首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Extracts from Murta leaves are used by Chilean natives for their benefits on health and cosmetic properties, which are mainly due to the presence of polyphenolic compounds. Extraction of such compounds is strongly influenced by several variables, the effects of which are studied in this work; the antioxidant power of the resulting extracts was measured by two different methods [2,2-diphenyl-1-picrylhydrazyl (DPPH) and thiobarbituric acid reactive substances (TBARS)]. On the whole, maximum values of polyphenolic yields and antiradical power (DPPH method) were attained at 50 degrees C (from 25 to 50 degrees C) and a solvent-to-solid ratio (v/w) of 15:1 (15:1-25:1). The solvents assayed were ethanol, methanol, and water. The highest polyphenolic yield values (2.6% expressed as gallic acid) were reached with methanol, whereas maximum EC50 was attained by the ethanol extract (0.121 mol gallic acid/mol DPPH). Contact time was shown to have only a slight influence in alcoholic extraction, while in water a remarkable effect of increasing contact times (30-90 min) was observed. Just water was the solvent that offered the best result when the antioxidant power was measured by the TBARS method. High-performance liquid chromatography-mass spectrometry analysis revealed the presence of polyphenols, basically flavonols and flavanols, sometimes glycosilated; myricetin and quercetin glycosides were detected in all extracts, whereas epicatechin was present in alcoholic extracts and gallic acid was only present in water.  相似文献   

2.
Phenolic compounds in the aqueous systems were extracted, from hazelnut kernel (HK) and hazelnut green leafy cover (HGLC), with 80% (v/v) ethanol (HKe and HGLCe) or 80% (v/v) acetone (HKa and HGLCa). The extracts were examined for their phenolic and condensed tannin contents and phenolic acid profiles (free and esterified fractions) as well as antioxidant and antiradical activities by total antioxidant activity (TAA), antioxidant activity in a beta-carotene-linoleate model system, scavenging of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, and reducing power. Significant differences (p < 0.05) in the contents of total phenolics, condensed tannins, and TAA existed among the extracts that were examined. HGLCa extract had the highest content of total phenolics (201 mg of catechin equivalents/g of extract), condensed tannins (542 mg of catechin equivalents/g of extract), and TAA (1.29 mmol of Trolox equivalents/g of extract) followed by HGLCe, HKa, and HKe extracts, respectively. Five phenolic acids (gallic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid) were tentatively identified and quantified, among which gallic acid was the most abundant in both free and esterified forms. The order of antioxidant activity in a beta-carotene-linoleate model system, the scavenging effect on DPPH radical, and the reducing power in all extracts were in the following order: HGLCa > HGLCe > HKa > HKe. These results suggest that both 80% ethanol and acetone are capable of extracting phenolics, but 80% acetone was a more effective solvent for the extraction process. HGLC exhibited stronger antioxidant and antiradical activities than HK itself in both extracts and could potentially be considered as an inexpensive source of natural antioxidants.  相似文献   

3.
A study of the nonvolatile fraction of extracts from vine shoots obtained by superheated ethanol-water mixtures is presented. The influence of the temperature, extraction time, and percentage of ethanol on extraction was investigated by a multivariate experimental design to maximize the yield of total phenolic compounds, measured by using the Folin-Ciocalteu method. The best values found for these variables were 80% (v/v) ethanol, 240 degrees C, and 60 min. Under these conditions, the effect of pH was also investigated, and a strong improvement of yield was observed by decreasing the pH. The extracts were subject to liquid-liquid extraction with n-hexane. The remaining polar phase was dried in a rotary evaporator and then reconstituted in 10 mL of water. The insoluble residue was dissolved in 10 mL of methanol. Both fractions (aqueous and methanolic) were analyzed by HPLC, and the differences in composition according to the extraction conditions were studied. Compounds usually present in commercial wood extracts were identified (mainly benzoic and hydroxycinnamic acids and aldehydes); the most abundant were quantified, and the stability of the identified phenolic families under different extraction conditions was also investigated. Finally, the superiority of the superheated liquid extraction over conventional solid-liquid extraction was demonstrated.  相似文献   

4.
Olive mill waste is a potential source for the recovery of phytochemicals with a wide array of biological activities. Phytochemical screening of hexane, methanol, and water extracts revealed a diversity of compounds, perhaps overlooked in previous studies through intensive cleanup procedures. Methanol and water extracts contained large amounts of biophenols, and further testing of polar extraction solvents, including ethyl acetate, ethanol, propanol, acetone, acetonitrile, and water/methanol mixtures, highlighted the latter as the solvent of choice for extraction of the widest array of phenolic compounds. Stabilization of the resulting extract was best achieved by addition of 2% (w/w) sodium metabisulfite. Quantitative data are reported for nine biophenols extracted using 60% (v/v) methanol in water with 2% (w/w) sodium metabisulfite. Six compounds had recoveries of greater than 1 g/kg of freeze-dried waste: hydroxytyrosol glucoside, hydroxytyrosol, tyrosol, verbascoside, and a derivative of oleuropein.  相似文献   

5.
Response surface methodology (RSM) was used to predict the optimum conditions of extraction of barley samples (organic solvent percent in the extraction medium, temperature, and time). Antioxidant capacity in the barley meals was highest under optimum extraction conditions of 80.2% methanol and 60.5 degrees C for 38.36 min as predicted by RSM. Phenolic antioxidative compounds of six barley cultivars, namely, Falcon, AC Metcalfe, Tercel, Tyto, Phoenix, and Peregrine, were extracted under the conditions obtained by RSM after defatting with hexane, and subsequently the extracts were assessed for their antioxidant and antiradical activities and metal chelation efficacy. The potential of barley extracts in inhibiting peroxyl and hydroxyl radical induced supercoiled DNA double-strand scission was also studied. Total phenolic content as measured according to Folin-Ciocalteu's method ranged from 13.58 to 22.93 mg of ferulic acid equiv/g of defatted material, with the highest content in Peregrine. Total antioxidant activity as measured by Trolox equivalent antioxidant capacity ranged from 3.74 to 6.82 micromol/g of defatted material. Metal chelation capacity of the extracts as measured by 2,2'-bipyridyl competition assay varied from 1.1 to 2.1 micromol of ethylenediaminetetraacetic acid equiv/g of defatted material. IC(50) values for 1,1-diphenyl-2-picrylhydrazyl radical as measured by electron paramagnetic resonance ranged from 1.51 to 3.33 mg/mL, whereas the corresponding values for hydroxyl radical ranged between 2.20 and 9.65 mg/mL. Inhibition of peroxyl radical induced supercoiled DNA scission ranged from 78.2 to 92.1% at the concentration of 4 mg/mL of extracts, whereas the corresponding values for hydroxyl radical induced DNA scission ranged from 53.1 to 65.3%.  相似文献   

6.
Four kinds of solvent extracts from three Chinese barley varieties (Ken-3, KA4B, and Gan-3) were used to examine the effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley through free radical scavenging activity, reducing power and metal chelating activity, and individual and total phenolic contents. Results showed that extraction solvent mixtures had significant impacts on antioxidant activity estimation, as well as different extraction capacity and selectivity for free phenolic compounds in barley. The highest DPPH* and ABTS*+ scavenging activities and reducing power were found in 80% acetone extracts, whereas the strongest *OH scavenging activity, O2*- scavenging activity, and metal chelating activity were found in 80% ethanol, 80% methanol, and water extracts, respectively. Additionally, 80% acetone showed the highest extraction capacity for (+)-catechin and ferulic, caffeic, vanillic, and p-coumaric acids, 80% methanol for (-)-epicatechin and syringic acid, and water for protocatechuic and gallic acids. Furthermore, correlations analysis revealed that TPC, reducing power, DPPH* and ABTS*+ scavenging activities were well positively correlated with each other (p < 0.01). Thus, for routine screening of barley varieties with higher antioxidant activity, 80% acetone was recommended to extract free phenolic compounds from barley. DPPH* scavenging activity and ABTS*+ scavenging activity or reducing power could be used to assess barley antioxidant activity.  相似文献   

7.
Raw, germinated, popped, and cooked huauzontle (Chenopodium berlandieri spp. nuttalliae) seeds were analyzed for the contents of phenolics extracted with water (WE), methanol, 1:1 (v/v) methanol/water (MWE), and 1.2M HCl in 1:1 (v/v) methanol/water (HMWE); radical scavenging capacity measured by the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) (ABTS) methods was studied. The effect of the system solvents used for the accurate quantification of antioxidant content and capacity showed that for raw, germinated, and cooked extracts, water gave the highest yield of total phenolic content, and MWE could recover the highest yield in popped extracts. Thermal treatments increased the flavonoid content more in all extracts than did the germinating process, with values ranging from 10 to 620 μg/g db of quercetin equivalents. However, all treatments significantly decreased (P < 0.05) the total phenolics (from 3,010 μg of gallic acid equivalents/g db in raw seeds WE to 710 μg/g db in germinated seeds MWE). HMWE in all treatments showed the highest values (up to 95.41%) by the DPPH method. With the ABTS method, germinated and popped MWE showed the highest values (up to 2,740mM Trolox/kg db). Based on these results, huauzontle seeds represent a useful potential ingredient for consumer health, because it has been shown to be a good source of total phenolic content having high antioxidant activity; moreover, for further studies, water appears to be effective as an extraction solvent of phenolic compounds.  相似文献   

8.
The antioxidant activities, reducing powers, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities, amount of total phenolic compounds, and antimicrobial activities of ether, ethanol, and hot water extracts of the leaves and seeds of Rumex crispus L. were studied. The antioxidant activities of extracts increase with increasing amount of extracts (50-150 microg). However, the water extracts of both the leaves and seeds have shown the highest antioxidant activities. Thus, addition of 75 microg of each of the above extracts to the linoleic acid emulsion caused the inhibition of peroxide formation by 96 and 94%, respectively. Although the antioxidant activity of the ethanol extract of seed was lower than the water extract, the difference between these was not statistically significant, P > 0.05. Unlike the other extracts, 75 microg of the ether extract of seeds was unable to show statistically significant antioxidant activity, P > 0.05 (between this extract and control in that there is no extract in the test sample). Among all of the extracts, the highest amount of total phenolic compound was found in the ethanol extract of seeds, whereas the lowest amount was found in the ether extract of seeds. Like phenolic compounds, the highest reducing power and the highest DPPH scavenging activity were found in the ethanol extract of seeds. However, the reducing activity of the ethanol extract of seeds was approximately 40% that of ascorbic acid, whereas in the presence of 400 microg of water and ethanol extracts of seeds scavenging activities were about 85 and 90%, respectively. There were statistically significant correlations between amount of phenolic compounds and reducing power and between amount of phenolic compounds and percent DPPH scavenging activities (r = 0.99, P < 0.01, and r = 0.864, P < 0.05, respectively) and also between reducing powers and percent DPPH scavenging activities (r = 0.892, P < 0.05). The ether extracts of both the leaves and seeds and ethanol extract of leaves had shown antimicrobial activities on Staphylococcus aureus and Bacillus subtilis. However, none of the water extracts showed antimicrobial activity on the studied microorganisms.  相似文献   

9.
Most research on the extraction of high-priced compounds from vineyard/wine byproducts has traditionally been focused on grape seeds and skins as raw materials. Vine-shoots can represent an additional source to those materials, the characteristics of which could depend on the cultivar. A comparative study of hydroalcoholic extracts from 18 different vineyard cultivars obtained by superheated liquid extraction (SHLE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (USAE) is here presented. The optimal working conditions for each type of extraction have been investigated by using multivariate experimental designs to maximize the yield of total phenolic compounds, measured by the Folin-Ciocalteu method, and control hydroxymethylfurfural because of the organoleptic properties of furanic derivatives and toxicity at given levels. The best values found for the influential variables on each extraction method were 80% (v/v) aqueous ethanol at pH 3, 180 °C, and 60 min for SHLE; 140 W and 5 min microwave irradiation for MAE; and 280 W, 50% duty cycle, and 7.5 min extraction for USAE. SHLE reported better extraction efficiencies as compared to the other two approaches, supporting the utility of SHLE for scaling-up the process. The extracts were dried in a rotary evaporator, reconstituted in 5 mL of methanol, and finally subjected to liquid-liquid extraction with n-hexane to remove nonpolar compounds that could complicate chromatographic separation. The methanolic fractions were analyzed by both LC-DAD and LC-TOF/MS, and the differences in composition according to the extraction conditions were studied. Compounds usually present in commercial wood extracts (mainly benzoic and hydroxycinnamic acids and aldehydes) were detected in vine-shoot extracts.  相似文献   

10.
Pressurized liquid extraction (PLE) was used to extract anthocyanins from the freeze-dried skin of a highly pigmented red wine grape with six solvents at 50 degrees C, 10.1 MPa, and 3 x 5 min extraction cycles. Temperature (from 20 to 140 degrees C in 20 degrees C increments) effects on anthocyanin recovery by acidified water and acidified 60% methanol were also studied. Acidified methanol extracted the highest levels of total monoglucosides and total anthocyanins, whereas the solvent mixture (40:40:20:0.1 methanol/acetone/water HCl) extracted the highest levels of total phenolics and total acylated anthocyanins. Acidified water extracts obtained by PLE at 80-100 degrees C had the highest levels of total monoglucosides, total acylated anthocyanins, total anthocyanins, total phenolics, and ORAC values. Acidified methanol extracts obtained by PLE at 60 degrees C had the highest levels of total monoglucosides and total anthocyanins, whereas extracts obtained at 120 degrees C had the highest levels of total phenolics. High-temperature PLE (80-100 degrees C) using acidified water, an environmentally friendly solvent, was as effective as acidified 60% methanol in extracting anthocyanins from grape skins.  相似文献   

11.
Extracts from cranberry press cakes were prepared either using ethanol or an ethyl acetate-acetone mixture. The press cake extracts were compared with extracts from cranberry juice powder (CJP), prepared using chloroform:methanol (1:1), for their ability to inhibit lipid oxidation in mechanically separated turkey (MST). Because of the susceptibility of muscle membrane lipids to oxidation, the ability of quercetin in the extracts to partition between the aqueous and the membrane phases was studied. Membrane suspensions were prepared from MST. Partitioning of quercetin was quantified using high-performance liquid chromatography. Oxidation was studied by measuring thiobarbituric acid reactive substances and lipid peroxides. The effectiveness of the extracts to inhibit lipid oxidation was CJP extract > ethyl acetate extract of press cake > or = ethanol extract of press cake. The amount of quercetin in the extracts and the amount of quercetin that partitioned into the membranes followed the same order. However, the total phenolic content of the extracts did not follow the same order as that of inhibitory power. The phenolic content of the extracts decreased, ethyl acetate extract > ethanol extract of press cake > or = chloroform extract of CJP. Irrespective of the extraction method, around 78% quercetin from the extracts partitioned into the membranes. It could be concluded that increasing the amount of quercetin in the press cake extracts increases the ability of the extracts to inhibit lipid oxidation in MST. Hence, a proper choice of solvents and extraction method, which would increase the amount of quercetin in the press cake extracts, might increase the antioxidant potential of the extracts and hence their economic value.  相似文献   

12.
A process to obtain enriched antioxidant phenolic extracts from lettuce (baby, romaine, and iceberg cultivars) and chichory byproducts as a way to valorize these byproducts was developed. Two extraction protocols using water and methanol as solvent were used. Amberlite XAD-2 nonionic polymeric resin was used to purify the extracts. The extraction yield, phenolic content, and phenolic yield were evaluated as well as the antioxidant capacity of the extracts (DPPH, ABTS, and FRAP assays). Baby and romaine lettuce byproducts showed the highest water extract yields [27 and 26 g of freeze-dried extracts/kg of byproduct fresh weight (fw), respectively], whereas baby and iceberg lettuce showed highest methanol extract yields (31 and 23 g of freeze-dried extracts/kg of byproduct fw, respectively). Methanol extraction yielded a raw extract with a high phenolic content, the baby and chicory extracts being the richest with approximately 50 mg of phenolics/g of freeze-dried extract. Regarding the purified extracts, water extraction yielded a higher phenolic content, baby and chicory being also the highest with mean values of approximately 190 and 300 mg of phenolics/g of freeze-dried extract, respectively. Both raw and purified extracts from baby and chicory showed the higher antioxidant contents (DPPH, ABTS, and FRAP assays). The antioxidant capacity was linearly correlated with the phenolic content. The results obtained indicate that lettuce byproducts could be, from the industrial point of view, an interesting and cheap source of antioxidant phenolic extracts to funcionalize foodstuffs.  相似文献   

13.
To study the antioxidant activity of quince fruit (pulp, peel, and seed) and jam, methanolic extracts were prepared. Each extract was fractionated into a phenolic fraction and an organic acid fraction and was analyzed by high-performance liquid chromatography (HPLC)/diode array detection and HPLC/UV, respectively. Antiradical activities of the extracts and fractions were evaluated by a microassay using 1,1'-diphenyl-2-picrylhydrazyl. The phenolic fraction always exhibited a stronger antioxidant activity than the whole methanolic extract. Organic acid extracts were always the weakest in terms of antiradical activity, which seems to indicate that the phenolic fraction gives a higher contribution for the antioxidant potential of quince fruit and jam. The evaluation of the antioxidant activity of methanolic extracts showed that peel extract was the one presenting the highest antioxidant capacity. The IC50 values of quince pulp, peel, and jam extracts were correlated with the caffeoylquinic acids total content. Among the phenolic fractions, the seed extract was the one that exhibited the strongest antioxidant activity. The IC50 values of quince pulp, peel, and jam phenolic extracts were strongly correlated with caffeoylquinic acids and phenolics total contents. For organic acid fractions, the peel extract was the one that had the strongest antiradical activity. The IC50 values of quince pulp, peel, and jam organic acid fractions were correlated with the ascorbic acid and citric acid contents.  相似文献   

14.
Antioxidant activity of extracts obtained from residues of different oilseeds   总被引:11,自引:0,他引:11  
Residues of the oil-extracting process of oilseeds contain bioactive substances such as phenolic compounds, which could be used as natural antioxidants for the protection of fats and oils against oxidative deterioration. Thus, the extraction of such constituents from residual material can be considered to contribute to the added value of these residues, which could justify their isolation. In the present work the fat-free residues of eight different oilseeds whose oils are usable for nutritional applications, and also as renewable resources, were extracted with 70% methanol, 70% acetone, water, and ethyl acetate/water, respectively. The resulting extracts were investigated regarding their content of total phenolic compounds by the Folin-Ciocalteau assay, sinapine, flavanoids, and the UV-absorption spectra. Further, the antioxidant activity of the extracts was characterized by the DPPH method, the beta-carotene-linoleic acid assay, and ESR investigations. The fat-free residues of the different oilseeds contained considerable amounts of extractable substances. The yields decreased with decreasing polarity of the solvent in the order water, 70% methanol, 70% acetone, and ethyl acetate. The ratio of total phenolic compounds to the extractable compounds ranged from 3 to 19%. There was no significant correlation between the amount of total extractable compounds and the total phenolic compounds (p < 0.001). All extracts showed remarkable antioxidant activities determined with the different methods. The effects depended strongly on the solvent used for the extraction as well as on the extracted residue. A correlation between the methods used for the characterization of the antioxidant activity and the composition of the residues could not be shown.  相似文献   

15.
Oregano vulgare L. ssp. hirtum (Greek oregano), Salvia fruticosa (Greek sage), and Satureja hortensis (summer savory) were examined as potential sources of phenolic antioxidant compounds. The antioxidant capacities (antiradical activity by DPPH* test, phosphatidylcholine liposome oxidation, Rancimat test) and total phenol content were determined in the ethanol and acetone extracts of the dried material obtained from the botanically characterized plants. The ground material was also tested by the Rancimat test for its effect on the stability of sunflower oil. The data indicated that ground material and both ethanol and acetone extracts had antioxidant activity. Chromatographic (TLC, RP-HPLC) and NMR procedures were employed to cross-validate the presence of antioxidants in ethanol and acetone extracts. The major component of all ethanol extracts was rosmarinic acid as determined by RP-HPLC and NMR. Chromatography indicated the presence of other phenolic antioxidants, mainly found in the acetone extracts. The presence of the flavones luteolin and apigenin and the flavonol quercetin was confirmed in the majority of the extracts by the use of a novel (1)H NMR procedure, which is based on the strongly deshielded OH protons in the region of 12-13 ppm without previous chromatographic separation. This deshielding may be attributed to the strong intramolecular six-membered ring hydrogen bond of the OH(5)...CO(4) moiety.  相似文献   

16.
The purpose of this study was to determine the efficacy of extracting phenolic compounds with antioxidant activity from distillers' dried grains with solubles (DDGS) with water, 50% aqueous ethanol, and absolute ethanol, using microwave irradiation or a water bath at various temperatures. DDGS was extracted for 15 min with each solvent while heating at 23, 50, 100, and 150°C by microwave irradiation or in a water bath at 23, 50, and 100°C. Phenolic content of extracts increased with increasing temperature to a maximum of 12.02 mg/g in DDGS extracts that were microwave irradiated in water or with 50% aqueous ethanol at 150°C. Antioxidant activity range was 1.49–6.53 μmol of Trolox equivalents/g of DDGS. Highest antioxidant activities were obtained from 50% aqueous ethanol extracts at all temperatures, and water extracts that were heated at 100 and 150°C. These data indicate that DDGS extracts with high phenolic content and antioxidant activity can be obtained from DDGS, particularly with the use of water or 50% ethanol and high temperature (100 or 150°C). This may be valuable to ethanol manufacturers, livestock producers, and food and nutraceutical companies.  相似文献   

17.
A method has been developed for the extraction of capsaicinoids from peppers by pressurized liquid extraction (PLE); these compounds are determined by reverse phase high-performance liquid chromatography (HPLC), with detection by fluorescence spectrophotometry and mass spectrometry (MS). The stability of capsaicin and dihydrocapsaicin has been studied at different temperatures (50-200 degrees C), and several extraction variables have been assayed: solvent (methanol, ethanol, and water), different percentages of water in the methanol (0-20%) and in the ethanol (0-20%), and the number of extraction cycles. The study has evaluated the repeatability (RSD < 7%) and the reproducibility (RSD < 7%) of the method. Finally, the PLE method developed has been applied to quantify the capsaicinoids present in three varieties of hot peppers cultivated in Spain, quantifying five capsaicinoids: nordihydrocapsaicin, capsaicin, dihydrocapsaicin, an isomer of dihydrocapsaicin, and homodihydrocapsaicin.  相似文献   

18.
Ultrasound-assisted extraction (UAE) was used to extract phenolic compounds from Satsuma mandarin ( Citrus unshiu Marc.) peels (SMP), and maceration extraction (ME) was used as a control. The effects of ultrasonic time (10, 20, 30, 40, 50, and 60 min), temperature (15, 30, and 40 degrees C), and ultrasonic power (3.2, 8, 30, and 56 W) on phenolic compounds were investigated. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used for the analysis of phenolic acids after alkaline hydrolysis (bound phenolic acids) and flavanone glycosides. The contents of seven phenolic acids (caffeic acid, p-coumaric acid, ferulic acid, sinapic acid, protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid) and two flavanone glycosides (narirutin and hesperidin) in extracts obtained by ultrasonic treatment were significantly higher than in extracts obtained by the maceration method. Moreover, the contents of extracts increased as both treatment time and temperature increased. Ultrasonic power had a positive effect on the contents of extracts. However, the phenolic acids may be degraded by ultrasound at higher temperature for a long time. For example, after ultrasonic treatment at 40 degrees C for 20 min, the contents of caffeic acid, p-coumaric acid, ferulic acid, and p-hydroxybenzoic acid decreased by 48.90, 44.20, 48.23, and 35.33%, respectively. The interaction of ultrasonic parameters probably has a complex effect on the extracts. A linear relationship was observed between Trolox equivalent antioxidant capacity (TEAC) values and total phenolic contents (TPC); the correlation coefficient, R(2), is 0.8288 at 15 degrees C, 0.7706 at 30 degrees C, and 0.8626 at 40 degrees C, respectively. The data indicated that SMPs were rich sources of antioxidants. Furthermore, UAE techniques should be carefully used to enhance the yields of phenolic acids from SMPs.  相似文献   

19.
Previous studies have shown that anthocyanin-rich berry extracts inhibit the growth of cancer cells in vitro. The objective of this study was to compare the effects of berry extracts containing different phenolic profiles on cell viability and expression of markers of cell proliferation and apoptosis in human colon cancer HT-29 cells. Berry extracts were prepared with methanol extraction, and contents of the main phenolic compounds were analyzed using HPLC. Anthocyanins were the predominant phenolic compounds in bilberry, black currant, and lingonberry extracts and ellagitannins in cloudberry extract, whereas both were present in raspberry and strawberry extracts. Cells were exposed to 0-60 mg/mL of extracts, and the cell growth inhibition was determined after 24 h. The degree of cell growth inhibition was as follows: bilberry > black currant > cloudberry > lingonberry > raspberry > strawberry. A 14-fold increase in the expression of p21WAF1, an inhibitor of cell proliferation and a member of the cyclin kinase inhibitors, was seen in cells exposed to cloudberry extract compared to other berry treatments (2.7-7-fold increase). The pro-apoptosis marker, Bax, was increased 1.3-fold only in cloudberry- and bilberry-treated cells, whereas the pro-survival marker, Bcl-2, was detected only in control cells. The results demonstrate that berry extracts inhibit cancer cell proliferation mainly via the p21WAF1 pathway. Cloudberry, despite its very low anthocyanin content, was a potent inhibitor of cell proliferation. Therefore, it is concluded that, in addition to anthocyanins, also other phenolic or nonphenolic phytochemicals are responsible for the antiproliferative activity of berries.  相似文献   

20.
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号