首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
稻瘟病是水稻重要病害之一,严重影响水稻的产量与品质。培育抗性品种是防治稻瘟病最经济、环保的方式。稻瘟病抗性基因的鉴定与挖掘是开展抗病育种的基础与前提。本课题组前期对419份广西水稻地方品种核心种质进行简化基因组测序,获得208,993个高质量SNP标记。本研究采用苗期喷雾接种方法,研究了该419份核心种质对7个稻瘟病生理小种的抗性,并根据表型和基因型数据,利用一般线性模型(general linear model,GLM)和混合线性模型(mixed linear model,MLM)进行全基因组关联分析。2种模型下共检测到20个位点,其中GLM检测到20个位点,MLM检测到1个位点,Chr12_10803913位点在2种模型下都检测到。17个位点与前人定位的基因/QTLs重叠,其余3个是新位点,分别为Chr3_18302718、Chr3_18302744及Chr5_10379127位点。在20个显著关联位点上下游各150 kb的基因组区域中共筛选出候选基因323个,初步确定8个候选基因与抗病相关,其中LOC_Os12g18360(Pita)、LOC_Os12g18729(Ptr)为已知克隆的基因,LOC_Os03g32100、LOC_Os03g32180和LOC_Os05g18090为新位点附近筛选到的候选基因。本研究结果为稻瘟病抗性位点挖掘与稻瘟病相关基因克隆提供了科学依据。  相似文献   

2.
R917, a japonica rice mutant with broad-spectrum of resistance to blast, was selected after treatment of the F1 seeds from the cross between Chengte 232 and Xiushui 37 with 10 krad of 60Co γ-ray. R917 was evaluated for blast resistance in multiple years and locations. It was resistant to 136 of 138 strains of Magnaporthe grisea collected from different regions in China with a resistance frequency of 98.55%, much higher than 86.13% and 10.15% of Chengte 232 and Xiushui 37. To analyze its inheritance of resistance to blast, R917 was crossed with the susceptible cultivar, Nonghu 6, and its two parents. It had a single dominant resistance gene to Chinese races ZB13, ZC15 and ZE3, nonallelic to those of Chengte 232 and Xiushui 37. When inoculated with 7 Japanese differential strains, R917 showed the same reaction pattern as Toride 1 and differed from the other differential varieties. But R917 was different from Toride 1 in its reaction to 7 Chinese strains. Allelism test indicated that the resistance genes between R917 and Toride 1 were nonallelic to Chinese races ZC15 and ZE3. R917 was a semi dwarf with strong stem, narrow and erect leaf, tight plant type and monogenic broad-spectrum resistance to blast. Several lines with desirable agronomic traits newly bred using R917 as a donor of blast resistance had the same broad-spectrum of resistance to blast as R917, indicating there was no linkage drag between the resistance gene and other important agronomic genes in R917. R917 has been used as a donor in rice breeding programs in China. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
To study the genetic basis of rice flag leaf morphology, quantitative genetic analysis was conducted in a population of 37 chromosome segment substitution lines (CSSLs) of indica elite variety ‘Habataki’ in the background of japonica cultivar ‘Sasanishiki’ across three different environments. The CSSLs showed normal distribution with transgressive segregation, indicating that these four traits are controlled by polygenes. Moreover, analyses of variance showed that these traits were highly influenced by the growing environment, which are typical for polygenic quantitative traits. Seven quantitative trait loci (QTLs) on four chromosomes were detected in total: four for flag leaf width, one for flag leaf area and two for flag leaf angle. Two key QTLs, qFLW4 and qFLAG5 controlling flag leaf width and angle, respectively, were identified in all three environments. These QTLs could provide useful information for marker‐assisted selection in improving the performance of plant architecture with regard to leaf angle and area. Moreover, developed CSSLs with these QTLs information are also useful research materials to reveal the importance of leaf morphology in relation to grain yield.  相似文献   

4.
Improving the eating quality of cooked rice has been one of the most important objectives in rice breeding programs. Eating quality of cooked rice is a complex trait including several components, such as external appearance, taste, aroma, and texture. Therefore, dissection of these components followed by marker-assisted selection of detected QTL(s) may be a useful approach for achieving desirable eating quality in rice breeding. Whiteness of cooked rice (WCR) is an important factor related to the external appearance of cooked rice. WCR is known to be associated with the amylose and protein contents of the endosperm. However, the genetic basis of WCR remains unclear. In this study, we evaluated phenotypic variation in WCR among recently developed rice cultivars from Hokkaido, Japan. Then, we developed doubled haploid lines (DHLs) derived from a cross between two cultivars from Hokkaido, Joiku No. 462 (high WCR) and Jokei06214 (low WCR). Using the DHLs, we detected two QTLs for WCR, qWCR3 and qWCR11, on chromosomes 3 and 11, respectively. We also examined the dosage effect of the two QTLs based on both the categorized segregants in the DHLs and the relationship between the WCR phenotype and inheritance around the QTL regions in cultivars from Hokkaido.  相似文献   

5.
Rice blast is one of the major fungal diseases that badly reduce rice production in China and worldwide. Association mapping for blast resistance was performed on 226 japonica rice cultivars with 118 pairs of SSR markers. The blast resistance was evaluated by inoculating with two isolates, DB22 and DB77, at the tillering stage in 2013 and 2014, separately. A total of 31 associations with 17 different SSRs were significantly (P < 0.05) associated with blast resistance based on the mixed linear model (MLM), of which nine markers could be detected in both 2013 and 2014, including two markers that were simultaneously associated with the two isolates. Five of the nine stable markers were consistent with the genome regions identified by linkage mapping in previous reports. Phenotypic effects of each allele of the nine stable markers were compared, and 18 favourable alleles were identified. Five elite parental combinations were designed for improving blast resistance in rice. Our results demonstrate that association mapping can complement and enhance previous QTL information for marker‐assisted selection and breeding by design.  相似文献   

6.
A series of DNA markers for various agronomic traits may accelerate the success of marker-assisted selection in practical plant breeding programmes. Here, we developed DNA markers for the blast resistance gene Pi-cd. In this study, we examined the effects of the Pi-cd locus on not only blast resistance but also agronomic traits in agriculture. We developed three pyramiding lines (PLs) coupling Pi-cd with three blast resistance genes, pi21, Pi35 and Pi39. The effect of Pi-cd on blast resistance was dependent on the coupled resistance genes. Then, we evaluated the effects of Pi-cd on 13 agronomic traits. Amylose content and 1,000-grain weight showed significant differences between the PLs and current commercial varieties, which had no negative effects on agronomic trait values. Furthermore, we investigated the distribution of genotype for the Pi-cd locus among varieties of upland rice. The KT genotype specific to rice blast resistance may be predominant in the varieties. The results suggested that Pi-cd has the potential to be useful for improving blast resistance in rice breeding programmes.  相似文献   

7.
Fusarium head blight (FHB), one of the most destructive diseases of wheat in many parts of the world, can reduce the grain quality due to mycotoxin contamination up to rejection for usage as food or feed. Objective of this study was to map quantitative trait loci (QTL) associated with FHB resistance in the winter wheat population ‘G16‐92’ (resistant)/‘Hussar’. In all, 136 recombinant inbred lines were evaluated in field trials in 2001 and 2002 after spray inoculation with a Fusarium culmorum suspension. The area under disease progress curve was calculated based on the visually scored FHB symptoms. For means across all environments two FHB resistance QTL located on chromosomes 1A, and 2BL were identified. The individual QTL explained 9.7% and 14.1% of the phenotypic variance and together 26.7% of the genetic variance. The resistance QTL on 1A coincided with a QTL for plant height in contrast to the resistance QTL on 2BL that appeared to be independently inherited from morphological characteristics like plant height and ear compactness. Therefore, especially the QTL on 2BL could be of great interest for breeding towards FHB resistance.  相似文献   

8.
J. Jensen    G. Backes    H. Skinnes  H. Giese 《Plant Breeding》2002,121(2):124-128
Three quantitative trait loci (QTL) for scald resistance in barley were identified and mapped in relation to molecular markers using a population of chromosome doubled‐haploid lines produced from the F1 generation of a cross between the spring barley varieties ‘Alexis’ and ‘Regatta’. Two field experiments were conducted in Denmark and two in Norway to assess disease resistance. The percentage leaf area covered with scald (Rhynchosporium secalis) ranged from 0 to 40% in the 189 doubled‐haploid (DH) lines analysed. One quantitative trait locus was localized in the centromeric region of chromosome 3H, Qryn3, using the MAPQTL program. MAPQTL was unable to provide proper localization of the other two resistance genes and so a non‐interval QTL mapping method was used. One was found to be located distally to markers on chromosome 4H (Qryn4) and the other, Qryn6, was located distally to markers on chromosome 6H. The effects of differences between the Qryn3, Qryn4 and Qryn6 alleles in two barley genotypes for the QTL were estimated to be 8.8%, 7.3% and 7.0%, respectively, of leaf covered by scald. No interactions between the QTLs were found.  相似文献   

9.
S. L. Ji    L. Jiang    Y. H. Wang    W. W. Zhang    X. Liu    S. J. Liu    L. M. Chen    H. Q. Zhai    J. M. Wan 《Plant Breeding》2009,128(4):387-392
A high rate of germination at low temperatures is necessary for economic yields to be maintained. In this paper, the genetic control of low temperature germination ability (LTG) was assessed by the measurement of germination rate (GR), germination rate index (GI) and mean germination time (MGT), and genetically mapped using a set of recombinant inbred lines, derived from a cross between the japonica cultivar 'Asominori' and the indica cultivar 'IR24'. Putative quantitative trait loci (QTL) were validated by testing in two related sets of chromosome segment substitution lines (CSSL). In this genetic background, LTG is under the control of a number of QTL, each of relatively small effect, and is spread over six chromosomes. The most stable of these QTL was for GR, mapping to a segment of chromosome 11 which also carries a QTL for GI. On chromosome 2, qGR-2 not only controlled GR, but also was associated with GI and MGT. Significant differences in LTG were detected between 'Asominori' and some CSSL harbouring qGR-2 or qGR-11 .  相似文献   

10.
11.
白叶枯病是水稻生产最严重的细菌性病害,挖掘新的白叶枯病抗性基因资源并培育抗病品种是控制该病害的重要方法。本研究利用父母本抗性差异较大的协优9308衍生的139个重组自交系群体作为遗传材料,人工接种不同白叶枯菌后的病斑长度作为连续型表型,结合经DNA深度测序获得的476,505个单核苷酸多态性(single-nucleotide polymorphism,SNP)标记进行全基因组关联分析(genome-wide associated study,GWAS)。结果表明在P<1×10–4下, 4个菌株处理后共鉴定到109个与白叶枯抗性显著关联的SNPs位点,解释表型变异率59.78%~63.29%。其中CR4接种发现了25个SNP位点其贡献率为61.00%,在这些SNP位点附近共筛选到19个基因,其中有2个为NBS-LRR抗病相关基因(LOCOs11g43420和LOCOs11g45930)。表达分析验证发现该2个基因在抗性亲本中恢9308的表达量分别为感病母本协青早B的4.42倍和8.86倍,表明其可能在正调控白叶枯病...  相似文献   

12.
An F8 recombinant inbred population was constructed using a commercial indica rice variety Zhong 156 as the female parent and a semidwarf indica variety Gumei 2 with durable resistance to rice blast as the male parent. Zhong 156 is resistant to the fungus race ZC15 at the seedling stage but susceptible to the same race at the flowering stage. Gumei 2 is resistant to ZC15 at both stages. The blast resistance of 148 recombinant inbred lines was evaluated using the blast race ZC15. Genetic analysis indicated that the resistance to leaf blast was controlled by three genes and the presence of resistant alleles at any loci would result in resistance. One of the three genes did not have effects at the flowering stage. Two genes, tentatively assigned as Pi24(t) and Pi25(t), were mapped onto chromosome 12 and 6,respectively, based on RGA (resistance gene analog), RFLP and RAPD markers. Pi24(t) conferred resistance to leaf blast only, and its resistance allele was from Zhong 156. Pi25(t) conferred resistance to both leaf and neck blast, and its resistance allele was from Gumei 2. In a natural infection test in a blast hot-spot, Pi25(t) exhibited high resistance to neck blast, while Pi24(t) showed little effect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
14.
A doubled haploid (DH) population of 125lines derived from IR64 × Azucena, an indicajaponica cross were grown in three different locations in India during the wet season of 1995. The parents of mapping population had diverse phenotypic values for the eleven traits observed. The DH lines exhibited considerable amount of variation for all the traits. Transgressive segregants were observed. Interval analysis with threshold LOD > 3.00 detected a total of thirty four quantitative trait loci (QTL) for eleven traits across three locations. The maximum number of twenty QTL were detected at Punjab location of North India. A total of seven QTL were identified for panicle length followed by six QTL for plant height. Eight QTL were identified on three chromosomes which were common across locations. A maximum of seven QTL were identified for panicle length with the peak LOD score of 6.01 and variance of 26.80%. The major QTL for plant height was located on Chromosome 1 with peak LOD score of 16.06 flanked by RZ730-RZ801 markers. Plant height had the maximum number of common QTL across environment at the same marker interval. One QTL was identified for grain yield per plant and four QTL for thousand grain weight. Clustering of QTL for different traits at the same marker intervals was observed for plant height, panicle exsertion, panicle number, panicle length and biomass production. This suggests that pleiotropism and or tight linkage of different traits could be the plausible reason for the congruence of several QTL. Common QTL identified across locations and environment provide an excellent opportunity for selecting stable chromosomal regions contributing to yield and yield components to develop QTL introgressed lines that can be deployed in rice breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.  相似文献   

16.
17.
Whitebacked planthopper (WBPH) is an important insect pest of rice. In this study, we report quantitative trait loci (QTL) associated with resistance to WBPH using a doubled‐haploid (DH) mapping population derived from the cross IR64/Azucena. We evaluated a set of 91 DH lines using various screening tests which measure seedling resistance, antibiosis and tolerance to WBPH. QTL analysis involving a RFLP map of 175 markers detected a significant QTL on chromosome 7 (RG511‐RG477) associated with seedling resistance to WBPH. In addition, QTL analysis involving available defence related candidate genes as markers on a sub set of 60 DH lines showed significant association of genomic regions on chromosome 1 (W1‐pMRF1), 2 (XLRfrI7‐RG157) and 7 (RG711‐CDO418) with resistance to WBPH. Several suggestive QTL were detected on chromosomes 2, 3, 6, 7, 8 and 11 showing the possibility of their association with resistance to WBPH. The phenotypic contribution of the QTL ranged from 8.4% to 32.1%. Some of the WBPH resistance QTL detected in this study showed similar map positions with the QTL reported for resistance to brown planthopper (BPH) in the same mapping population. These results would be useful for attempts to trace the genes associated with resistance to planthoppers in rice.  相似文献   

18.
K. Kubo    I. Elouafi    N. Watanabe    M. M. Nachit    M. N. Inagaki    K. Iwama    Y. Jitsuyama 《Plant Breeding》2007,126(4):375-378
Increasing root penetration (RP) ability into hard soil is important to improve drought resistance in durum wheat. Traits related to RP ability were evaluated in 110 recombinant inbred lines (RILs) derived from a cross between 'Jennah Khetifa' and 'Cham1' using paraffin-Vaseline (PV) discs. QTL analyses were made for the number of roots penetrating the PV disc (PVRN), total number of seminal and crown roots (TRN), RP index (PVRN/TRN) and root dry weight (DW). 'Jennah Khetifa' had higher PVRN, RP index and root DW values than 'Cham1', and the RILs showed significant differences for these traits. Two closely-linked markers, Xgwm617a and Xgwm427b , on the long arm of chromosome 6A were associated with PVRN and RP index. For root DW, a QTL was linked to marker Xgwm11 on chromosome 1B. Alleles of 'Jennah Khetifa' were associated with increased PVRN, RP index and root DW. No QTL was detected for TRN in this mapping population. The absence of co-located QTLs suggested that RP ability was controlled separately from TRN and root DW. Although the population size and number of replications were small, this study helps in understanding the complexity of root growth and the potential of marker-assisted selection for selecting genotypes with high RP ability in durum wheat populations.  相似文献   

19.
Flooding stress causes a significant yield reduction in soybean. The early growth of soybean in Korea coincides with the rainy season, potentially exposing to flooding stress. Greenhouse experiments were conducted to map the quantitative trait loci (QTL) for flooding tolerance in soybean and to identify and investigate candidate genes near the QTL hot spots. Flood stress was imposed at V1–V2 stage on a recombinant inbred line population (‘Paldalkong’ × ‘NTS1116’), and leaf chlorophyll content (CC) and shoot dry weight (DW) were measured under control and flooded conditions. The genetic map was constructed using 180K Axiom® SoyaSNP markers. The QTL were analysed under control and flooded conditions as well as for index (ratio of CC or DW under flooded to control, CCI and DWI) and flooding tolerance index (FTI, mean of CCI and DWI). A total of 20 QTL with LOD scores 3.59–19.73 causing 5.8%–33.3% phenotypic variation were identified on nine chromosomes. Chromosomes 10, 12 and 13 harboured relatively more stable QTL. Results of this study could be useful to further understand the genetic basis of soybean's flooding tolerance and applied in breeding programmes.  相似文献   

20.
M. Gowda    S. Roy-Barman    B. B. Chattoo 《Plant Breeding》2006,125(6):596-599
Blast, caused by Magnaporthe grisea, is the most devastating disease of rice worldwide. In this study, the main objective was to identify and map a new gene for blast resistance, in an indica rice cultivar ‘Tadukan’ against blast fungal isolate B157, using molecular tools. F2 segregating population was derived from ‘CO39’ (susceptible) and ‘Tadukan’ (resistant), and molecular mapping of the blast resistance gene was carried out using simple sequence length polymorphism (SSLP) and amplified fragment length polymorphism (AFLP) methods. Two SSLP markers, RM206 and RM21 and three AFLP markers (AF1: E‐aca/M‐ctt; AF2: E‐aca/M‐cat and AF3: E‐acc/M‐cac2) were identified to be linked to the resistance gene. The co‐segregation analysis using SSLP markers implied that the blast resistance gene designated Pi38 resides on rice chromosome 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号