates were collected from wheat growing in the warmer regions where the annual average temperature is above 15°C and where FHB epidemics occur most frequently. This is the first report of the distribution of, and genetic diversity within, F. graminearum and F. asiaticum on wheat spikes throughout China.  相似文献   

14.
 为明确不同小麦品种(系)对赤霉病的抗性和麦穗组织中DON毒素积累水平,培育和利用抗赤霉病和DON毒素积累的品种提供资源和依据,本研究采用单小花滴注接种法对河南省的106个小麦品种(系)抗赤霉病性进行鉴定分析,并用ELISA测定了病穗组织中DON毒素水平。结果表明不同小麦品种(系)对赤霉病的抗性有显著差异,106个小麦品种(系)中未发现抗病和中抗材料,中感品种(系)有华育198、郑麦103和春丰0021等14个,占13.2%;感病的有曌式2010-06、百农898和中麦63等92个,占86.8%。不同小麦品种(系)籽粒、颖壳和穗轴中DON毒素积累水平有显著差异,籽粒中DON毒素水平在(0.70~287.63)mg/kg之间,其中郑03876、豫保1号和中麦63 的DON毒素水平在2 mg/kg 以下,为抗毒素材料;其他的103个品种DON毒素水平大于2 mg/kg;颖壳和穗轴中的DON毒素水平在(51.03~392.87)mg/kg之间,普遍比籽粒中DON毒素含量高。籽粒中DON毒素水平与小麦品种(系)的平均病害严重度间呈极显著正相关。  相似文献   

15.
2015年从河南省田间小麦赤霉病病穗上分离得到一种生长速度较慢的镰刀菌, 通过形态学和分子鉴定明确其分类地位, 通过田间单小花滴注法和喷雾法接种测定其致病力, 并通过高效液相色谱串联质谱分析对麦穗中的毒素种类进行测定, 明确其产毒特征?结果表明:分离得到的8个菌株均为梨孢镰刀菌, 在马铃薯葡萄糖琼脂(PDA)培养基上为白色菌落, 菌落底部产生少量红色色素, 平均生长速度为13.3 mm/d; 小型分生孢子为椭球形葡萄状, 平均大小为7.1 μm×5.8 μm, 未见大型分生孢子和厚垣孢子; 致病力弱, 且不侵染穗轴, 单小花滴注法接种条件下平均病级为0.1, 喷雾法接种条件下平均病小穗率为6.5%; 供试的8个镰刀菌菌株均不产生T-2和HT-2毒素, 均产生雪腐镰刀菌烯醇(NIV)毒素, NIV毒素含量水平为371.74~5 282.80 μg/kg, 其中3个菌株产生少量脱氧雪腐镰刀菌烯醇(DON)毒素(86.13~227.22 μg/kg)?  相似文献   

16.
河南省小麦赤霉病菌种群组成及致病力分化   总被引:1,自引:0,他引:1  
 为明确河南省小麦赤霉病种群组成和致病力分化情况,2007—2014年对河南省15个市84个田块的327个小麦赤霉病菌进行种群鉴定、毒素化学型分析和致病力分化研究,结果表明:Fusarium graminearum s. str.和F. asiaticum是河南省小麦赤霉病的优势种群(97%),F. pseudograminearum(2.1%)、F. culmorum(0.3%)、F. equiseti(0.3%)、F. verticillioids(0.3%)为次要种群;对于禾谷镰刀菌复合群来说,豫北地区分布只有F. graminearum s. str.,豫中地区F. graminearum s. str.和F. asiaticum都存在,以F. graminearum s. str.为主,豫南地区F. graminearum s. str.和F. asiaticum都存在,以F. asiaticum为主;291个F. graminearum s. str.都为15ADON类型,26个F. asiaticum菌株中22个为3ADON,1个为15ADON,3个为NIV类型;F. graminearum s. str.(15ADON)也存在致病力分化,强、中、弱致病力的菌株在河南省的比例约为2:2:1。  相似文献   

17.
董杰  张金良  杨建国  张昊  冯洁 《植物保护》2016,42(6):116-121
本文分析了北京市与河北省小麦赤霉病菌群体遗传结构以及基础生物学特性。结果表明所有菌株均为禾谷镰刀菌(Fusarium graminearum),属于一个大的单一群体,群体内具有较高的遗传多样性。毒素化学型测定表明,北京与河北地区小麦真菌毒素污染的主要风险为DON与15ADON毒素。表型测定显示,与F.asiaticum群体相比,F.graminearum具有较高的产孢能力,而生长速率和产毒能力较低。该群体对主要杀菌剂多菌灵、戊唑醇和氰烯菌酯均无抗药性。  相似文献   

18.
生物炭对小麦赤霉病的防治效果及产量的影响   总被引:2,自引:0,他引:2  
为探索生物炭对小麦赤霉病的防治效果和对产量的影响,设置小麦播种前、返青拔节期单施或两个时期均施生物炭处理,在小麦分蘖期人工接种病麦粒,在抽穗扬花期采用孢子捕捉器对穗层空气中的赤霉病菌孢子数量进行动态监测,并在乳熟期调查各处理的病穗率和病情指数,成熟期测定各处理的理论产量、实际产量和籽粒中脱氧镰刀菌烯醇(deoxynivalenol,DON)毒素的含量。结果表明,施用生物炭后穗层赤霉病菌孢子的数量显著降低,赤霉病病情指数降低,且以基施和返青拔节期追施13 500 kg/hm~2生物炭的处理最优;施用生物炭后小麦千粒重和株高均显著增加(P0.05),其中基施和追施13 500 kg/hm~2生物炭的处理较对照处理增产29.5%(P0.05)。  相似文献   

19.
为明确不同杀菌剂防治小麦赤霉病和减少小麦籽粒中DON(脱氧雪腐镰刀菌烯醇)毒素积累的效果,于大田人工接菌条件下进行了不同杀菌剂对小麦赤霉病的防治试验,并于收获期测定了不同药剂处理的小麦籽粒中DON毒素含量。结果表明:两种处理方式下,50%多菌灵WP,30%多·酮SC,25%戊唑醇WP,25%氰烯菌酯SC和70%甲基硫菌灵WP处理中,除先喷药后接菌条件下25%戊唑醇WP在病粒率和籽粒中DON积累上没有显著防治效果,接菌后1d喷药条件下50%多菌灵WP、25%戊唑醇WP在病粒率上没有显著防治效果;30%多·酮SC在病粒率和籽粒中DON积累上没有显著防治效果外,各处理对小麦的病穗率、病情指数、病粒率和籽粒中DON积累都有显著的防治效果(P0.05)。各处理的病穗率防效在42.4%~83.5%,病情指数防效在44.9%~88.2%,病粒率防效在34.7%~69.4%,籽粒中DON防效在48.0%~86.9%。上述几种杀菌剂具有明显的保护作用,其在先喷药后接菌条件下的防治效果均明显优于接菌后1d喷药的防治效果。两种处理方式下,30%己唑醇悬浮剂、25%嘧菌酯悬浮剂和12.5%烯唑醇可湿性粉剂处理在病穗率、病情指数、病粒率和籽粒中DON积累与清水对照处理没有显著性差异(P0.05)。  相似文献   

20.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号