首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.  相似文献   

2.
MW Schmidt 《Science (New York, N.Y.)》1996,272(5270):1927-1930
Petrological experiments on oceanic crust samples characterize the recycling of potassium from mid-ocean ridge basalts and sediments. Metasomatism could develop directly and continuously from subducted potassium-bearing crust from shallow levels to a maximum depth of 300 kilometers. Phengite (a potassium-rich mica) is the principal potassium host at subsolidus conditions. It transports potassium and water to depths of up to 300 kilometers and could yield over the entire depth range potassium-rich fluids or melts (depending on the specific geotherm), which are likely to constitute one of the primary metasomatic agents for generation of calc-alkaline magmas.  相似文献   

3.
Chen WP  Yang Z 《Science (New York, N.Y.)》2004,304(5679):1949-1952
Eleven intracontinental earthquakes, with magnitudes ranging from 4.9 to 6, occurred in the mantle beneath the western Himalayan syntaxis, the western Kunlun Mountains, and southern Tibet (near Xigaze) between 1963 and 1999. High-resolution seismic waveforms show that some focal depths exceeded 100 kilometers, indicating that these earthquakes occurred in the mantle portion of the lithosphere, even though the crust has been thickened there. The occurrence of earthquakes in the mantle beneath continental regions where the subduction of oceanic lithosphere ceased tens of millions years ago indicates that the mantle lithosphere is sufficiently strong to accumulate elastic strain.  相似文献   

4.
Extraction of potassium into magmas and outgassing of argon during melting constrain the relative amounts of potassium in the crust with respect to those of argon in the atmosphere. No more than 30% of the modern mass of the continents was subducted back into the mantle during Earth's history. It is estimated that 50 to 70% of the subducted sediments are reincorporated into the deep continental crust. A consequence of the limited exchange between the continental crust and the upper mantle is that the chemistry of the upper mantle is driven by exchange of material with the deep mantle.  相似文献   

5.
Fluid processes in subduction zones   总被引:10,自引:0,他引:10  
Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration.  相似文献   

6.
A layered, basic igneous intrusion, analogous in mineralogy and texture to certain large, continental layered complexes, is exposed in the Romanche Fracture, equatorial Atlantic Ocean. Crustal intrusion of large masses of basic magmas with their subsequent gravity differentiation is probably one of a number of major processes involved in the formation of new oceanic crust during sea-floor spreading.  相似文献   

7.
The oldest decipherable rock complexes within continents (more than 2.5 billion years old) are largely basaltic volcanics and graywacke. Recent and modern analogs are the island arcs formed along and adjacent to the unstable interface of continental and oceanic crusts. The major interfacial reactions (orogenies) incorporate pre-existing sial, oceanic crust, and mantle into crust of a more continental type. Incipient stages of continental evolution, more than 3 billion years ago, remain obscure. They may involve either a cataclysmic granite-forming event or a succession of volcanic-sedimentary and granite-forming cycles. Intermediate and recent stages of continental evolution, as indicated by data for North America, involve accretion of numerous crustal interfaces with fragments of adjacent continental crust and their partial melting, reinjection, elevation, unroofing, and stabilization. Areas of relict provinces defined by ages of granites suggest that continental growth is approximately linear. But the advanced differentiation found in many provinces and the known overlaps permit wide deviation from linearity in the direction of a more explosive early or intermediate growth.  相似文献   

8.
Piston-cylinder experiments in the granite system demonstrate that a variety of isotopically distinct melts can arise from progressive melting of a single source. The relation between the isotopic composition of Sr and the stoichiometry of the observed melting reactions suggests that isotopic signatures of anatectic magmas can be used to infer melting reactions in natural systems. Our results also indicate that distinct episodes of dehydration and fluid-fluxed melting of a single, metapelitic source region may have contributed to the bimodal geochemistry of crustally derived leucogranites of the Himalayan orogen.  相似文献   

9.
Nineteen uranium-lead zircon ages of lower crustal gabbros from Atlantis Bank, Southwest Indian Ridge, constrain the growth and construction of oceanic crust at this slow-spreading midocean ridge. Approximately 75% of the gabbros accreted within error of the predicted seafloor magnetic age, whereas approximately 25% are significantly older. These anomalously old samples suggest either spatially varying stochastic intrusion at the ridge axis or, more likely, crystallization of older gabbros at depths of approximately 5 to 18 kilometers below the base of crust in the cold, axial lithosphere, which were uplifted and intruded by shallow-level magmas during the creation of Atlantis Bank.  相似文献   

10.
Models for extension-related magmatism based on decompression melting of asthenospheric mantle poorly simulate fluxes and bulk compositions of magmas produced during early stages of continental extension. For the Great Basin of western North America, it is proposed that magmatism proceeded in two stages, the first involving melting of lithospheric mantle sources between 40 and approximately 5 million years ago (Ma), followed (since approximately 5 Ma) by melting of upwelling asthenospheric mantle in areas where extension has exceeded about 100 percent. This transition in magma sources is diachronous, depending on initial variations in lithosphere thickness and on rates of lithospheric thinning.  相似文献   

11.
The amount of recycled crust in sources of mantle-derived melts   总被引:5,自引:0,他引:5  
Plate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite. Partial melts of this hybrid pyroxenite are higher in nickel and silicon but poorer in manganese, calcium, and magnesium than melts of peridotite. Olivine phenocrysts' compositions record these differences and were used to quantify the contributions of pyroxenite-derived melts in mid-ocean ridge basalts (10 to 30%), ocean island and continental basalts (many >60%), and komatiites (20 to 30%). These results imply involvement of 2 to 20% (up to 28%) of recycled crust in mantle melting.  相似文献   

12.
The vast Wrangellia terrane of Alaska and British Columbia is an accreted oceanic plateau with Triassic strata that contain a 3- to 6-kilometers thick flood basalt, bounded above and below by marine sedimentary rocks. This enormous outpouring of basalt was preceded by rapid uplift and was followed by gradual subsidence of the plateau. The uplift and basalt eruptions occurred in less than approximately 5 million years, and were not accompanied by significant extension or rifting of the lithosphere. This sequence of events is predicted by a mantle plume initiation, or plume head, model that has recently been developed to explain continental flood volcanism. Evidence suggests that other large oceanic basalt plateaus, such as the Ontong-Java, Kerguelen, and Caribbean, were formed as the initial outbursts of the Louisville Ridge, Kerguelen, and Galapagos hot spots, respectively. Such events may play an important role in the creation and development of both oceanic and continental crust.  相似文献   

13.
The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.  相似文献   

14.
Arc magmas are important building blocks of the continental crust. Because many arc lavas are oxidized, continent formation is thought to be associated with oxidizing conditions. On the basis of copper's (Cu's) affinity for reduced sulfur phases, we tracked the redox state of arc magmas from mantle source to emplacement in the crust. Primary arc and mid-ocean ridge basalts have identical Cu contents, indicating that the redox states of primitive arc magmas are indistinguishable from that of mid-ocean ridge basalts. During magmatic differentiation, the Cu content of most arc magmas decreases markedly because of sulfide segregation. Because a similar depletion in Cu characterizes global continental crust, the formation of sulfide-bearing cumulates under reducing conditions may be a critical step in continent formation.  相似文献   

15.
The introduction and evolution of the plate tectonics hypothesis during the past two decades has sparked the current renaissance of research in the earth sciences. An outgrowth of active geophysical and geological exploration of the oceans, the plate tectonics model has come under intense scrutiny by geologists, geochemists, and geophysicists who have attempted to apply the model to the origin and growth of continents, the generation of oceanic and continental crust, and the nature of the lithosphere, asthenosphere, and underlying mantle with respect to their evolution through time and to the driving mechanism or mechanisms for plate tectonics. The study of other terrestrial planets and moons has been helpful in understanding the earth model. The unequal distribution of geological features, both in the continents and oceans, emphasizes the need for ongoing studies of international scope such as the recently completed International Geodynamics Project and its successor, the International Lithosphere Program, both stressing studies related to the dynamics of the lithosphere.  相似文献   

16.
INDEPTH seismic reflection profiling shows that the decollement beneath which Indian lithosphere underthrusts the Himalaya extends at least 225 kilometers north of the Himalayan deformation front to a depth of approximately 50 kilometers. Prominent reflections appear at depths of 15 to 18 kilometers near where the decollement reflector apparently terminates. These reflections extend north of the Zangbo suture to the Damxung graben of the Tibet Plateau. Some of these reflections have locally anomalous amplitudes (bright spots) and coincident negative polarities implying that they are produced by fluids in the crust. The presence of geothermal activity and high heat flow in the regions of these reflections and the tectonic setting suggest that the bright spots mark granitic magmas derived by partial melting of the tectonically thickened crust.  相似文献   

17.
Serpentine stability to mantle depths and subduction-related magmatism   总被引:14,自引:0,他引:14  
Results of high-pressure experiments on samples of hydrated mantle rocks show that the serpentine mineral antigorite is stable to approximately 720 degrees C at 2 gigapascals, to approximately 690 degrees C at 3 gigapascals, and to approximately 620 degrees C at 5 gigapascals. The breakdown of antigorite to forsterite plus enstatite under these conditions produces 13 percent H(2)O by weight to depths of 150 to 200 kilometers in subduction zones. This H(2)O is in an ideal position for ascent into the hotter, overlying mantle where it can cause partial melting in the source region for calc-alkaline magmas at a depth of 100 to 130 kilometers and a temperature of approximately 1300 degrees C. The breakdown of antigorite in hydrated mantle produces an order of magnitude more H(2)O than does the dehydration of altered oceanic crust.  相似文献   

18.
Granitic rocks from batholiths of the Sierra Nevada and Peninsular Ranges exhibit initial (143)Nd/(144)Nd ratios that vary over a large range and correlate with (87)Sr/(86)Sr ratios. The data suggest that the batholiths represent mixtures of materials derived from (i) chemically depleted mantle identical to the source of island arcs and (ii) old continental crust, probably sediments or metasediments with a provenance age of approximately 1.6 x 10(9) years. These conclusions are consistent with a model for continental growth whereby new crustal additions are repeatedly extracted from the same limited volume of the upper mantle, which has consequently become depleted in elements that are enriched in the crust. There is little evidence that hydrothermally altered, subducted oceanic crust is a primary source of the magmas.  相似文献   

19.
Bird P 《Science (New York, N.Y.)》1988,239(4847):1501-1507
One hypothesis for the information of the Rocky Mountain structures in late Cretaceous through Eocene time is that plate of oceanic lithosphere was underthrust horizontally along the base of the North American lithosphere. The horizontal components of the motion of this plate are known from paleomagnetism, and the edge of the region of flat slab can estimated from reconstructed patterns of volcanism. New techniques of finite-element modeling allow prediction of the thermal and mechanical effects of horizontal subduction on the North American plate. A model that has a realistic temperature-dependent rheology and a simple plane-layered initial condition is used to compute the consequences of horizontal underthrusting in the time interval 75 million to 30 million years before present. Successful prediction of this model include (i) the location, amount, and direction of horizontal shortening that has been inferred from Laramide structures; (ii) massive transport of lower crust from southwest to northeast; (iii) the location and timing of the subsequent extension in metamorphic core complexes and the Rio Grande rift; and (iv) the total area eventually involved in Basin-and-Range style extension. In a broad sense, this model has predicted the belt of Laramide structures, the transport of crust from the coastal region to the continental interior, the subsequent extension in metamorphic core complexes and the Rio Grande rift, and the geographic region of late Tertiary Basin-and-Range extension. Its principal defects are that (i) many events are predicted about 5 million to 10 million years too late and (ii) the wave of crustal thickening does not travel far enough to the east. Reasonable modifications to the oceanic plate kinematics and rheologies that were assumed may correct these defects. The correspondence of model predictions to actual geology is already sufficiently close to show that the hypothesis that horizontal subduction caused the Laramide orogeny is probably correct. The Rocky Mountain thrust and reverse faults formed in an environment of east-west to northeast-southwest compressive stress that was caused by the viscous coupling between the oceanic plate and the base of the North American crust. Nonuniform crustal thickening by simple-shear transport also caused relative uplifts; therefore, this model is consistent with both of the range-forming mechanisms that have been inferred (1). A new proposal that arises from this simulation is that horizontal subduction also caused the subsequent extensional Basin-and-Range taphrogeny by stripping away the mantle lithosphere so that the crust was exposed to hot asthenosphere after the oceanic slab dropped away.  相似文献   

20.
Six garnet pyroxenites from Beni Bousera, Morocco, yield a mean lutetium-hafnium age of 25 +/- 1 million years ago and show a wide range in hafnium isotope compositions (varepsilonHf = -9 to +42 25 million years ago), which exceeds that of known basalts (0 to +25). Therefore, primary melts of garnet pyroxenites cannot be the source of basalts. The upper mantle may be an aggregate of pyroxenites that were left by the melting of oceanic crust at subduction zones and peridotites that were contaminated by the percolation of melts from these pyroxenites. As a consequence, the concept of geochemical heterogeneities as passive tracers is inadequate. Measured lutetium-hafnium partitioning of natural minerals requires a reassessment of some experimental work relevant to mantle melting in the presence of garnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号