首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
《Scientia Horticulturae》2005,106(2):203-212
Cultivation of roses in various soil-less media was studied with the aim to identify the optimum soil condition for rose production. Madelon roses grafted on rootstock of Rosa indica var. major were transplanted to polyethylene bags containing zeolite and perlite (at ratios of 25z:75p, 50z:50p, 75z:25p and 100z:0p, v/v) in a climate-controlled greenhouse. Net photosynthesis (Anet), stomatal conductance (gs) and water use efficiency (WUE) of roses were followed for 5 months. Flower production and quality were recorded in three flowering flushes during a 5-month period. Analysis of variance of repeated measurements showed that even though the overall Anet did not differ among treatments (average 18.7 μmol m−2 s−1), trends in Anet seasonality for roses in 25z:75p substrate differed significantly from those in 50z:50p, 75z:25p or 100z:0p. Stomatal conductance did not show any significant seasonality or trends in response to substrate mixtures, averaging 0.89 mol m−2 s−1. Water use efficiency was significantly lower for roses in 25z:75p than in 100z:0p mixtures (1.8 ± 0.15 and 2.0 ± 0.13 μmol m−2 s−1 CO2/mmol m−2 s−1 H2O, respectively). Cumulative production of rose plants did not differ among substrate mixtures. Productivity significantly differed among flower stem classes. Stem class I (>70 cm) and class V (≤30 cm) exhibited the least production, contributing to only 7.6 and 3.7% of the total production, respectively. The highest productivity was observed in classes III (51–60 cm) and IV (31–50 cm), contributing to the bulk of productivity (68.4%). Class II contributed a 20.3% of the production. Results showed that zeolite and perlite acted as inert materials. Zeolite did not exert any positive effect on productivity, in contrast to what has been reported in literature recently. Use of perlite resulted in a little improvement in photosynthesis, however this improvement was not reflected by a significant increase in production.  相似文献   

2.
《Scientia Horticulturae》2002,93(2):143-148
Actively growing shoots of potted greenhouse-grown strawberry tree (Arbutus unedo L.) were initially sterilised and established in basal woody plant medium containing 11.1 μM BA. Optimum shoot proliferation was achieved on a basal WPM containing MS vitamins, sucrose, agar and 22.2 μM BA. Microshoots rooted successfully in basal in vitro medium containing 10 μM IBA or IAA, but their survival rate during acclimatisation was low. Addition of a mixture 1 part peat:4 parts perlite in the basal in vitro rooting medium (1:1 v/v) containing 10 μM IAA resulted in high rooting percentage and plantlets with branched roots. These plantlets were successfully acclimatised. This novel rooting medium can be exploited further due to its potential in commercial applications.  相似文献   

3.
The present study aims to introduce an adaptive approach to intensive green roofs by evaluating suitable, lightweight substrates and by determining the effect of their depth on the growth and physiological status of Pittosporum tobira L. and Olea europaea L. The two-year study was conducted in outdoor containers (1.2 m × 1.2 m) while treatments included the use of two depths (30 cm and 40 cm) and three different substrates: (a) pumice (Pum) mixed with peat (P) and zeolite (Z) in a volumetric proportion of 65:30:5 (Pum65:P30:Z5), (b) pumice mixed with compost (C) and zeolite in a volumetric proportion of 65:30:5 (Pum65:C30:Z5) and (c) sandy loam soil (S) mixed with perlite (Per) and zeolite in a volumetric proportion of 30:65:5 (S30:Per65:Z5). Each experimental plot was planted with four plants of P. tobira and one plant of O. europaea var. Koroneiki. Measurements included determination of the physical and chemical characteristics of the substrates while plant growth and physiological status were determined through plant growth index, trunk perimeter for olive trees, SPAD measurements and chlorophylla+b content. Both the plant species exhibited better growth and higher chlorophyll content in the compost-amended substrate (Pum65:C30:Z5) due to its higher nutrient content. The 40 cm depth substrate provided minimal improvement in the growth of both the plants at the end of the first year while in the second year the deeper substrate positively influenced the growth of olive trees.  相似文献   

4.
《Scientia Horticulturae》2005,105(2):269-282
The fertilization of anthurium grown in soilless culture in tropical countries is often empirically based. The methods used generally lead the grower to overestimate plant needs and to apply excessive quantities of nutrients. Mineral elements, and thus money, are wasted and there is a risk of pollution of groundwater and watercourses. In order to improve our knowledge of plant requirements, we measured, over 2 1/2 years, the growth and yield of anthurium plants receiving nutrient solutions with different total nitrogen, potassium and calcium concentrations and different NH4+/NO3 ratios. Mineral analyses of plant parts, of nutrient, leachate and substrate solutions and of the solid substrate were carried out throughout plant development. Plants receiving 4.5 mmol N/l and 1.6 mmol K/l in the nutrient solution had significantly slower growth and lower yield compared to those receiving 8.9 mmol N/l and 3.2 mmol K/l. For these latter N and K concentrations, a N–NH4+/N–NO3 ratio of 0.37 and a calcium concentration of 1.15 mmol/l gave better plant growth, development and yield than a ratio of 0.24 and a calcium concentration of 2.25 mmol/l. Applying the nutrient solution containing 8.9 mmol N/l and 3.2 mmol K/l with a N–NH4+/N–NO3 ratio of 0.37 resulted in a shorter vegetative period and more and larger flower production. The calculated mineral balances of the crop showed that more than 60% of the supplied nutrients were lost in the leachate. Suitable nutrient solutions are proposed in order to match plant absorption at different crop growth stages. The volume of nutrient solution supplied can be reduced to limit the amount of leachate, but as water demand is high, there must be at least 30% of leaching to avoid salt accumulation in the substrate. Adjusting the nutrient solution volume and composition to match plant requirements is the first step for flower yield improvement, fertilizer efficiency and reduction of pollution.  相似文献   

5.
《Scientia Horticulturae》2005,103(2):227-232
Shoot tips from field grown, mature plants of Carissa carandas cv. Pant Sudarshan were cultured on Murashige and Skoog’s (MS) basal medium supplemented with benzyladenine (BA) and indolebutyric acid (IBA) during different seasons. The maximum sprouting rate was obtained with 1.5 cm long explant collected in spring season (February–March) followed by those collected in summer season (April–June). Shoot proliferation was highest on MS basal media supplemented with 3.0 mg l−1 BA. Rooting of microshoots was noted to be the best in 1/2 MS plus 0.8 mg l−1 IBA and 0.2 mg l−1 naphthalene acetic acid (NAA). The rooted plantlets were successfully acclimatized in vermiculite:sand:soil (1:1:1) potting mixture.  相似文献   

6.
《Scientia Horticulturae》2005,103(3):361-379
The temperature conditions for shoot growth and flower formation were characterised for saffron (Crocus sativus L.). Leaf withering occurred during late winter or spring depending on location, and coincided with a rise in temperature. No growth was detectable in the buds during the first 30 days after leaf withering, neither in underground corms nor in lifted corms incubated in the laboratory under controlled conditions. Flower initiation occurred during the first growth stages of the buds. The optimal temperature for flower formation was in the range from 23 to 27 °C, 23 °C temperature being marginally better. To ensure the formation of a maximum number of flowers, the incubation at these temperatures should exceed 50 days, although incubation longer than 150 days resulted in flower abortion. Flower emergence required the transfer of the corms from the conditions of flower formation to a markedly lower temperature (17 °C). Incubation of the corms after lifting at a higher temperature (30 °C), reduced flower initiation and caused the abortion of some of the initiated flowers. No flowers formed in corms incubated at 9 °C. A variable proportion (20–100%) of the corms forced directly at 17 °C without a previous incubation at 23–27 °C formed a single flower. The wide differences in the timing of the phenological stages in different locations we found in this study seemed related to the ambient temperature. Leaf withering was followed shortly by flower initiation, which occurred during late spring or early summer as the rising temperature reached 20 °C. A long hot summer delayed flower emergence which occurred in late autumn as the temperature fell to the range of 15–17 °C.  相似文献   

7.
《Scientia Horticulturae》2005,106(4):568-581
The response of melon (Cucumis melo) plants to long-term salinity was investigated to determine the availability of the NaCl pre-treatments (seed priming + seedling conditioning) as an interesting strategy for increasing the salt tolerance. Seeds of melon cultivars “Hasanbey” and “Kirkagac” were primed with 18 dS m−1 NaCl solution for 3 days at 20 °C. During emergence and seedling growth, non-primed seeds were irrigated with local irrigation water (EC: 0.3 dS m−1) whereas primed groups were treated with 9.0 dS m−1 saline solution for 35 days. Seedlings derived from pre-treated (P) and non-pre-treated (NP) groups were transplanted to 8 l pots. After transplanting, salinity treatments were started with the first irrigation. The salinity treatments consisted of five levels (control, 4.5, 9.0, 13.5 and 18.0 dS m−1) of irrigation solution for a period of 90 days. NaCl pre-treatments diminished the inhibiting effect of salinity on growth of melon plants. However, competence for salt adaptation varied with cultivar and the level of salinity. The physiological response of the P plants was also maintained in the long-term. Stomatal conductance and relative chlorophyll content of P plants tended to be higher than those of the NP ones. In addition, NaCl pre-treatments enhanced K and Ca concentrations of leaves and stems, and prevented toxic effects of salinity because less Na accumulated in stems. These results suggest that the use of NaCl pre-treatments could be a useful strategy to increase the salt tolerance of melon plants in the long-term and also to permit the establishment of melon crop by direct sowing in a saline medium.  相似文献   

8.
《Scientia Horticulturae》2005,104(1):11-24
Leaf CO2 assimilation rate, stomatal conductance (gs), internal CO2 concentration (Ci), chlorophyll (a + b) content, specific leaf weight (SLW) and stomatal density were measured during the season, under field conditions, for five major Greek olive cultivars, ‘Koroneiki’, ‘Megaritiki’, ‘Konservolia’, ‘Lianolia Kerkiras’, and ‘Kalamon’, with different morphological and agronomic characteristics and diverse genetic background. Measurements were taken from current-season and 1-year-old leaves, and from fruiting and vegetative shoots, throughout the season, from March to November in years 2001 and 2002. CO2 assimilation rates showed a substantial seasonal variation, similar in all cultivars, with higher values during spring and autumn and lower values during summer and late autumn. Stomatal conductance (gs) followed similar trends to leaf CO2 assimilation rates, increasing from March to July, following by a decrease during August and increasing again in autumn. ‘Koroneiki’ had the highest leaf CO2 assimilation rate and gs values (21 μmol m−2 s−1 and 0.45 mol m−2 s−1, respectively) while ‘Lianolia Kerkiras’ and ‘Kalamon’ showed the lowest leaf CO2 assimilation rate and gs values (13–14 μmol m−2 s−1 and 0.22 mol m−2 s−1, respectively). One-year-old leaves had significantly higher leaf CO2 assimilation rate than current-season leaves from April to June, for all cultivars. From August and then, leaf CO2 assimilation rate in current-season leaves was higher than in 1-year-old leaves. There were no significant differences in leaf CO2 assimilation rate between fruiting and vegetative shoots. Total chlorophyll (a + b) content increased with leaf age in current-season leaves. In 1-year-old leaves chlorophyll content increased in spring, then started to decrease and increased slightly again late in the season. Chlorophyll content was higher in 1-year-old leaves than in current-season leaves throughout the season. Total specific leaf weight (SLW) increased throughout the season for all cultivars. Stomatal density in lower leaf surface was lowest for ‘Koroneiki’ (399 mm−2) and highest for ‘Megaritiki’ (550 mm−2). Our results showed differences in leaf CO2 assimilation rate among the five different olive cultivars, with a diverse genetic background, ranging from 12 to 21 μmol m−2 s−1. From the five cultivars examined, ‘Koroneiki’, a drought resistant cultivar, performed better and was able to maintain higher leaf CO2 assimilation rate, even under high air vapor pressure deficit. All cultivars had a pronounced seasonal variation in leaf CO2 assimilation rate, affected by date of the year, depending on ambient conditions. The high temperatures and high air vapor pressure deficit occurring during summer caused a reduction in leaf CO2 assimilation rate in all cultivars. Leaf CO2 assimilation rate was also affected by leaf age for all cultivars, with old leaves having significantly higher leaf CO2 assimilation rate than young leaves early in the season.  相似文献   

9.
《Scientia Horticulturae》2005,105(3):411-420
Callus induction and somatic embryogenesis of lotus (Nelumbo nucifera Gaertn.) cv. Satabankacha were studied. Callus was initiated by culturing bud, cotyledon, and young leaf explants on Murashige and Skoog (MS) (1962) medium containing a combination of 0, 4, 8 and 10 μM 2,4-dichlorophenoxy acetic acid (2,4-D) and 0, 1, 2 and 3 μM 6-furfuryl amino purine (kinetin) or substituting 0, 0.5 and 1 μM benzyladenine (BA) for kinetin. Bud explants cultured on medium containing 4 μM 2,4-D and 1 μM BA gave the best callus growth. For somatic embryogenesis, the calli initiated on MS medium containing a combination of 4, 6, 8 and 10 μM 2,4-D and 1 μM BA and subsequently transferred to media containing 2–4 μM 2,4-D and 0 or 0.5 μM BA produced the most somatic embryos. When cultures were 12-week-old, callus produced on medium with 6 μM 2,4-D and 1 μM BA showed the best growth for somatic embryo regeneration. When transferred to a medium with 2 μM 2,4-D and 0.5 μM BA somatic embryos were produced from 33% of the calli. Embryos developed to the stage proembryo within 4 weeks and formed globular, heart, torpedo and mature embryos within 16 weeks.  相似文献   

10.
In order to optimise the organic components of topsoil mixtures for urban grassland, we conducted two pot experiments, each with seven topsoil mixtures and perennial ryegrass (Lolium perenne) as the experimental crop. The mineral base material of the topsoil mixtures was a blend of crushed bedrock (0–2 mm), sand and agricultural topsoil. The organic components comprised three types of organic waste-based products (WBP), namely sewage sludge (SS), water sludge (WS) and garden-park compost (GPC), which were added in varying ratios to a total amount of 0.3 m3 WBP m?3. In both experiments, mineral nitrogen (N) availability was the key limiting factor for plant growth. Plant growth increased with increasing amounts of the N-rich SS, whereas WS and/or GPC alone resulted in sparse biomass production. Topsoil mixtures with 0.1 m3 m?3 each of SS, WS, GPC or with 0.1 m3 SS m?3 and 0.2 m3 WS m?3 resulted in favourable growth patterns and acceptable soil chemical properties. Topsoil mixtures containing ≤0.1 m3 SS m?3 can therefore be recommended for the establishment of urban grassland. With >0.1 m3 SS m?3, N and phosphorus (P) were applied in excess, causing intensive plant growth and strongly increased readily available phosphorus (P-AL) content in topsoil. We therefore suggest revision of the current Norwegian regulations, which permit inclusion of 0.3 m3 SS m?3 in topsoil mixtures for urban greening.  相似文献   

11.
《Scientia Horticulturae》2001,88(4):277-287
In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability were investigated. The growth of shoot tip cultures on agar MS medium containing 2.0 mg l−1 BA was greater than that of similar cultures in liquid MS medium with the same BA concentration. In liquid medium, the combinations of 0.5, 1.0, or 2.0 mg l−1 BA with 0.05 mg l−1 NAA tended to enhance the growth of the cultures. The efficiency of tetraploid induction was assessed by treating shoot tip explants on agar or in liquid MS medium containing 2.0 mg l−1 BA, 0.05 mg l−1 NAA, and 0.2% (w/v) colchicine for 4, 8, 12, and 14 days. The total number of tetraploids induced on solid medium was 18, but only five in liquid medium. On both media, the colchicine treatment for 8 days gave the maximum level of tetraploid induction. Therefore, it was found that the treatment of shoot tip explants on agar medium containing 2.0 mg l−1 BA, 0.05 mg l−1 NAA, and 0.2% (w/v) colchicine for 8 days was the most efficient way of inducing tetraploid ginger. Induced tetraploid strains, ‘4× Kintoki’, ‘4× Sanshu’, and ‘4× Philippine cebu 1’, had higher pollen fertility and germinability than the diploid counterparts, i.e., in the diploid strains, pollen fertility ranged from 0.3 to 6.2% and the germination rate from 0.0 to 0.1%, while in the tetraploid strains, pollen fertility ranged from 27.4 to 74.2% and the germination rate from 4.8 to 12.9%.  相似文献   

12.
《Scientia Horticulturae》2005,106(3):427-439
Cell suspension cultures were established from immature cotyledon derived calli from drought tolerant legume horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. Embryogenic callus could be originated from cut slices of the immature cotyledons on MS solid medium [Murashige, T. Skoog, K., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497] augmented with 1.0 μM zeatin and 4.5 μM NAA. Numerous somatic embryoids (26.4%) appeared on MS liquid basal nutrient medium with 5.6 μM NAA and with absence of zeatin during 3 weeks culture. Sustained cell division resulted in the formation of cell aggregates, and then progressed to globular, heart and further if they differentiate properly to torpedo and cotyledonary stages within 5 weeks. Transfer of individual embryos on to a fresh MS basal medium with no plant growth regulators was able to achieve complete maturation. Only a relatively few number of embryos developed into root/shoot when transferred to 0.9 μM GA3, 15 g/l−1 sucrose and 2.4 g/l−1 gelrite containing medium. Substitution of sucrose associated with the use of l-glutamine gave, in the range of concentrations tested, the strongest enhancement of the embryo growth and development. About 5% of somatic embryos were converted into true-to-type fertile plants.  相似文献   

13.
《Scientia Horticulturae》2001,87(1-2):131-138
An efficient system has been developed for the in vitro plant regeneration of Lilium longiflorum Thunb. by culturing receptacle sections from flower buds. The sections were cultured on one-half MS medium plus 30 g l−1 sucrose, 8 g l−1 agar, 5.4 μM NAA or 4.9 μM IBA plus 2.2 μM BAP. A section size of 3–4 mm was found to be optimal. After 60 days an average of 41 shoots were formed per explant. More vigorous shoots were obtained by subculturing on hormone-free medium with 20 g l−1 sucrose. Rooting occurred on one-half MS medium with 1.1 μM NAA. Rooted plants were hardened-off in a greenhouse for two months, and normal flowering plants were produced.  相似文献   

14.
《Scientia Horticulturae》2005,104(3):325-337
The influence of 24 h mean air temperature (18.3, 20.6, 23.9 and 25.8 °C) and photosynthetic photon flux (PPF; 0.6, 2.1, 3.7 and 4.7 mol m−2 d−1) on the growth cycles of vegetative growth in Ilex × meserveae (‘Blue Princess’ S.Y. Hu) was investigated. Plants propagated from top cuttings were grown in greenhouse compartments. The number of unfolded leaves was recorded continuously throughout the experiment. A modified sine function was fitted to collected data and the values for the amplitude and frequency of the growth curves were analysed. The sine function was tested as a method to evaluate the influence of climate on periodically flushing species. Both amplitude and frequency were significantly influenced by air temperature and PPF. The highest frequency of flushing was found at 23.9 °C and 3.7 mol m−2 d−1. The function resulted generally in a good fit to collected data with R2 values above 0.9. Growth curves of all individual plants were categorised with respect to their growth pattern as poor synchronisation within the treatments did not allow analysis of the mean values of the growth curves.  相似文献   

15.
Urban vegetation has been proved to play an important role in mitigating the heat island effect. However, it is not clear how independent small-scale plant communities affected the microclimate. In this paper, the effects of fifteen plant communities on temperature and relative humidity were investigated from November 2010 to October 2011 in urban parks in subtropical Shenzhen City, China. The canopy density, canopy area, tree height and the background climate conditions under plant communities were measured. The effects of small-scale plant communities on temperature and relative humidity were the most significant at 1400–1500 h during the day. The temperature reduction and relative humidity increase due to small-scale plant communities were higher in summer, followed by autumn, spring and winter. As compared to the control open sites, the temperature reduction due to plant communities ranged from 2.14 °C to 5.15 °C, and the relative humidity increase ranged from 6.21% to 8.30%. We found that multilayer plant communities were the most effective in terms of their cooling and humidifying effect, while bamboo groves were the least effective. Regression results revealed that four factors, namely canopy density, canopy area, tree height and solar radiation, had significant influence on temperature reduction and relative humidity increase.  相似文献   

16.
Dwarf geophytes have great potential for use on extensive green roofs because they often come from arid areas and can survive dry and hot summer in a dormant state. However, there has been little research regarding geophytes on green roofs. This experiment was conducted to study the performance of 26 species of geophytes on a green roof during 2005–2006 in Sheffield, UK. The geophytes were grown at two substrate depths (5 cm and 10 cm) of substrate on a green roof without irrigation. To investigate the susceptibility of geophytes to competition from a covering of permanent plants, the geophytes were grown with or without a surface vegetation layer of Sedum album. Overall, the growth, survival rate, regeneration and flowering of geophytes were more successful at a substrate depth of 10 cm than of 5 cm, probably because of improved moisture retention, fewer temperature fluctuations and the protection from digging by animals. The flowering period was limited to spring, therefore, it is recommended to combine with other plant species such as covering plants. Geophyte species did not compete much with S. album and Sedum cover had no significant effects on the growth, survival rate, regeneration and flowering of geophytes in most species. Iris bucharica, Muscari azureum, Tulipa clusiana var. chrysantha, Tulipa humilis, Tulipa tarda and Tulipa turkestanica had good performance at the substrate depth of 5 cm. In addition, Narcissus cyclamineus ‘February gold’ and Tulipa urumiensis exhibited a successful performance at the substrate depth of 10 cm.  相似文献   

17.
《Scientia Horticulturae》2001,89(2):115-128
The possible application of some less commonly used in vitro growth regulating compounds is outlined. A number of treatments were applied to determine the best way of inducing in vitro shoot proliferation and rooting on a modified Driver–Kuniyuki [HortScience 19 (1984) 507] basal medium of lemon (Citrus limon (L.) Burm, f. cv. Interdonato) seedlings. 6-Benzyladenine (BA) alone (1, 2 and 4 mg l−1) and in combination with either orange juice (10%, v/v), silver nitrate (3 mg l−1), gibberellic acid (GA3) (0.1 mg l−1 at the establishment stage and 0.5 mg l−1 at all combinations during the proliferation stage) or abscisic acid (ABA) (0.2 mg l−1 only at the establishment stage) were used to stimulate shoot formation during the establishment and the proliferation stage. The combination of BA with ABA gave a high rate of shoot formation, while GA3 and silver nitrate enhanced shoot elongation. When these shoots were transferred to the rooting stage, the effect of application of two different auxins (indole-3-butyric acid (IBA) and α-napthaleneacetic acid) was examined, as well as different methods of application (auxin added to the basal medium and auxin application by dipping the base of the explant in auxin solution). Dipping the base of the explants in a 50% ethanol solution of IBA at 1000 mg l−1 for 5 s resulted in 80% rooting with subsequent 90% survival of these explants, during acclimatization under mist.  相似文献   

18.
《Scientia Horticulturae》2005,104(1):25-36
We studied the effects of Fe deficiency on physiological parameters of citrus rootstocks grown in nutrient solution. Three 4-week old rootstocks (‘Troyer’ citrange – Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf., Citrus taiwanica Tan. and Shim., and ‘Swingle’ citrumelo – Poncirus trifoliata (L.) Raf. × Citrus paradisi Macf.) were grown in nutrient solutions with 0, 5, 10, 15 and 20 μmol Fe dm−3. Calcium carbonate (1 g dm−3) was added to all solutions to mimic the natural conditions in calcareous soils. For each rootstock, shoot length, number of leaves, and root and shoot dry weights were measured at the end of experiment. Chlorophyll concentration was estimated using a portable SPAD-502 meter calibrated for each rootstock. The amount of nutrients (P, K, Mg, Ca, Fe, Zn, Mn, and Cu) was determined in shoots. Chlorophyll fluorescence parameters (F0: basal fluorescence; Fm: maximum fluorescence; Fv = FmF0: variable fluorescence) were measured with a portable fluorimeter. ‘Troyer’ citrange rootstock was the most tolerant to Fe deficiency. These plants grew more and accumulated more chlorophyll and nutrients than the others in the presence of low levels of Fe (10 μmol Fe dm−3). ‘Swingle’ citrumelo plants needed 20 μmol Fe dm−3 in the nutrient solution to secure adequate growth. ‘Taiwanica’ orange rootstock had an intermediate behaviour, but could be distinguished from ‘Troyer’ citrange based on fluorescence parameters, since there was a variation in the basal fluorescence in the former, whereas in ‘Troyer’ citrange the basal fluorescence was not affected by the supply of Fe.  相似文献   

19.
《Scientia Horticulturae》2005,106(3):415-426
The effect of silver nitrate on shoot differentiation and shoot growth was examined in order to improve the regeneration efficiency of pistachio (Pistacia vera L. cv. Kirmizi) in vitro. Nodal explants of in vitro-grown seedlings were used to test various concentrations and combinations of 6-benzyladenine (BA), kinetin (KIN), gibberellic acid (GA3) and silver nitrate (AgNO3). Addition of AgNO3 up to 48.0 μM to the culture medium improved the regeneration frequency and shoot growth, and reduced basal callus formation in all regenerated explants. The highest regeneration frequency (100%) was recorded on Murashige and Skoog (MS) medium containing 9.0 μM BA, 0.2 μM GA3 and 24.0 or 48.0 μM AgNO3 in combination. The best proliferation response in terms of both shoot formation and low callus production was obtained in the medium containing a combination of 9.0 μM BA, 0.2 μM GA3 and 12.0 μM AgNO3. Regenerated shoots, coming from three cycles of subculturing in proliferation media, were rooted in half-strength MS medium containing 12.0 μM indole-3-butyric acid (IBA). Well rooted plantlets were acclimatized and eventually established in peat and perlite. The development and optimization of an effective micropropagation protocol that is presented in this paper can give an important contribution to improve the quality of pistachio plants and, as a consequence, of orchard production in Middle East countries.  相似文献   

20.
《Scientia Horticulturae》2005,107(1):90-96
Somatic embryogenic cell suspension cultures of four ginger cultivars were established. Somatic embryogenic calli were induced from ginger shoot tips on MS agar medium supplemented with 1.0 mg l−1 2,4-D and 0.2 mg l−1 Kn, which contained only half concentration of NH4NO3. Rapid-growing and well-dispersed suspension cultures were established by subculturing this kind of callus in the same liquid MSN medium. The suspension cultures (about 1–2 mm in diameter) were placed on the MSN agar medium for callus proliferation. Thereafter embryogenic callus (1.5 cm2) was transferred to solid media (MS + 0.2 mg l−1 2,4-D + 5.0 mg l−1 BA + 3% sucrose + 0.7% agar). Somatic embryos produced shoots and roots, and shoots developed into complete plantlets on solid MS medium supplemented with 3.0 mg l−1 BA and 0.1 mg l−1 NAA. The relationship between the DW of suspension cultures and pH changes in medium is also discussed. The suspension cultures still kept their vitalities after subculture for 8 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号