首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of beta-lactoglobulin (beta-LG) denaturation in reconstituted skim milk samples of various concentrations (9.6-38.4% total solids) over a wide temperature range (75-100 degrees C) was studied. The thermal denaturation of beta-LG had a reaction order of 1.5 at all milk solids concentrations and at all temperatures. The rate of denaturation of beta-LG was markedly dependent on the milk solids concentration and the heating temperature. At 75 degrees C, the thermal denaturation of beta-LG was retarded at higher milk solids concentrations. However, this retardation was less pronounced at higher temperatures so that a similar rate of denaturation was observed at all milk solids concentrations at 100 degrees C. From an examination of the level of disulfide-aggregated beta-LG, it was evident that most, but not all, of the denatured beta-LG was involved in disulfide-aggregated complexes, either with other denatured whey proteins or with the casein micelles. As with beta-LG denaturation, the rate of disulfide aggregation of beta-LG was markedly dependent on the milk solids concentration.  相似文献   

2.
To reduce the immunogenicity of beta-lactoglobulin (beta-LG), two beta-LG-carboxymethyl dextran (CMD) conjugates (Conj. 40 and Conj. 162) were prepared by using water-soluble carbodiimide (EDC). The molar ratios of beta-LG to CMD in Conj. 40 and Conj. 162 were 8:1 and 7:1, respectively. Each conjugate maintained approximately 50% of the retinol binding activity of beta-LG. Structural analyses by intrinsic fluorescence, CD spectra, and ELISA with monoclonal antibodies indicated that the surface of beta-LG in each conjugate was covered by CMD without great disruption of native conformation. By conjugation with CMD, the antibody response to beta-LG was reduced in BALB/c, C3H/He, and C57BL/6 mice, which was eminent in Conj. 162. The results of B cell epitope scanning using overlapping synthesized peptides showed that the linear epitope profiles of the conjugates were similar to those of beta-LG, whereas the antibody response to each epitope was reduced, which was eminent in Conj. 162. It was concluded that conjugation with CMD of higher molecular weight is effective in reducing the immunogenicity of beta-LG and that masking of epitopes by CMD is responsible for the reduced immunogenicity.  相似文献   

3.
Intermolecular disulfide bond formation in pure beta-lactoglobulin (beta-Lg) B and in its 1:1 mixture with alpha-lactalbumin (alpha-La), heated at 85 degrees C for 10 min in solutions of low and high (100 mM NaCl) ionic strength and pH 6.0, was studied by reverse-phase HPLC and MALDI-TOF mass spectrometry. Disulfide bonding between beta-Lg monomers was more extensive than reported in the literature for a temperature of 68.5 degrees C, including formation of trimers connected by two of the three adjacent cysteines, C106/C119/C121. The participation of the different thiol groups in disulfide bonds appeared to depend on their location in the native structure, with surface-located cysteines more involved than internally located ones. This also applied to alpha-La-beta-Lg interactions, where the predominant participants were the surface-located alphaC111, alphaC120, alphaC61, and alphaC6. The least active participant was alphaC28, suggesting that it becomes sterically inaccessible during unfolding of the protein. High ionic strength apparently promoted disulfide bonding. The order of cysteine participation at the high ionic strength was similar to that at low ionic strength, with fewer native-location bonds observed and a lower activity of some groups, such as beta-C106/C119/C121 and alphaC61.  相似文献   

4.
It is of nutritional significance to fortify processed dairy products (e.g., cheese, yogurt, and ice cream) with vitamin D3; however, the inherent complexity of these foods may influence the stability and bioavailability of this nutrient. In the present study, the interactions of vitamin D3 with beta-lactoglobulin A and beta-casein were investigated under various environmental conditions (i.e., pH and ionic strength) using fluorescence and circular dichroism spectroscopic techniques. The results indicated that vitamin D3 was bound to both beta-lactoglobulin A and beta-casein depending on the solution conditions. The apparent dissociation constants ranged from 0.02 to 0.29 microM for beta-lactoglobulin A, whereas the beta-casein apparent dissociation constants ranged from 0.06 to 0.26 microM. The apparent mole ratios were also comparable, i.e., 0.51-2.04 and 1.16-2.05 mol of vitamin D3 were bound per mole of beta-lactoglobulin A and beta-casein, respectively. It was concluded that these interactions may strongly influence vitamin D3 stability and, hence, bioavailability in processed dairy products.  相似文献   

5.
The pepper alkaloid piperine is a nontoxic, natural dietary compound with a broad range of physiological activity. The present work is the first demonstration of its interaction with a mammalian protein. Circular dichroism (CD) spectroscopy was used to reveal and analyze the binding of piperine to a lipocalin protein. Induced CD spectra measured in pH 7.7 phosphate buffer at 37 degrees C demonstrated reversible, non-covalent association of piperine with bovine beta-lactoglobulin (BLG), the major whey protein in milk. The binding parameters (K(a) approximately 8 x 10(4) M(-1), n = 0.8) determined from the CD titration data showed no significant differences between the piperine binding properties of the two main genetic variants of BLG (A and B). The vanishing extrinsic CD signal obtained upon acidification of the piperine-BLG sample solution (Tanford transition) suggested that the ligand binds in the central hydrophobic cavity of the beta-barrel. The cavity binding concept was further supported by a CD displacement experiment using palmitic acid, the well-known hydrophobic ligand of BLG. Molecular docking calculations showed that piperine can be efficiently accommodated within the calyx of BLG. Additional molecular modeling calculations indicated that the beta-barrel of human tear lipocalin, human serum retinol binding protein, and human neutrophil gelatinase associated lipocalin might also accommodate a piperine molecule.  相似文献   

6.
High hydrostatic pressure (HHP) at 500 MPa and 50 degrees C induces beta-LG into the molten globule state. Retinol, cis-parinaric acid (CPA), and 1-anilino-naphthalene-8-sulfonate (ANS) fluorescence from pH 2.5 to 10.5 in the presence of the native and molten globule states of beta-LG indicate that retinol binds to beta-LG in the calyx, CPA at the surface hydrophobic site, and ANS in multiple hydrophobic sites. HHP treatment results in a decrease of beta-LG affinity for retinol and CPA, suggesting conformational changes in the calyx and surface hydrophobic site of beta-LG during HHP treatment. beta-LG treated by HHP in the presence of N-ethylmaleimide (NEM) retains retinol affinity, suggesting that NEM protects the calyx conformation of beta-LG during HHP treatment. HHP treatment of beta-LG in the presence of KIO(3) exhibits a great decrease of CPA affinity compared to HHP-treated beta-LG in the absence of KIO(3), suggesting the formation of non-native disulfide bonding at the CPA binding site.  相似文献   

7.
Galactooligosaccharides (GOS) are well-known prebiotic ingredients which can form the basis of new functional dairy products. In this work, the production and characterization of glycated beta-lactoglobulin (beta-LG) with prebiotic GOS through the Maillard reaction under controlled conditions ( a(w) = 0.44, 40 degrees C for 23 days) have been studied. The extent of glycation of beta-LG was evaluated by formation of furosine which progressively increased with storage for up to 16 days, suggesting that the formation of Amadori compounds prevailed over their degradation. RP-HPLC-UV, SDS-PAGE, and IEF profiles of beta-LG were modified as a consequence of its glycation. MALDI-ToF mass spectra of glycated beta-LG showed an increase of up to approximately 21% in its average molecular mass after storage for 23 days. Moreover, a decrease in unconjugated GOS (one tri-, two tetra-, and one pentasaccharide) was observed by HPAEC-PAD upon glycation. These results were confirmed by ESI MS. The stability of the glycated beta-LG to in vitro simulated gastrointestinal digestion was also described and compared with that of the unglycated protein. The yield of digestion products of glycated beta-LG was lower than that observed for the unglycated protein. The conjugation of prebiotic carbohydrates to stable proteins and peptides could open new routes of research in the study of functional ingredients.  相似文献   

8.
Bovine beta-lactoglobulin B (beta-LG) is susceptible to pressure treatment, which unfolds it, allowing thiol-catalyzed disulfide bond interchange to occur, facilitating intermolecular bonding (both noncovalent and disulfide). In the present study, beta-LG was mixed with sodium dodecyl sulfate (SDS), all-trans-retinol (retinol), or 8-anilino-1-naphthalenesulfonate (ANS) on a 1:1.1 molar basis, and aliquots were held at pressures between 50 and 800 MPa for 30 min at pH 7.2 and 20 degrees C. Polyacrylamide gel electrophoresis (PAGE) showed that beta-LG alone (control) was converted into a non-native monomer and a series of dimers, trimers, etc., at pressures beyond 100 MPa; SDS inhibited the formation of non-native species up to 200 MPa, and neither retinol nor ANS inhibited the formation of the non-native species as effectively as SDS. At pressures beyond 350 MPa, SDS ceased to have any inhibitory effect, but both ANS and retinol showed significant inhibition. The near- and far-UV CD patterns and the ANS fluorescent data were consistent with the PAGE data, but the retinol fluorescent data did not show sufficient change to interpret. The results suggested that there were three discernible structural stages. In Stage I (0.1-150 MPa), the native structure is stable; in Stage II (200-450 MPa), the native monomer is reversibly interchanging with non-native monomers and disulfide-bonded dimers; and in Stage III (>500 MPa), the free CysH in non-native monomer and dimer interacts with -S-S- bonds to produce high molecular weight aggregates of beta-LG. SDS inhibited the Stage I to Stage II transition at 200 MPa, and ANS and retinol inhibited the Stage II to Stage III transition at 600 MPa.  相似文献   

9.
Land use change is known to strongly affect soil aggregation and aggregate stabilizing compounds. In this study we wanted to gain insight into the temporal and spatial dimension of this process. Therefore, we studied water-stable aggregates, total organic carbon (TOC), carbohydrates and glomalin-related soil protein (GRSP) in a 110-year chronosequence of Stagnosols, which have been converted from pasture to cropland at different times in history. To describe the temporal dimension, the measured concentrations were approximated by an exponential decay function. The spatial dimension was assessed by analyzing the distribution of TOC, carbohydrates, GRSP, and 14C among the different aggregate-size fractions over the course of 110 years of cropland use. It was found that the TOC concentration decreased monoexponentially (R2 = 0.92) from 195.2 t ha−1 to 45.13 t ha−1 in the first depth interval (0-20 cm) during the first 110 years after the conversion, and reached a new equilibrium 23 (±5) years after land use change. Carbohydrates and GRSP obtained a new equilibrium after 14 (±6) and 56 (±5) years in the same depth interval. The mean-weight diameter (MWD) of the water-stable aggregates reached a new equilibrium 33 (±2) years after the land use conversion. With respect to the spatial dimension we found that TOC, carbohydrates, and GRSP showed higher concentrations in the macroaggregates than in the microaggregates. The ratios of the distribution of TOC, carbohydrates and GRSP among macro- and microaggregates did not change significantly during the 110 years of arable use of the soils. The average age of the organic carbon in the different aggregate-size fractions analyzed by its 14C concentration showed of a wide range from 65 (±25) to 251 (±30) years, and did not change significantly during the cultivation of the sites. Thus, we conclude that water-stable aggregates and the concentrations of TOC, carbohydrates and GRSP reacted towards land use change at different speeds and reached a new equilibrium between 14 (±6) and 56 (±5) years after the conversion of land use. Secondly, we found, that the spatial distribution of aggregate stabilizing compounds was not significantly changed during the first 110 years of cultivation.  相似文献   

10.
Heat treatment of bovine beta-lactoglobulin B (beta-LG) causes it to partially unfold and aggregate via hydrophobic association and intra- and interprotein disulfide bonds. The first stage, which involves a "loosening" of the native structure, is influenced by the environmental conditions, such as pressure, pH, and added solutes. In the present study, four potential beta-LG ligands [palmitate, sodium dodecyl sulfate (SDS), 8-anilino-1-naphthalenesulfonate (ANS), and all-trans-retinol (retinol)] were added to beta-LG solutions prior to heat treatment for 12 min at temperatures between 40 and 93 degrees C. The extent of the changes in secondary and tertiary structures, unfolding, and aggregation at 20 degrees C were determined by circular dichroism, fluorescence, and alkaline- and SDS-polyacrylamide gel electrophoresis (PAGE). Both palmitate and SDS stabilized the native structure of beta-LG against heat-induced structural flexibility, subsequent unfolding, and denaturation. Retinol was less effective, probably because of its lower affinity for the calyx-binding site, and ANS did not stabilize beta-LG, suggesting that ANS did not bind strongly in the calyx. It was also noted that holding a beta-LG solution with added SDS or ANS promoted the formation of a hydrophobically associated non-native dimer.  相似文献   

11.
稻瘟菌细胞壁热解物诱导水稻抗稻瘟病的研究   总被引:1,自引:0,他引:1  
以水稻近等基因系和广东省稻瘟病菌优势小种ZC13的细胞壁热解物(HDS)为材料进行诱导抗病性的研究。HDS通过细胞壁121°C 20 m in热解获得。HDS中葡萄糖质量浓度为176.83 m g/mL。HDS在体外对稻瘟病菌的孢子萌发和菌丝生长均无抑制作用,但处理水稻后可以显著提高水稻对稻瘟病菌的抗病性。在亲和性品系中,诱导抗病效果最高可达82.47%,且浓度与活性间存在正相关趋势;在非亲和品系中,热解物处理引起HR反应。HDS处理后,水稻过氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活力明显升高。  相似文献   

12.
This paper takes a new approach to determining which sulfhydryl groups are exposed during the heat denaturation of bovine beta-lactoglobulin A. The sulfhydryl groups exposed after heating were blocked with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). The results show that IAEDANS is a suitable blocking agent, and its absorbance at 336 nm enabled the quantification of exposed sulfhydryl groups in a mixture of protein species by gel permeation chromatography. Combined with the specific fragmentation of bound IAEDANS by matrix-assisted laser desorption ionization (MALDI) MS/MS in negative ionization mode, this facilitated the identification of peptides that contained blocked cysteines after enzymatic digestion of the protein. During MALDI MS/MS of the peptides, in positive ionization mode, the IAEDANS molecule remained bound to the cysteines, making it possible to identify exactly which cysteine had been exposed after heating. In beta-lactoglobulin A it was found that cysteine 66 and cysteine 160 were predominantly exposed regardless of the length of exposure to heat.  相似文献   

13.
The need for a more continuous approach to soil classification is discussed, and methods based on the mathematical constructs known as fuzzy sets are considered most appropriate for this. A centroidal grouping method, fuzzy k-means with extragrades, which quantifies the intragrading and extragrading of soil individuals is described. An example of the application of this technique to an area of 4800 ha at Wesepe in The Netherlands is presented. The results show that the technique could create a classification that reflects the main pedological features of the area in a continuous way. Although there may be problems in selecting the optimal number of groups and degree of fuzziness, we conclude that the method is most promising and worthy of consideration when any type of quantitative soil classification is required.  相似文献   

14.
In this study a simplified methodology adapted from that of Somogyi-Nelson is described in order to quantify cellulase activities in natural environments such as litters. We recommend (i) reducing drastically Na2SO4 amounts (from 90 to 4 g) to improve solubility and (ii) reading absorbance at 870 nm since the highest values for the reduced arsenomolybdate complex were obtained for this wavelength.  相似文献   

15.
Dilute solutions of beta-lactoglobulin (beta-Lg) A, B, and C were heated at temperatures between about 40 and 94 degrees C for 10 min, cooled, and analyzed using Trp fluorescence and extrinsic fluorescence spectra of the probe 1,8-anilinonaphthalene sulfonate (ANS). Thiol availabilities using 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) were determined using a separate set of samples. The normalized ANS fluorescence emission intensity and the thiol availability results showed a 1:1 relationship with the loss of nativelike but not SDS-monomeric protein, as determined by PAGE analysis. The normalized Trp emission intensity results did not show a comparable 1:1 relationship with the loss of nativelike protein, indicating that the Trp intensity arose from consequential disulfide bond reorganization and not the initial unfolding reaction. The results were also analyzed in terms of two-state models, and the midpoint temperatures (T(mid)) for the proteins were generally beta-Lg C > beta-Lg A > beta-Lg B, and the slopes at the midpoint temperatures for the A variant were generally less than those for the B and C variants indicating that beta-Lg A may denature by a different mechanism from that of beta-Lg B or beta-Lg C. The T(mid) parameters derived from the ANS fluorescence intensity results were similar to those for thiol availability and both were lower than the T(mid) values for Trp emission intensity showing that creation of an ANS binding site on a beta-Lg molecule was linked to the irreversible exposure of a thiol group and the loss of native beta-Lg but preceded the decrease in Trp(61) fluorescence quenching. These results for the differences between the behavior of the A and B or the C variants involved the creation of a destabilizing cavity by the Val(118)Ala (A --> B) substitution and the changed charge distribution within the CD loop caused by the Asp(64)Gly (A --> B) substitution.  相似文献   

16.
Dilute solutions of beta-lactoglobulin (beta-Lg) A, B, and C were heated in phosphate buffer at temperatures between 40 and 94 degrees C for 10 min, cooled, and analyzed using near-UV and far-UV circular dichroism (CD). The decrease in near-UV CD intensity at 293 nm (Deltaepsilon(293)) could be analyzed in terms of a two-state model, and the stability was beta-Lg C > beta-Lg A > beta-Lg B on the basis of the midpoint temperatures for samples heated at pH 6.7 and 7.4. However, the slopes of the curves at the midpoint temperature for variant A were generally less than those for beta-Lg B and beta-Lg C, indicating that the substitution of Val (beta-Lg A) for Ala (beta-Lg B or beta-Lg C) at position 118 had altered the entropic contribution to unfolding of the protein. The changes in CD at 270 nm (Deltaepsilon(270)), an index of significant alteration to disulfide bond dihedral angles, occurred at higher temperatures than those for the Deltaepsilon(293) results. The far-UV CD showed some small changes as a consequence of heat treatment, and the shifts at 205 nm ([theta](205)) fitted a two-state model. Plotting the changes in both Deltaepsilon(293) and [theta](205) against the loss of nativelike and sodium dodecyl sulfate-monomeric protein (assessed by polyacrylamide gel electrophoresis) showed a strong 1:1 relationship between Deltaepsilon(293) or [theta](205) and the loss of nativelike beta-Lg. These results indicated that the initial irreversible stage in the heat-induced aggregation of beta-Lg (nativelike monomer to unfolded monomer) altered the chirality of the environment of Trp(19) and modified the secondary structure of beta-Lg slightly. The differences in the behavior of variants A-C were explicable on the basis of generalized electrostatic and hydrophobicity effects as well as specific amino acid effects.  相似文献   

17.
The unfolding of beta-lactoglobulin during high-pressure treatment and its refolding after decompression were studied by 1H NMR and 2H/1H exchange at pH 6.8 and 2.5 and at 37 and 25 degrees C. The extent of unfolding increased with the pressure level. The structure of beta-lactoglobulin required higher pressures to unfold at pH 2.5 than at pH 6.8. More flexibility was achieved at 37 degrees C than at 25 degrees C. Results indicated that the structural region formed by strands F, G, and H was more resistant to unfold under acidic and neutral conditions. The exposure of Trp19 at an earlier time, as compared to other protein regions, supports the formation of a swollen structural state at pH 2.5. Refolding was achieved faster when beta-lactoglobulin was subjected to 200 MPa than to 400 MPa, to 37 degrees C than to 25 degrees C, and to acidic than to neutral pH. After treatment at 400 MPa for 20 min at neutral pH, the protein native structure was not recovered. All samples at acidic pH showed that the protein quickly regained its structure. Hydrolysis of beta-lactoglobulin by pepsin and chymotrypsin could be related to pressure-induced changes in the structure of the protein. Compared to the behavior of the protein at atmospheric pressure, no increased proteolysis was found in samples with no increased flexibility (100 MPa, 37 degrees C, pH 2.5). Slightly flexible structures were associated with significantly increased proteolysis (100 MPa, 37 degrees C, pH 6.8; 200 MPa, 37 degrees C, pH 2.5). Highly flexible structures were associated with very fast proteolysis (>or=200 MPa, 37 degrees C, pH 6.8; >or=300 MPa, 37 degrees C, pH 2.5). Proteolysis of prepressurized samples improved only when the protein was significantly changed after the pressure treatment (400 MPa, 25 degrees C, 20 min, pH 6.8).  相似文献   

18.
Although a thorough characterization of binding parameters is essential for application of beta-lactoglobulin as a carrier for a variety of small hydrophobic ligands, the binding parameters derived in various studies using various techniques are inconsistent. The bindings of several small ligands as detected by fluorometry and equilibrium dialysis were compared. Fluorescence spectroscopy showed that beta-ionone, retinol, and fatty acid lactones all bound in the vicinity of a tryptophan residue. Retinol and fatty acid lactone competed for the same binding site. Exclusively for ligands that quench the beta-lactoglobulin fluorescence through a resonance energy transfer mechanism, fluorometry yielded a systematically higher binding affinity than equilibrium dialysis. The binding overestimation in fluorometric measurements can be explained by oligomer formation of protein, together with an underestimation of the limiting quenching level at saturating ligand concentrations due to the use of a limited set of data points.  相似文献   

19.
Roles of sulfhydryl groups on thermal aggregation of beta-lactoglobulin A (betaLG A) at pH 7.5 were investigated. It is known that betaLG A modified at Cys(121) with N-ethylmaleimide (NEM-betaLG A) does not form an aggregate by heating and that dithiothreitol (DTT) reduces cystine residues and induces the intermolecular sulfhydryl/disulfide interchange reaction and/or oxidation. NEM-betaLG A was heated in the presence of DTT. The molecules were linked together with an intermolecular disulfide bridge, and the polymer formed increased with increase in DTT concentration. The largest portion of polymer was formed when DTT was added at around the same molar concentration as that of NEM-betaLG A. Then, polymer formation decreased with further increase in DTT concentration. The results suggest that sulfhydryl/disulfide residues other than Cys(121), generated from cysteine residues, can induce intermolecular sulfhydryl/disulfide interchange reactions to polymer and that thiol compounds, for example, added DTT, are capable of starting such reactions.  相似文献   

20.
Little is known about the long-term tillage and cropping management effects on the microbiologically derived factors that influence macroaggregates in semi-arid soil. We tested the hypothesis that differences in macro-aggregation are due to changes in soil structure related to management treatment-induced microbiological changes. In an experiment, microbiological factors consisting of aggregate stability, glomalin, russuloid basidiomycete fungi, uronic acids, total organic C (TOC), and total N (TN) were quantified in macroaggregate-size classes ranging from 4.75 to 0.25 mm, collected at 0–5 cm depth for the following treatments: (1) 12th year of fallow phase after 11 years of conventional- and no-tilled spring wheat-fallow (CTF and NTF), (2) 12th year of lentil phase after 11 years of conventional- and no-tilled spring wheat-lentil (CTL and NTL), (3) 12 years no-tilled continuous spring wheat (NTCW), and (4) 16 years uncultivated pasture (P) used as a baseline treatment. Immunoreactive easily extractable glomalin concentration was five to six times greater under P, NTCW, or NTL in the 2.00–1.00- and 1.00–0.50-mm macroaggregate-size classes than the other treatments and these results corroborated well with the results from aggregate stability assays. Russuloid basidiomycetes were highest in all NTCW macroaggregate-size classes, suggesting that annual input of lignin-containing wheat residues may influence the growth and survival of these fungi. Uronic acid amounts were highest in P but did not differ among the other treatments. In all macroaggregate-size classes, TOC content was greater in NTCW compared to CTF, and TN was about three times higher in NTL than NTF or CTF. In conclusion, 12 years of NTCW management in semi-arid soil has resulted in higher macroaggregate stability, glomalin concentration, russuloid basidiomycete populations, and TOC in macroaggregates compared to alternate-year fallow. Lentil can be used to replace fallow in dryland wheat rotation under no-till to enhance TN content and improve soil macro-aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号