首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
2.
Portunus trituberculatus broodstock were stocked in plastic tanks to evaluate the effects of starvation and feeding on gonadal development, blood chemistry, fatty acid composition, and expression of vitellogenin (Vtg) and fatty acid-binding protein genes (FABP) in females. Two treatments (starved and fed) were randomly assigned to triplicate groups of 90 swimming crab broodstock (approximately 230 ± 45 g). In the starved treatment, crabs were starved for 30 days, whereas in the fed treatment crabs were fed once a day with clams. The gonadosomatic index decreased significantly in starved crabs (P < 0.05), as did the serum glucose and cholesterol concentrations; conversely, the total protein concentration in serum significantly increased (P < 0.05). In the ovary, there was a significant relative decline of 18:0, 16:1n-7 and 20:1n-9 fatty acids and relative increases of 20:4n-6, 22:6n-3, 18:1n-9 and 20:5n-3 in starved crabs compared to fed crabs (P < 0.05). Relative expression of Vtg in the ovary decreased significantly in starved crabs (P < 0.05), while there was no significant difference in hepatopancreas Vtg expression between starved and fed crabs (P > 0.05). Starvation suppressed gonadal development in female swimming crab broodstock.  相似文献   

3.
Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 102 (LR1), 1 × 104 (LR2) and 1 × 106 (LR3) cells g?1] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.  相似文献   

4.
The effect of a short-term feeding and starvation experiment on juvenile abalone (Haliotis rubra × H. laevigata) was investigated (average length = 67 mm; average weight = 48 g). All aquaculture experiments were conducted at The University of Melbourne, Australia. Artificial feed was supplied ad libitum to the fed group, and no feed was supplied to the starved group. A modified metabolite extraction protocol using deuterated solvents was developed for 1H-NMR-based metabolite profiling of digestive gland in response to the short-term feeding/starvation experiment, to avoid lyophilisation prior to biochemical analysis. PLS-DA revealed that fed and starved abalone are metabolically distinct from each other after 28 and 56 days. After 28 days, the fed group was defined by an increase in arginine, glucose, glutamate, glycine, inosine and uracil (P < 0.05), and the starved group was defined by an increase in N,N-dimethylglycine. After 56 days, the fed group still displayed increased glucose (P < 0.05), while N,N-dimethylglycine remained elevated in the starved group (P < 0.05). Arginine and glycogen were all higher at 28 days compared to 56 days, suggesting decreased anaerobic energy production at the later time point. Only glucose and N,N-dimethylglycine were significantly different between the fed and starved groups after 56 days, suggesting that abalone had not acclimatised to the starvation treatment after 28 days. These results infer N,N-dimethylglycine is a robust marker for short-term starvation in abalone. 1H-NMR was also conducted on the artificial feed and starved abalone faecal matter, revealing the biochemical differences between them and digestive gland tissue. These methodology and results will facilitate a deeper understanding of the nutritional and physiological requirements of abalone in an aquaculture setting.  相似文献   

5.
To investigate the effects of starvation and acclimation temperature on the escape ability of juvenile rose bitterling (Rhodeus ocellatus), we measured the fast-start escape and constant acceleration swimming performance of fish fasted for 0 (control), 1 and 2 weeks and half-lethal periods (6 or 4 weeks) at two temperatures (15 and 25 °C). Fish acclimated at a high temperature exhibited shorter response latency (R), higher maximum linear velocity (V max) and longer escape distance during escape movement (D 120ms) than those at the low temperature. Starvation resulted in a significant decrease in V max and D 120ms at either low or high temperature and a significant increase in R at only the high temperature in the half-lethal period groups (P < 0.05). The relationship between V max (Y, m s?1) and starvation time (X, week) was Y 15 = ?0.062X + 1.568 (r = ?0.665, n = 36, P < 0.001) at low temperature and Y 25 = ?0.091X + 1.755 (r = ?0.391, n = 40, P = 0.013) at high temperature. The relationship between U cat (Y, cm s?1) and starvation time (X, week) was Y 15 = ?1.649X + 55.418 (r = ?0.398, n = 34, P = 0.020) at low temperature and Y 25 = ?4.917X + 62.916 (r = ?0.793, n = 33, P < 0.001) at high temperature. The slopes of equations showed a significant difference between low and high temperature (F 1,63 = 9.688, P = 0.003), which may be due to the different energy substrate utilization when faced with food deprivation at different temperatures.  相似文献   

6.
We investigated the effects of starvation and re-feeding on growth and swimming performance and their relationship in juvenile black carp (Mylopharyngodon piceus). We measured the specific growth rate (SGR), resting metabolic rate (RMR) and constant acceleration test speed (U CAT, the maximum swimming speed at exhaustion by constant acceleration test with 0.1667 cm s?2 rate) in a treatment group (21 days of starvation then 21 days of re-feeding) and control group (routine feeding) (n = 20). Starvation resulted in a 17 % decrease in body mass of black carp (P < 0.05). After 21 days of re-feeding, body mass was greater than that of pre-starvation but still less than that of the control group at 42 days. During the re-feeding phase, the SGR of the treatment group was higher than that of the control group (P < 0.05). Starvation resulted in a significant decrease in the RMR and U CAT. After 21 days of re-feeding, both the RMR and U CAT recovered to the pre-starvation levels. In the control group, individual juvenile black carp displayed strong repeatability of the RMR and U CAT across the measurement periods (P ≤ 0.002). In the treatment group, RMR showed significant repeatability between pre-starvation and re-feeding (P = 0.007), but not between pre-starvation and starvation or between starvation and re-feeding. U CAT showed significant repeatability between pre-starvation and starvation (P = 0.006) and between pre-starvation and re-feeding (P = 0.001), but not between starvation and re-feeding. No correlation or only a weak correlation was found between any two variables of RMR, U CAT and SGR, whereas the increment of the U CATU CAT) was negatively correlated with that of SGR during the starvation phase (r = ?0.581, n = 20, P = 0.007) and re-feeding phase (r = ?0.568, n = 20, P = 0.009). This suggested that within individual black carp, there is a trade-off between growth and maintenance (or development) of swimming performance under food-limited conditions.  相似文献   

7.
A 12-week feeding trail was conducted to assess the effect of rare earth-chitosan chelate (RECC) on growth performance and immune responses of gibel carp, Carassius auratus gibelio. Isonitrogenous and isolipid experimental diets were supplemented with graded levels of rare earth-chitosan chelate (RECC 0, 0.8, 4 and 8 g Kg?1). A total of 720 gibel carps (initial body weight about 14.32 g) were divided randomly into four groups with six replicates, respectively. Fish were fed with the experimental diets three times every day. At the end of the feeding trail, the survival rate was higher than 96 %. Weight gain rate and specific growth rate (SGR) significantly increased with RECC supplementation up to 0.8 g Kg?1 (P < 0.05) and tended to decline at higher supplementation levels, while feed conversion ratio was not significantly different between groups (P > 0.05). Based on broken-line regression analysis of SGR, the optimum dietary RECC was estimated to be 0.71 g Kg?1 of the diet. Condition factor and viscerosomatic index were not significantly affected by RECC (P > 0.05), while hepatosomatic index in the group fed with 0.8 g Kg?1 RECC (3.45 ± 0.10 %) was significantly lower than in other groups (P < 0.05). Plasma ALT was significantly affected by RECC (P < 0.05), while AST was not. Plasma total protein and albumin were increased with RECC supplementation up to 0.8 g Kg?1 and decreased significantly at higher supplementation levels (P < 0.05). RECC supplementation significantly decreased plasma urea and glucose concentration and increased plasma creatinine concentration significantly (P < 0.05). Respiratory burst activity of phagocytes and myeloperoxidase activity were not significantly different between groups, while superoxide dismutase activity and nitrogen monoxide concentration were increased with the increasing level of RECC in the diets. In conclusion, RECC could enhance growth performance and improve immunity of gibel carp.  相似文献   

8.
This study examined the effects of two probiotics (Virgibacillus proomii and Bacillus mojavensis) on the digestive enzyme activity, survival and growth of Dicentrarchus labrax at various ontogenetic stages in three separate experiments. These probiotics were incorporated as single or mixed into fish feed for a period of 60 days. The growth parameters, proximate composition of whole body, digestive enzymes and gut microbiology were monitored at regular. The increments in length and weight and the survival were significantly higher (P < 0.05), and the values of food conversions were significantly lower (P < 0.05) in fishes fed the probiotic. The administration of V. proomii and B. mojavensis in diet resulted in an increase (P > 0.05) in body ash and protein content and in the specific activity of phosphatase alkaline and amylase in the digestive tract of all the fishes. V. proomii and B. mojavensis persisted in the fish intestine and in the feed in high numbers during the feeding period (group 1: 5.8 × 104 CFU/ml, group 2: 9.6 × 104 CFU/ml, and group 3: 9.8 × 104 CFU/ml day 60). The two probiotics V. proomii and B. mojavensis were adequate for improved growth performance and survival and for healthy gut microenvironment of the host.  相似文献   

9.
The effects of three artificial diets (S1, S2 and S3) on survival, growth and biochemical composition of one-year-old pearl oyster Pinctada martensii were investigated. Six experimental groups (EG1, EG2, EG3, EG4, EG5 and EG6) and one control group (CG) were set up. EG1, EG2 and EG3 were solely fed on S1, S2 and S3, respectively. EG4, EG5 and EG6 were fed on mixed diets, as follows: S1 and Platymonas subcordiformis; S2 and P. subcordiformis; and S3 and P. subcordiformis, respectively. CG was fed on only P. subcordiformis. All groups were continuously fed for 60 days. Survival, growth and biochemical composition of soft tissues were compared across the groups. Results showed that survival rate, the absolute growth rate (AGR) and relative growth rate (RGR) of shell length did not differ significantly across the groups (p > 0.05). The AGR and RGR of total weight differed significantly among the groups (p < 0.05). AGR and RGR of shell length and total weight were the highest in EG5 and the lowest in EG1. Gross fat content showed insignificant differences among the groups (p > 0.05). However, gross protein content and ash content showed significant differences across the groups (p < 0.05). The gross protein of the groups solely fed on artificial diets was lower than those of the groups fed on mixtures of artificial diets and microalgae or single microalgae. The contents of other amino acids, total amino acids (TAAs) and essential amino acids (EAAs) showed significant differences across the groups (p < 0.05). TAA, EAA and delicious amino acids of the groups fed solely on artificial diets were lower than those of the groups fed on mixtures of artificial diets and microalgae or single microalgae. Results indicated that the artificial diet (S2) can serve as substitutes of microalgal diets for P. martensii.  相似文献   

10.
A 2 × 3 factorial study was conducted to investigate the effects of dietary protein levels (DPLs) and feeding rates (FRs) on the growth and health status of juvenile genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Triplicate tanks of fish (initial weight 15.87 ± 0.11 g) were fed diets containing 25 or 35% protein at rates of 3, 5, or 7% body weight per day (BW day?1) for 8 weeks. At the end of the feeding trial, the results showed that fish growth (final mean weight 34.61–81.07 g) and condition factor (3.39–4.45 g cm?3) increased with the DPLs and FRs. Feed efficiency (FE, 0.48–0.88) increased as DPLs increased but decreased as FRs increased; the opposite trend was observed for feed cost (FC, 3.24–5.82 CHN Yuan kg?1) and hepatosomatic index (0.98–2.33%). Apparent protein retention efficiency (APRE, 23.92–38.78%) was reduced by high FR. A 35% protein diet resulted in higher (P < 0.05) FE and APRE, and lower (P < 0.05) FC at 5% BW day?1 than those at 7% BW day?1. As FRs increased, lipid contents of the hepatopancreas, viscera, muscle, and eviscerated body increased, while moisture contents of hepatopancreas and viscera decreased. All serum biochemical parameters, including glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase activity and levels of creatinine, glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, triglyceride, and total protein were unaffected by DPL or FR (P > 0.05), except urea nitrogen levels, which were affected by DPLs (P < 0.05). Moreover, the size of hepatocytes and the area ratio of hepatocyte vacuoles were enlarged (P < 0.05), whereas the area ratios of the nucleus and cytoplasm were reduced (P < 0.05) with increasing FRs. These results suggested that the optimal feeding strategy for juvenile GIFT is 35% protein diet at 5% BW day?1.  相似文献   

11.
In the present study, cellulase, protease, lipase and amylase activities were performed to investigate the effects of Lactococcus lactis subsp. lactis CF4MRS bioencapsulation of Artemia franciscana. Our results show that cellulase activities (total cellulase—FPase activity, exoglucanase and endoglucanase—CMCase activity) were significantly higher (P < 0.05) in A. franciscana tissue homogenates compared to those in the control group after 8 h of L. lactic bioencapsulation. Notably, an exception case was found in β-D-glucosidase activity, whereby the cellulase activity was not significantly different (P > 0.05) compared to the control group. Administrations of L. lactis at cell concentration of 108 CFU mL?1 showed considerable improvement of other important enzymatic activities such as amylase, protease and lipase in A. franciscana. The amylase/protease ratio in probiotic-treated A. franciscana was recorded at 0.343, approximately two times higher than those without probiotic administration (0.184). In contrary, amylase/lipase ratio showed half of a reduction (0.330) in L. lactis-administrated A. franciscana compared to the control (0.614). Our study suggests that important digestive enzymes, e.g., cellulase, amylase, protease and lipase, can be enhanced through bioencapsulation of A. franciscana with L. lactis subsp. lactis, which could in turn lead to further stimulation of endogenous enzymes in the fish and shrimp larvae.  相似文献   

12.
Impact of fish gelatin film incorporated without and with palm oil on the quality changes of fried shrimp cracker stored for 15 days at room temperature was investigated, in comparison with nylon/linear low-density polyethylene (nylon/LLDPE) film. The moisture content and water activity of shrimp cracker packaged with all films increased during storage (p < 0.05). The lowest moisture content and water activity were found in the sample packaged with nylon/LLDPE film throughout the storage (p < 0.05). Sample packaged with fish gelatin films incorporated with palm oil generally had lower moisture content than those without oil added during the first 12 days of storage (p < 0.05). During 15 days of storage, shrimp cracker packaged with nylon/LLDPE film generally had the lower PV and TBARS value as well as volatile compounds, except for n-nonanal, than those stored in fish gelatin films, regardless of oil incorporation. The decrease in crispiness and increase in toughness occurred in all samples during the 15 days of storage. Nevertheless, the lower changes were observed in the sample packaged with nylon/LLDPE film. Overall, gelatin film showed excellent oxygen barrier property, which was associated with the retardation of lipid oxidation. The incorporation of oil into gelatin film could lower WVP, but negatively increased oxygen permeability of the resulting film. Thus, the improvement of gelatin film is still required.  相似文献   

13.
The present study was conducted to investigate the effects of stocking density on serum cortisol (COR) levels and expression of immune genes in the head kidney of juvenile GIFT tilapia (Oreochromis niloticus) after Streptococcus iniae (S. iniae) infection. Juveniles (2700) were distributed into 30 tanks at five stocking densities (150, 300, 450, 600 and 750 g/m3), and each treatment had six replicates. After a 45-day feeding trial, a S. iniae challenge study was conducted for 96 h. Differences in mortality, serum COR and gene expression of C-type lysozyme, heat-shock protein 70 (HSP70), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were analyzed. The levels of serum COR at all infected treatments were significantly higher compared with the levels of pre-infection (P < 0.05). At 96 h post-infection, serum COR levels of high stocking densities (600 and 750 g/m3) were significantly higher than those of low-density groups (P < 0.05); the mRNA levels of C-type lysozyme, HSP70, IL-1β, TNF-α and IFN-γ were significantly lower in tilapia reared at 600 g/m3 group than in those reared at 300 g/m3 group (P < 0.05). Fish reared in high-density treatments (600 and 750 g/m3) exhibited significantly higher post-challenge mortality (43.3 and 40.0 %) at 96 h following S. iniae infection, and it was significantly higher than other groups (P < 0.05). The data suggest that when living in high stocking density, GIFT tilapia showed decrease in immune capability, together with increased serum COR and susceptibility to S. iniae.  相似文献   

14.
The rearing of Octopus vulgaris paralarvae during its planktonic life stage is a major challenge, as mortality is currently very high and unpredictable. In this study, we examined the survival and growth rates, as well as the fatty acid composition, of O. vulgaris paralarvae fed on three different dietary treatments: group ArDHA was offered juvenile Artemia enriched with a lipid emulsion (Easy DHA-Selco®); group ArMA was fed with juvenile Artemia enriched with a mixture of microalgae (Rhodomonas lens and Isochrysis galbana); and group ArMA+ID received the same Artemia as group ArMA complemented with an inert diet. Dietary treatments were tested in triplicate with homogenous groups of paralarvae (25 individuals l?1) established in 50-l tanks, and the experiment was conducted for 15 days. The survival rate of 15-day post-hatch (-dph) paralarvae from groups ArMA (20 ± 8%) and ArMA+ID (17 ± 4%) tended to be higher than in group ArDHA (13 ± 5%), though these differences were not statistically different. The dry weight (DW) of 15-dph paralarvae increased by almost 60% in groups ArMA and ArMA+ID, and nearly 40% in group ArDHA, with respect to hatchlings. The fatty acid (FA) composition of paralarvae revealed a remarkable drop of docosahexaenoic acid (22:6n-3, DHA) from hatchlings to 15-dph paralarvae of all groups (P < 0.05). However, paralarvae from group ArDHA contained higher levels of DHA than those from ArMA and ArMA+ID (P < 0.05). Despite Artemia enriched with DHA-Selco® contained three-times more DHA than Artemia enriched with microalgae, no beneficial effects of this dietary treatment were observed on the performance of paralarvae.  相似文献   

15.
The effects of dietary folic acid on biochemical parameters and gene expression of three heat shock proteins (HSPs) of blunt snout bream (Megalobrama amblycephala) fingerling under acute high temperature stress. Six dietary folic acid groups (0.0, 0.5, 1.0, 2.0, 5.0, and 10.0) mg/kg diets were designed and assigned into 18 tanks in three replicates each (300 l/tank) and were administered for 10 weeks in a re-circulated water system. The fingerlings with an initial weight of 27.0 ± 0.03 g were fed with their respective diets four times daily. At the end of the experiment, samples were collected before challenge, 0, 24, 72 h, and 7 days. Serum total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cortisol, glucose, complement C3 (C3), complement C4 (C4, immunoglobulin M (IgM) hepatic superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and the expression of heat shock protein 60 (HSP60), 70 (HSP70), and 90 (HSP90) were studied. The results showed that fish fed with dietary folic acid between 1.0, 2.0, and 5.0 mg/kg significantly (P < 0.05) increased serum TP, C3, C4 hepatic SOD, CAT, and the expression of HSP60, HSP70, and HSP90 before and after temperature challenge of 32 °C. Also, serum ALP, cortisol, glucose, and hepatic MDA were significantly (P < 0.05) reduced by supplementation of dietary folic acid level 1.0, 2.0, and 5.0 mg/kg before and after the same temperature challenge of 32 °C. Before stress, 0, 24, 72 h, and 7 days significantly (P < 0.05) affects serum biochemical parameters, immune and antioxidant capacities, and expression level of three HSPs. Furthermore, there was no statistical evidence to show that dietary folic acid inclusion level and temperature duration have significant interactive effect on serum biochemical parameters, antioxidant parameters, and gene expression level (P > 0.05) of the three HSPs. However, there were statistical significant interactive effect between dietary folic acid inclusion level and temperature duration on serum C3 and C4 (P < 0.05) except IgM (P > 0.05). The present results indicate that supplementation of basal diet from 1.0 mg/kg; 2.0 and 5.0 mg/kg can enhance acute high temperature resistance ability in M. amblycephala fingerling to some degree and improve physiological response, immune and antioxidant capacities, and expression level of three HSPs.  相似文献   

16.
The objective of this study was to assess the effects of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farmed tilapia (Oreochromis niloticus, GIFT). Juvenile GIFT with an average initial weight of 12.54?±?0.45 g (mean?±?SD) were randomly stocked in 16 tanks (80 L) in a recirculation aquaculture system at four densities of 10 (D1), 20 (D2), 30 (D3), and 40 (D4) fish per tank for 56 days, with quadruplicate for each density. There were no significant differences in water temperature among the four treatments (P?>?0.05). D4 had the significantly lowest dissolved oxygen content (5.52 vs 5.69–6.09 mg L?1) (P?>?0.05) and pH (6.63 vs 6.87–7.20) (P?<?0.05). NO2-N and NH4-N concentrations significantly increased with increasing stocking density (P?<?0.05). Weight gain (WG) and specific growth rates (SGR) decreased with increasing stocking density. The lowest WG (617.20 vs 660.45–747.06%), SGR (3.52 vs 3.62–3.81% day?1), and highest feed conversion ratio (1.68 vs 1.53–1.58) were observed in D4. Fish at D4 had significantly lower condition factor (3.11 vs 3.29–3.37%) and survival rate (91.25 vs 97.50%) than those from D1 and D2 (P?<?0.05). With increasing stocking density, serum total cholesterol, triglyceride, and total protein concentrations decreased (P <?0.05) and aspartate aminotransferase and alanine aminotransferase activities increased (P <?0.05). D4 fish had higher moisture content (78.80 vs 76.97%) and lower crude protein content (18.14 vs 19.39%) in muscle than D1 fish (P?<?0.05). Compared to D1 and D2, D3 and D4 had lower muscle hardness (1271.54–1294.07 vs 1465.12–1485.65 g), springiness (0.62–0.65 vs 0.70–0.72), gumminess (857.33–885.32 vs 1058.82–1079.28 g), and chewiness (533.04–577.09 vs 757.53–775.69 g) (P <?0.05). High stocking density resulted in growth inhibition, declines in flesh quality, and disturbance to several serum biochemical parameters.  相似文献   

17.
This study was conducted to investigate the effects of dietary chitosan on growth performance, hematological parameters, intestinal histology, stress resistance and body composition in the Caspian kutum (Rutilus frisii kutum, Kamenskii, 1901) fingerlings. Fish (1.7 ± 0.15 g) were fed diets containing chitosan at different levels (0, 0.25, 0.5, 1 and 2 g kg?1 diet) for a period of 60 days. Results showed that the feed conversion ratio significantly decreased in fish fed diet containing 1 g kg?1 of chitosan compared to the other groups (P < 0.05), but there were no significant differences between treatments in terms of specific growth rate and condition factor (P > 0.05). Leukocyte increased in fish fed diet containing 2 g kg?1 of chitosan compared to the other groups (P < 0.05). Lymphocytes, eosinophils and neutrophils did not significantly change among dietary treatments (P > 0.05). Also, the chitosan supplementation did not affect the whole-fish body composition (P > 0.05). Light microscopy demonstrated that the intestinal villus length increased in fish fed diet containing 1 g kg?1 of chitosan compared to control group (P < 0.05). While 11 and 13 ‰ salinity and 30 °C thermal stress had no effect, 1 g kg?1 of chitosan (P < 0.05) showed highest survival rate (70 %) in 34 °C thermal stress. The results showed that chitosan in the diet of the Caspian kutum fingerlings could improve feed conversion ratio, the nonspecific defense mechanisms and resistance to some of the environmental stresses.  相似文献   

18.
The present study was designed to investigate the immunomodulatory effects of Aloe vera, Curcuma longa, Echinacea purpurea, Lavandula officinalis, Origanum vulgare, Panax ginseng, and Rheum officinale extracts on leukocytes purified from rainbow trout (Oncorhynchus mykiss) head kidney. The cells were cultured in a medium containing increasing doses of extracts; afterwards, they were tested for reactive oxygen species production after stimulation with phorbol myristate acetate (PMA) and proliferation in the presence or absence of phytohemagglutinin from Phaseolus vulgaris (PHA-P). After a 2-h exposure, the extracts of L. officinalis, O. vulgare, and R. officinale strongly reduced the oxidative burst activity of PMA-stimulated leukocytes, in a dose-dependent manner (P ≤ 0.05). A. vera, C. longa, E. purpurea, and P. ginseng extracts reduced this response with lower efficacy and especially at lower concentrations. On the contrary, the highest concentration of ginseng extract stimulated the respiratory burst of leukocytes compared to untreated control cells. After a 72-h exposure, the extracts of L. officinalis, R. officinale, C. longa, E. purpurea, and P. ginseng had a clear dose-dependent stimulatory effect on leukocyte proliferation (P ≤ 0.05). The results suggest that these medicinal plants can be considered as reliable sources of new antioxidants or immunostimulants to be used in aquaculture.  相似文献   

19.
The purpose of this study was to explore the mechanism of by which docosahexaenoic acid (DHA) inhibit the accumulation of adipose tissue lipid in grass carp (Ctenopharyngodon idella). We therefore designed two semi-purified diets, namely DHA-free (control) and DHA-supplemented, and fed them to grass carp (22.19 ± 1.76 g) for 3 and 6 weeks. DHA supplementation led to a significantly lower intraperitoneal fat index (IPFI) than that in the control group by reducing the number of adipocytes but significantly higher adipocyte size (P < 0.05). In the intraperitoneal adipose tissue, the DHA-fed group showed significantly higher peroxisome proliferator-activated receptor (PPAR)γ, CCAAT enhancer-binding protein (C/EBP)α, and sterol regulatory element-binding protein (SREBP)1c mRNA expression levels at both 3 and 6 weeks (P < 0.05). However, the ratio of the expression levels of B cell leukemia 2 (Bcl-2) and Bcl-2-associated X protein (Bax) was significantly lower in the DHA-fed group than in the control group (P < 0.05), and the protein expression levels of the apoptosis-related proteins caspase 3, caspase 8, and caspase 9 were also significantly higher (P < 0.05). Overall, although DHA promotes lipid synthesis, it is more likely that DHA could suppress the lipid accumulation in adipocytes of grass carp by inducing adipocyte apoptosis.  相似文献   

20.
Cyclooxygenase (COX) catalyzes the conversion of arachidonic acid (ARA) to prostaglandins, and COX-mediated metabolites play important roles in the regulation of lipid metabolism and immunity in mammals. However, such roles of COX in fish remain largely unknown. In this study, we designed three semi-purified diets, namely ARA-free (control), ARA, and ARA + acetylsalicylic acid (ASA; a COX inhibitor), and used them to feed grass carp (27.65 ± 3.05 g) for 8 weeks. The results showed that dietary ARA significantly increased the amount of ARA in the hepatopancreas, muscle, and kidney (P < 0.05), whereas this increase was reduced by dietary ASA. The hepatopancreatic prostaglandin E2 content increased in the ARA group, and this increase was inhibited by ASA (P < 0.05). ARA decreased the lipid content in the hepatopancreas, whereas ASA recovered lipid content to a significant level (P < 0.05). ARA significantly decreased the messenger RNA (mRNA) expression levels of fatty acid synthase and stearoyl-CoA desaturase in the hepatopancreas (P < 0.05). However, ASA did not rescue the mRNA expression of these genes (P > 0.05). Interestingly, ARA significantly enhanced the level of peroxisome proliferator-activated receptor α gene expression, and this increase was attenuated by ASA (P < 0.05). Finally, ARA significantly enhanced the mRNA expression of myeloid differentiation factor 88 (MyD88) in the kidney, and ASA attenuated the expression of toll-like receptor 22 and MyD88 (P < 0.05). In conclusion, our findings suggest that COX metabolites play important roles in the inhibition of lipid accumulation in the hepatopancreas of grass carp fed with ARA and that regulation of gene expression promotes lipid catabolism rather than lipogenic activities. Additionally, these eicosanoids might participate in the upregulation of immunity-related genes in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号