首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Earthworms, which play a key role in biogeochemical processes in soil ecosystems, could be negatively affected by the cultivation of transgenic Bt crops. Studies to date have found few effects of Bt maize on earthworm species. If adverse effects occur, they are likely to be chronic or sub-lethal and expressed over large spatial and temporal scales. Our objective in the present study was to investigate potential effects on earthworm populations in soil cultivated with Bt maize in a large multiple-year field study. We surveyed the earthworm populations in 0.16-ha experimental field plots of two varieties of Cry1Ab Bt maize, one variety of Cry3Bb1 Bt maize, and three non-transgenic control varieties cultivated for four years. Four earthworm species were found in our sample: Aporrectodea caliginosa, Aporrectodea trapezoides, Aporrectodea tuberculata (collectively, the A. caliginosa species complex), and Lumbricus terrestris. We found no significant differences in the biomass of juveniles and adults for all four species between Bt and non-Bt maize varieties. From this and previous studies, we conclude that the effects of Cry1Ab and Cry3Bb1 Bt maize on the A. caliginosa species complex and L. terrestris are small. Nonetheless, general conclusions about the effects of Bt maize on earthworm populations are not warranted due to the small number of species tested. In future laboratory studies, earthworm species should be selected according to their association with a Bt crop and the impact of that species to valued soil ecosystem processes.  相似文献   

2.
Summary The effects of soil temperature and bulk soil pH on the vertical translocation of a genetically modified Pseudomonas fluorescens inoculum were studied in reconstituted soil microcosms, in the presence and absence of growing Lolium perenne roots. The inoculated microcosms received one rainfall event per day (5 mm h-1 for 6 h) for 5 days and the resulting leachate was quantitatively assayed for the presence of the modified pseudomonad. Soil temperature affected the total number of modified pseudomonads detected in the leachate over the 5 days, with significantly lower numbers detected at 25°C compared to 5°C. The bulk soil pH also affected leaching of the inoculum, with significantly greater numbers detected in the effluent at pH 7.5 than at pH 4.5. In the absence of L. perenne, greater numbers of the modified pseudomonads were detected in the pH 7.5 soil after 5 days of leaching compared to soil at pH 4.5. L. perenne roots decreased the number of cells of the inoculum that were leached and detected in the soil after 5 days of leaching. In the soil microcosms used for the pH study the distribution of the inoculum remaining with the soil was altered by L. perenne roots. At each pH value the proportion of cells detected within the soil below the surface 2 cm of the microcosms was greater in the presence of L. perenne roots. The results of this study indicate that soil temperature, bulk soil pH, and the presence of root systems are important factors in determining the extent of inoculum translocation, and should be considered in the design and interpretation of field experiments.  相似文献   

3.
Within the ECOGEN project, long-term field experiments with genetically modified maize, Zea mays L. were conducted to study agro-ecological effects on the soil fauna and agro-economic implications of the technology. Here, we describe the study-sites, experimental layout and results of agro-economic relevance. Experiments were conducted during 2002–2005 in Denmark (Foulum), northern France (Varois) and the Midi-Pyrenees region of southern France (Narbons). MON810 Bacillus thuringiensis (Bt)-varieties expressing the Cry1Ab protein, and a T25 glufosinate-ammonium (Basta) tolerant variety expressing the pat-gene encoding phosphinotrinacetyl-transferase were compared with near-isogenic non-Bt varieties, and conventional maize varieties. At Foulum, the maize was harvested for silage. There were no significant differences in yield between Bt-maize and a near-isogenic non-Bt variety, while a small difference in N-concentration of dry matter was detected in 1 year in a range of a measured quality parameters. Similar yield and quality were found in ploughed and reduced tillage treatments in all varieties. At Varois, the maize was harvested at ripeness and no significant differences in grain yield between Bt-maize and near-isogenic non-Bt varieties were found. These results were expected, as only Narbons harbours significant corn-borer populations. At Narbons, the number of Sesamia and Ostrinia corn-borer larvae were significantly lower in the Bt-maize than in a near-isogenic non-Bt variety and for Sesamia even less than in conventional varieties sprayed with pesticides to control corn-borer infestation. Here, Bt-maize produced a higher grain yield and grain size than a near-isogenic non-Bt variety or allowed a significant reduction in pesticide use. Concentrations of Cry1Ab in the Bt-varieties were sufficient to effectively control corn-borer larvae. In soil, Cry1Ab was close to the limit of detection and the protein did not accumulate in the soil year on year.  相似文献   

4.
Soils from field sites at Foulum (DK), Narbons (FR) and Varois (FR) planted with genetically modified maize expressing either the insecticidal Bacillus thuringiensis protein (Bt) or herbicide tolerance (HT), as described elsewhere in this volume, were analysed for nematodes, protozoa and microbial community structure. These analyses were mirrored in single-species testing and in mesocosm experiments, and were coordinated with field samples taken for microarthropods, enchytraeids and earthworms so allowing for cross-comparison and a better understanding of the results observed in the field. Over the first 2 years of the field experiments (in 2002 and 2003), the effect of Bt-maize was within the normal variation expected in these agricultural systems. Sampling in 2004 and 2005 was expanded to include the effects of tillage (i.e. reduced tillage versus conventional tillage) and also the use of HT-maize. Tillage had major effects regardless of soil type (Varois or Foulum), with reduced-tillage plots having a greater abundance of microfauna and a different microbial community structure (measured both by phospholipid fatty-acid analysis (PLFA) and by community-level physiological profiling (CLPP)) from conventionally tilled plots. Grass, as a contrasting cropping system to maize, also had an effect regardless of soil type and resulted in greater microfaunal abundance and an altered microbial community structure. Differences in crop management, which for the Bt-maize was removal of the insecticide used to control European corn borer and for HT-maize was a change in herbicide formulation, were only tested at single sites. There were differences in microbial community structure (CLPP but not PLFA) and sporadic increases in protozoan abundance under the Bt-crop management. The HT-maize cropping system, which covered a shorter period and only one site, showed little change from the conventional system other than an altered microbial community structure (as measured by PLFA only) at the final harvest. The Bt-trait had a minimal impact, with fewer amoebae at Foulum in May 2003, fewer nematodes at Foulum in May 2004 but more protozoa at Varois in October 2002 and an altered microbial community structure (PLFA) at Foulum in August 2005. These were not persistent effects and could not be distinguished from varietal effects. Based on the field evaluations of microfauna and microorganisms, we conclude that there were no soil ecological consequences for these communities associated with the use of Bt- or HT-maize in place of conventional varieties. Other land management options, such as tillage, crop type and pest management regime, had significantly larger effects on the biology of the soil than the type of maize grown.  相似文献   

5.
Fungi are key to the functioning of soil ecosystems, and exhibit a range of interactions with plants. Given their close associations with plants, and importance in ecosystem functioning, soil-borne fungi have been proposed as potential biological indicators of disturbance and useful agents in monitoring strategies, including those following the introduction of genetically modified (GM) crops. Here we report on the impact of potato crop varieties, including a cultivar that was genetically modified for its starch quality, on the community composition of the main phyla of fungi in soils, i.e. Ascomycota, Basidiomycota and Glomeromycota in rhizosphere and bulk soil. Samples were collected at two field sites before sowing, at three growth stages during crop development and after the harvest of the plants, and the effects of field site, plant growth stage and plant cultivar (genotype) on fungal community composition assessed using three phylum-specific T-RFLP profiling strategies and multivariate statistical analysis (NMDS ordinations with ANOSIM test). In addition, fungal biomass, arbuscular mycorrhizal colonization of roots and activities of extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) involved in degradation of lignocelluloses-rich organic matter were determined. Fungal community compositions, densities and activities were observed to differ significantly between the rhizosphere and bulk soil. The most important factors determining fungal community composition and functioning were plant growth stage for the rhizosphere communities and location and soil properties for the bulk soil communities. The basidiomycetes were the most numerous fungal group in the bulk soils and in the rhizosphere of young plants, with a shift toward greater ascomycete numbers in the rhizosphere at later growth stages. There were no detectable differences between the GM cultivar and its parental cultivar in terms of influence on fungal community structure of function. Fungal community structure and functioning of both GM- and parental cultivars fell within the range of other cultivars at most sampling moments.  相似文献   

6.
Summary A laboratory microcosm study was used to investigate the survival and population dynamics of genetically modified microorganisms (GMM) in the gut of Lumbricus terrestris. Three methods of axenic earthworm production were investigated. An antibiotic mixture of streptomycin and cycloheximide was introduced either passively, mixed with sterile soil or cellulose, or actively, by teflon catheter. Worms treated by all methods lost weight but this was least for the catheter method which was also the only method to produce axenic earthworms. Axenic earthworms were used to determine the effect of competition with indigenous gut bacteria on ingested GMM. The GMM used was Pseudomonas fluorescens, strain 10586/FAC510, with chromosomally inserted Lux genes for bioluminescence, and chromosomal resistance to rifampicin. The bacteria were grown up to the mid-exponential phase before inoculation into earthworms. Bacteria in faecal material were enumerated by dilution plate counting using selective agar. The GMM were re-isolated from the casts of both antibiotic-treated and untreated earthworms. Lower concentrations of GMM and higher concentrations of indigenous bacteria in the casts of untreated compared to antibiotic-treated earthworms suggested that competition is a fundamental control on population dynamics of the introduced bacterial inocula ingested by earthworms.The catheter method, developed in this study, is proposed as a technique to contribute to the risk assessment of environmental release of GMM.  相似文献   

7.
采用平衡吸附法测定了苏云金芽胞杆菌库斯塔克亚种(Btk)蛋白在红壤和棕壤中的吸附等温线,并依据等温线进行了吸附平衡常数和热力学参数计算。在278K~318K范围内,Bt杀虫蛋白在红壤和棕壤中的吸附等温线符合Langmuir方程(R2>0.994 1),随着吸附温度升高,Bt杀虫蛋白的吸附量和吸附平衡常数下降,而吸附分离因子RL升高。红壤吸附Bt蛋白的RL值在0.218 1~0.580 1之间,棕壤吸附Bt蛋白的RL值在0.361 7~0.754 1之间,均属于优惠吸附。Bt杀虫蛋白在红壤和棕壤中的吸附是一个自发、放热、熵增过程,红壤吸附Bt杀虫蛋白的活化能在13.43~14.78 kJ mol-1之间,棕壤吸附Bt蛋白的活化能在10.89~11.47 kJ mol-1之间。随着温度升高,活化能和吸附自由能绝对值变大,提示土壤对Bt杀虫蛋白的吸附由物理吸附向化学吸附转变。  相似文献   

8.
Genetically modified crops, that produce Cry insecticidal crystal proteins (Cry) from Bacillus thuringiensis (Bt), release these toxins into soils through root exudates and upon decomposition of residues. The fate of these toxins in soil has not yet been clearly elucidated. Persistence can be influenced by biotic (degradation by microorganisms) and abiotic factors (physicochemical interactions with soil components, especially adsorption). The aim of this study was to follow the fate of Cry1Aa Bt toxin in contrasting soils subjected to different treatments to enhance or inhibit microbial activity, in order to establish the importance of biotic and abiotic processes for the fate of Bt toxin. The toxin was efficiently extracted from each soil using an alkaline buffer containing a protein, bovine serum albumin, and a nonionic surfactant, Tween 20. The marked decline of extractable toxin after incubation of weeks to months was soil-dependent. The decrease of extractable toxin with incubation time was not related to microbial degradation but mainly to physicochemical interactions with the surfaces that may decrease immunochemical detectability or enhance protein fixation. Hydrophobic interactions may play an important role in determining the interaction of the toxin with surfaces.  相似文献   

9.
Two laboratory experiments were used to investigate the effect of the earthworm Lumbricus terrestris on transport of genetically marked Pseudomonas fluorescens inocula through soil microcosms. The microcosms comprised cylindrical cores of repacked soil with or without earthworms. Late log-phase cells of P. fluorescens, chromosomally marked with lux genes encoding bioluminescence, were applied to the surface of soil cores as inoculated filter paper discs. In one experiment, 5 and 10 days after inoculation, cores were destructively harvested to determine concentrations of marked pseudomonads with depth relative to the initial inoculum applied. Transport of the bacteria occurred only in the presence of earthworms. In a second experiment cores were subjected to simulated rainfall events 18 h after inoculation with lux-marked bacteria at 3-day intervals over a 24-day period. Resulting leachates were analysed for the appearance of the marked bacteria, and after 28 days cores were destructively harvested. Although some marked cells (less than 0.1% of the inoculum applied) were leached through soil in percolating water, particularly in the presence of earthworms, the most important effect of earthworms on cell transport was through burial of inoculated litter rather than an increase in bypass flow due to earthworm channels.  相似文献   

10.
11.
Allolobophora carpathica is an earthworm species found in the Eastern Carpathian mountain region, but little information is available on its ecology. Field sampling in beech woodland of the Bieszczady National Park, SE Poland, found this species in soils with a pH of less than 5.0 and C:N ratios of 12 to 13. From sampling over 2 years, at 4 sites with differing sub-vegetation, a mean density of A. carpathica of 6.75 individuals m-2 with a biomass of 8.65 g.m-2 was recorded. The largest mature adults were in excess of 14.0 g but there were significant differences (p < 0.01) between sampling sites. Seasonal patterns of abundance were observed.To obtain more data on the growth and breeding biology of this species, specimens were collected from the field, taken to laboratories and maintained in mesocosms under controlled environmental conditions. Cocoon production was 0.88 cocoons per earthworm per month at 15oC, but under fluctuating temperature conditions (16 - 24oC) no cocoon production occurred. The mean cocoon biomass was 83 mg  (n = 104) and incubation took 178 days at 15oC (n = 14), although hatchability was low (22%) under these conditions. Growth from the hatchling stage, (mean mass 86 mg; n = 18), to maturity (c. 8.5 g) took 8 - 12 months at 12oC.  相似文献   

12.
More than 80% of plants form mutualistic symbiotic relationships with arbuscular mycorrhizal fungi (AMF), and the application of fertilizers, such as nitrogen (N) and phosphorus (P) fertilizers, is a common agricultural management practice to improve crop yield and quality. However, the potential effects of long-term N and P fertilization on the AMF community in the rainfed agricultural system of the Loess Plateau of China are still not well understood. In this study, a long-term field experiment was conducted based on orthogonal design, with three N levels (0, 90, and 180 kg ha-1 year-1) and three P levels (0, 90, and 180 kg ha-1 year-1) for wheat fertilization. Changes in AMF community and correlations between AMF community composition, soil environmental factors, and wheat yield component traits were analyzed using traditional biochemical methods and high-throughput sequencing technology. The results showed that long-term N and P addition had a significant effect on the AMF community structure and composition. Nitrogen application alone significantly reduced the richness and diversity of AMF community, whereas the combined application of N and P significantly increased the richness and diversity of AMF community. The AMF community was driven mainly by soil available P, total P, and pH. There was a significant positive correlation between Glomus abundance and wheat yield and a significant negative correlation between Paraglomus abundance and wheat yield. Long-term N and P addition directly increased crop yield and affected yield indirectly by influencing soil chemical properties and the AMF community. Combined application of N and P both at 90 kg ha-1 year-1 could improve the ecological and physiological functions of the AMF community and benefit the sustainable development of rainfed agriculture.  相似文献   

13.
Nematodes belonging to the genus Meloidogyne are the most ubiquitous and widespread plant-parasitic nematodes. They occur worldwide, are polyphagous and can parasitize most cultivated plants leading to reduced crop yields. They are especially harmful in developing countries because of the lack of suitable and feasible management strategies. Among all the control practices (chemicals, physical techniques, cultural practices, resistance), the use of natural enemies as biological control agents is the most recently developed. Pasteuria penetrans which is an obligate Gram-positive, endospore-forming bacterium, is perhaps the most promising plant-parasitic nematode biocontrol agent. Despite much research conducted on prey-predator interactions (host-parasite specificity, mechanisms of attachment, field efficacy), the influence of the soil environment on host-parasite interactions is poorly understood even when the soil appears to be the key factor. Beyond common studies on the influence of climatic conditions on the attachment of endospores of P. penetrans to nematodes, more knowledge about the systemic interactions between plants, soil water dynamics, soil texture and structure, and other biota on the parasitism of nematodes by P. penetrans would improve their utilization as biological control agents. The aim of this review is to analyze the literature dealing with the influence of the soil on nematode - P. penetrans interactions in order to suggest a helpful conceptual model based on partitioning the Pasteuria population in sub-populations according to their soil habitat (dispersible and non-dispersible aggregates, microporosity, macroporosity), not all of them being available for attachment and infection on nematodes. Such concerns should be taken into account by epidemiologists for improving biological management strategies based on the use of this bacterium.  相似文献   

14.
The possible ameliorative effects of selenium (Se) addition to soil on the detrimental effects of enhanced UV-B radiation were tested on strawberry and barley during 4 months of field experiment in Kuopio, Central Finland. Control plants were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Added Se, applied as H2SeO4, at the level of 0.1 mg kg−1 soil (low dosage) and 1 mg kg−1 soil (high dosage) increased Se concentrations in plants more than 10 and 100 times, respectively. After 4 months of exposure, strawberry and barley plants were harvested for biomass analysis. Chlorophyll fluorescence was measured using the Hansatech FMS2 fluorescence monitoring system. Leaf anatomy and ultrastructure were observed by light and transmission electron microscope. Several effects of UV and Se as well as their interaction were found, mostly for strawberry, but not for barley, indicating species-specific responses. Our results provided evidence that the high Se concentration in soil had no ameliorative effect but increased the sensitivity of strawberry to enhanced UV-B radiation in the field. Under ambient radiation, Se did not alter leaf growth of strawberry, whereas under UV-B radiation, the high Se addition significantly decreased leaf growth. Strawberry runner biomass was affected by the interaction of Se and UV. Under ambient radiation Se did not change dry weight of runners, but in combination with UV-A or UV-B radiation the high Se dosage decreased dry weight of runners by about 30%. Although the high Se concentration positively influenced on quantum efficiency of photosystem II (PSII) in strawberry leaves, it reduced runner biomass, leaf number and ratio of starch to chloroplast area. This suggests that the harmful effects of the high Se dosage on photosynthetic processes occurred as a result of changes in activity or/and biosynthesis of enzymes, rather than alteration of PSII. At the low concentration, Se effects were slight and variable.Although barley leaves accumulated higher Se concentrations than strawberry, there were no apparent changes in their growth, biomass or chlorophyll fluorescence due to Se effect either alone or in combination with UV-B. However, at the ultrastructural level, an enlargement in the peroxisome area was found due to combination of UV radiation with Se, suggesting the activation of antioxidative enzymes, possibly catalase. Decrease in mitochondrial density in barley cells in response to Se might be attributed to alteration of mitochondrial division. Increase in the proportion of cells with cytoplasmic lipid bodies due to combined effect of UV-B and Se indicated the alteration of lipid metabolism and the acceleration of cell senescence in barley. Main UV-B effects were found, mostly at the tissue and ultrastructural level in strawberry, but not in barley, indicating species-specific susceptibility to enhanced UV-B radiation. UV-B-treated strawberry plants developed marginally thinner leaves with reduced ratio of starch to chloroplast area in their cells, suggesting negative influence of UV-B on photosynthetic processes.  相似文献   

15.
Small mammals, such as European rabbits (Oryctolagus cuniculus), plateau pikas (Ochotona curzoniae) and prairie dogs (Cynomys spp.), traditionally have been perceived as pests and targeted for control within their native ranges, where they perform essential ecosystem roles and are considered keystone species. These species can reach high densities, and have been subjected to eradication campaigns because of their putative negative impact on natural habitats and agriculture and their competition with livestock for forage. Eradication programmes have been a main factor causing sharp declines of these species in their natural ranges. Paradoxically, they are keystone species where they are abundant enough to be perceived as pests. The term “pest” is usually a social perception that is rarely supported by scientific data, whereas there is considerable scientific evidence of the key ecological roles played by these species. We call for the conservation of these species and present a conceptual model regarding the management of their populations. Where they occur at high numbers, and hence their effects on biodiversity are still of crucial importance, the persecution of these species should be avoided and their natural habitats preserved. In areas with high conservation value, but where these species occur at low densities, management efforts should aim to increase their density. In areas of high commercial value, managers ideally should consider changing prioritization of the area to high conservation value by purchasing the land or obtaining conservation easements. In situations with high commercial value and demonstrable low conservation concern, small mammals could be reduced humanely.  相似文献   

16.
17.
18.
垄沟集雨对紫花苜蓿草地土壤水分、容重和孔隙度的影响   总被引:5,自引:1,他引:5  
在旱作条件下, 将垄沟集雨措施应用于紫花苜蓿种植, 研究沟垄宽比和覆膜方式对2年龄紫花苜蓿草地土壤水分状况、土壤容重及孔隙度的影响。结果表明: 全越冬期, 膜垄和土垄处理0~120 cm土壤水分平均散失量分别低于CK(平作)28.43 mm和13.61 mm。膜垄处理整个集雨期的蓄墒增加率为59.03%~99.27%, 产流效率为53.43%~91.72%; 2009年集雨前期(4月上旬~6月上旬)土垄处理的蓄墒增加率、产流效率分别为1.92%~2.74%和1.71%~2.55%, 2009年集雨中后期(6月中旬~9月下旬)土垄处理的蓄墒增加率、产流效率较集雨前期显著升高, 分别为8.85%~36.77%和8.01%~35.82%; 膜垄和土垄处理的蓄墒增加率、产流效率均随垄面宽度增加而显著增加, 且膜垄的蓄墒增加率、产流效率显著高于土垄处理。垄沟集雨种植能够显著降低0~40 cm土壤层容重, 且0~20 cm土壤层容重降幅表现为膜垄大于土垄。垄沟集雨种植也能够显著增加0~40 cm土壤层孔隙度, 且0~20 cm土壤层孔隙度增幅表现为膜垄大于土垄。  相似文献   

19.
Our aim was to study whether the in situ natural abundance 15N (δ15N)-values and N concentration of understory plants were correlated with the form and amount of mineral N available in the soil. Also to determine whether such differences were related to earlier demonstrations of differences in biomass increase in the same species exposed to nutrient solutions with both and or to alone. Several studies show that the δ15N of in soil solution generally is isotopically lighter than the δ15N of due to fractionation during nitrification. Hence, it is reasonable to assume that plant species benefiting from in ecosystems without significant leaching or denitrification have lower δ15N-values in their tissues than species growing equally well, or better, on We studied the δ15N of six understory species in oak woodlands in southern Sweden at 12 sites which varied fivefold in potential net N mineralisation rate The species decreased in benefit from in the following order: Geum urbanum, Aegopodium podagraria, Milium effusum, Convallaria majalis, Deschampsia flexuosa and Poa nemoralis. Four or five species demonstrated a negative correlation between and leaf δ15N and a positive correlation between and leaf N concentration. In wide contrast, only D. flexuosa, which grows on soils with little nitrification, showed a positive correlation between and the leaf N concentration and δ15N-value. Furthermore, δ15N of plants from the field and previously obtained indices of hydroponic growth on relative to were closely correlated at the species level. We conclude that δ15N may serve as a comparative index of uptake of among understory species, preferably in combination with other indices of N availability. The use of δ15N needs careful consideration of known restrictions of method, soils and plants.  相似文献   

20.
Swarms of the train millipede (Parafontaria laminata) are known to occur every 8 years; during the swarms, adults emerging from the soil have an extremely high density in natural and plantation forests in central Japan. Their influence on organic layer accumulation on forest floors was investigated under field conditions in plantation larch forests in central Japan, before and after the adult swarming period of 2000. In addition, the adult millipede feeding preference and the amount of food consumed were observed in the laboratory. The field density of adults ranged from 11 to 311 individuals m−2 in October 2000; the highest biomass was 28.6±16.4 g dry wt m−2. Reduction of the forest floor organic layer was density- dependent when the population consisted of 7th instar larvae; however, the adult population did not consume in a density-dependent manner. Higher levels of geophagy were observed in high-density treatments in the laboratory. We hypothesized that the geophagy of the millipedes was partly supported by the naturally high organic matter content of Andosol, and that soil consumption would sustain an extremely high biomass in a temperate conifer forest soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号