首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broome  Alice; Poulsom  Elizabeth 《Forestry》2006,79(2):159-166
A measure of annual cone production is needed for evaluatingpotential seed crops and for the study of population changesof seed-eating species, but is rarely available in long timeseries or over extensive areas. The Forest Condition Monitoring(FCM) programme, which contributes to the International Co-operativeProgramme on Assessment and Monitoring of Air Pollution Effectson Forests (ICP-Forests), has been collecting coning data forScots pine, Norway spruce and Sitka spruce since 1989, fromplots located throughout Britain. A visual assessment systemis used to measure a coning index at four levels of abundanceas part of the overall crown health assessment. This study testedwhether the FCM abundance assessment was related to coning density,and therefore its potential for wider use in future research.Data from the survey have been compared with a field-of-viewmethod that assesses cone density, and the cone production representedby the FCM index has thus been determined. A direct relationshipbetween increased cone index and increased cone density wasfound; the use of a four-level scoring system allows differentcone densities to be distinguished with some reliability. Allocationof cone scores by surveyors from year to year was shown to beconsistent except in the case of abundantly coning Sitka spruce.These findings indicate that the FCM programme scoring methoddoes reflect cone production levels and that the data can beused to assess variation in coning between sites and betweenyears. The resolution of the coning data is adequate for assessingthe potential for natural regeneration of woodlands but notfor selecting stands for seed collections. It is also appropriatefor use as a measure of food resource to relate to populationchanges in seed-eating birds and mammals, and the long-termand Britain-wide nature of these data are of particular value.There is potential for the field-of-view method to be used morewidely to evaluate the quality of cone data collected at ICP-Forestsites throughout Europe where the same cone index method hasbeen employed.  相似文献   

2.
A methodological approach to the identification of biodiversity indicators in commercial forest stands is illustrated by analysis of the relationships between syrphid (hoverflies) and carabid (ground beetles) community composition and diversity, and stand structure and field layer vegetation. Data were collected from 12 commercial forest sites encompassing a range of climatic conditions and different crop types (Scots pine, Sitka spruce, Norway spruce and Corsican pine) across the UK. Comparisons were also made between unmanaged semi-natural Scots pine woods and Scots pine plantations. For both syrphids and carabids, no differences in species richness and diversity were recorded between semi-natural stands and plantations; one rare syrphid considered to be restricted to semi-natural pine stands was also found in spruce. Syrphid species diversity and richness was higher in southern spruce sites than in the northern sites. Northern sites had distinctive carabid communities, as did sites in the New Forest, a large ancient woodland in southern England. Of the measured habitat variables, vertical stand structure showed the best correlation with species richness and diversity of both carabids and syrphids. Richness and diversity were less in stands with high vertical cover values for canopy layers. Stands with higher field layer cover supported greater syrphid diversity, but lower carabid diversity. Measures of stand structure could be used as potential indicators of syrphid and carabid diversity, but additional habitat parameters also need to be tested.  相似文献   

3.
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.  相似文献   

4.
Summary This study compared the susceptibility of five UK‐grown conifer species to colonization by sapstain fungi in two trials carried out in consecutive years. The conifers consisted of Sitka spruce (Picea sitchensis), Japanese larch (Larix kaempferi), Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and lodgepole pine (Pinus contorta). Freshly cut 1‐m logs were exposed to the available inoculum of sapstain fungi from April to August in a woodland environment in the south east of England. Logs of each species were removed after 1‐, 2‐ and 4‐month exposure and sampled destructively to assess the amount of sapstain. In the second trial, per cent moisture content and concentrations of nitrogen, carbohydrate and phenolic compounds in the sapwood were also measured at the start and end of the trial. After 2 months, only the sapwood of both pine species had significant levels of sapstain; mean values of 37% and 19% for lodgepole pine (year 1 and year 2 respectively) and 12% and 1% for Scots pine. After 4 months, the levels of sapstain in both pine species exceeded 60% in both years. By contrast, very little sapstain developed in the other conifer species with maximum mean values of 10% for Norway spruce, 3.5% for larch and less than 1% for Sitka spruce. Overall, the moisture content of the logs decreased progressively in all species over the length of the trial. However, pine logs tended to retain higher levels of moisture throughout the trial compared with spruce or larch. The relatively higher moisture content of pine sapwood may be closer to the optimal moisture content that sapstain fungi require for infection and colonization, thereby contributing to the increased susceptibility of pine compared with the other conifer species. The pine logs also suffered from some colonization by bark beetles (Ips sexdentatus), which increased the inoculum potential and the opportunity for colonization by sapstain fungi. In addition, particular phenolic compounds in conifer sapwood may play a role in determining the resistance of some species to sapstain. Notably the most resistant species, Sitka spruce, was the only softwood that still retained detectable levels of phenolics in the sapwood to the end of the trial.  相似文献   

5.
We previously traced 10B-enriched boric acid from shoots to roots to demonstrate the translocation of boron (B) in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. To gain a more detailed understanding of B translocation, we sought: (1) to demonstrate B retranslocation directly, by showing that foliar-applied 10B is located in the new growth after dormancy; and (2) to assess whether shoot-applied B affects growth in the long term. We applied 10B-enriched boric acid to needles of Scots pine and Norway spruce seedlings. After a dormancy period and 9 weeks of growth, small but significant increases in the 10B isotope were found in the new stem and needles of both species. In Scots pine, the total B concentration of the new stem was also increased. Both species contained polyols, particularly pinitol and inositol. Boron-polyol complexes may provide a mechanism for mobilizing B in these species. To determine the long-term effects of applied B, seedlings were grown for two growing seasons after the application of 10B to shoots. In Norway spruce, the proportion of 10B in the root systems and current needles of the harvest year was slightly higher than in the controls, and in Scots pine root systems, marginally so. The B treatment had no effect on growth of Norway spruce seedlings. In Scots pine seedlings, the B treatment caused a 33% increase in total dry mass and significantly increased the number of side branches.  相似文献   

6.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

7.
PICOZZI  N.; MOSS  R.; CATT  D. C. 《Forestry》1996,69(4):373-388
The ancestral habitat of capercaillie in most of its range isScots pine forest with an understorey of blaeberry. Keillourforest in Perthshire is dominated by Sitka spruce, has littleblaeberry, yet had a high density of capercaillie. Food andhabitat use by capercaillie were studied there from 1991 to1994. Seven cocks and two hens were caught, and marked withsmall radio transmitters. The habitats they occupied and foodremains in their droppings provided information on home range,habitat utilization and diet through the year. Sitka sprucewas the main food in autumn, winter and spring but was equalledby the fruiting heads of sedge in summer. Larch was the secondmost abundant item in spring and autumn diets. Sedge was plentifulon the wet restocks associated with the gleyed soils at Keillourand may provide a partial substitute for blaeberry in summer.Capercaillie showed a clear preference for the oldest blocksof trees, especially in winter. Sitka spruce, Norway spruceand Scots pine were used roughly in proportion to their availabilityin the birds' home range, but larch stands were used more thanexpected from availability. In summer, all birds used restocksto some extent. Management recommendations to encourage capercailliein commercial plantations largely comprising exotics are thatmature stands over 45 years and well-vegetated restocks shouldeach occupy at least 20 per cent of the forest, larch and blocksof mixed conifers each at least 15 per cent of the ground. Blaeberryshould be encouraged and, if possible, patches of windthrowinvolving living trees with the main root intact should be retained.  相似文献   

8.
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.  相似文献   

9.
Tree stumps are integral constituents of managed forest ecosystems, but their role in nutrient cycling is poorly understood. We studied phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) dynamics in decomposing Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and silver birch (Betula pendula) stumps in southern Finland in a chronosequence of 0-, 5-, 10-, 20-, 30- and 40-year-old clear-cut areas. Along with the decomposition of pine and spruce stumps, the amount of P in stumps increased, but K and Ca were released, and the amount of Mg initially decreased and then increased. All nutrients, except K, accumulated in birch stumps during the first ten years, but were released thereafter. After 40 years of decomposition, pine and spruce stumps contained 180% and 202% of their initial amounts of P, respectively. In addition, the amounts of Mg were larger than the initial amounts in 40-year decomposed pine (126%) and spruce (202%) stumps. In contrast, birch stumps lost 64% and 75%, respectively, of their initial amounts of P and Mg over a 40-year period. The stumps of all the species were found to release K and Ca. Pine, spruce and birch stumps lost 48%, 64% and 87% of their initial amount of K, and 49%, 35% and 42% of their initial amount of Ca, respectively, during the 40-year period. The results indicate that decomposing stumps of the major tree species in Fennoscandian forests are long-term nutrient pools and they serve as P sinks, thus potentially reducing P leaching after clear-cutting.  相似文献   

10.
The nature of interference of bracken with Scots pine and Norway spruce seedling establishment was considered in three field experiments. In a seeding experiment, it was found that Scots pine germination was highest on exposed mineral soil and lowest when intact bracken litter and humus were present, suggesting adverse effects of litter and humus on pine regeneration probably due to phytotoxicity. In a second experiment, smothering by bracken caused high mortality of Scots pine seedlings while Norway spruce seedlings were relatively unaffected. Mortality for both Scots pine and Norway spruce seedlings was low when planted in a adjacent Scots pine-bilberry stand with no bracken. Annual shoot growth of Norway spruce was higher in bracken than in Scots pine-bilberry vegetation while no differences in shoot growth between these two vegetation types occurred for Scots pine. In a third experiment, activated carbon was added to the ground under Norway spruce seedlings planted in bracken to adsorb possible phytotoxic compounds released by bracken. The addition of carbon had no effect on seedling mortality or growth rate, indicating that the seedlings were not susceptible to allelochemicals released by bracken. Since large Norway spruce seedlings were relatively unaffected by bracken interference in this study, artificial regeneration with containerized Norway spruce seedlings is suggested to achieve an acceptable conifer tree establishment on clear-cuts invaded by bracken.  相似文献   

11.
Conidia of Gremmeniella abietina infected and caused disease symptoms in annual shoots of both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings. In Norway spruce shoots the infection remained largely latent, with only a few seedlings showing symptoms. Mycelial growth inside the shoots was faster in Scots pine than in Norway spruce and was favoured by low temperature in both hosts. The shoots of Norway spruce seedlings had higher endophyte populations than those of Scots pine, and the populations were decreased by low temperatures. Reductions in the normal epiphytic or endophytic flora by acid mist treatments seemed to favour the development of G. abietina.  相似文献   

12.
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.  相似文献   

13.
G. abietina causes severe dieback in pole-stage stands of Scots pine in Britain. The susceptibility of ll provenances of Scots pine and of three other conifer species was tested by inoculations. Significant differences in susceptibility were found amongst Scots pine provenances, with those originating from a native Scottish pinewood at Loch Maree showing the highest levels of disease. Corsican pine was shown to be the most susceptible species tested although sporulation was greatest on Scots pine. Norway spruce was also shown to be susceptible when inoculated late in the growing season. Infection in lodgepole pine was negligible. High levels of β-phellandrene were tentatively linked with resistance among trees in a single stand of Scots pine.  相似文献   

14.
There is abundant evidence that evergreen conifers living at high elevations or at high latitudes have longer-lived needles than trees of the same species living elsewhere. This pattern is likely caused by the influence of low temperature in combination with related factors such as a short growing season and low nutrient availability. Because it is not known to what degree such patterns result from phenotypic versus genotypic variation, we evaluated needle longevity for common-garden-grown lowland populations of European Scots pine (Pinus sylvestris L.) of wide latitudinal origin and Norway spruce (Picea abies L.) of wide elevational origin. Nine-year-old trees of 16 Scots pine populations ranging in origin from 47 degrees to 60 degrees N were studied in Kórnik, Poland (52 degrees N) and 18-year-old trees of 18 Norway spruce populations ranging in origin from 670 to 1235 m elevation in southwestern Poland were studied near Morawina, Poland (51 degrees N, 180 m elevation). There was no tendency in either species for populations from northern or high elevation origins to retain needles longer than other populations. All of the Scots pine populations had between 2.5 to 3.0 needle age cohorts and all of the Norway spruce populations had between 6.4 and 7.2 needle age cohorts. Thus, extended needle retention in Scots pine and Norway spruce populations in low-temperature habitats at high elevations and high latitudes appears to be largely an environmentally regulated phenotypic acclimation.  相似文献   

15.

The paper gives a brief overview of the background, history and main results of forest fertilization experiments on mineral soils in Norway. Positive results of initial phosphorus (P) fertilization on survival and growth of Norway and Sitka spruce have only been achieved in the coastal districts of western Norway. Other elements have seldom given any significant effect. In young and old stands of Norway spruce and Scots pine nitrogen (N) fertilization with 150 kg N ha -1 usually gave increment increases in the range of 1-2 m 3 ha -1 yr -1 , for a period of 6-8 yrs after application. Given individually, no other element has proved stimulating to stem growth in a similar way. In young Norway spruce stands P has often given additional growth response when given together with N. Liming has been shown to have no or negative effects on tree growth. Fertilization experiments have changed from being management orientated towards addressing the problems of possible nutrient imbalances.  相似文献   

16.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

17.
The spatial distribution of plant-available mineral nutrients in forest soils is often highly heterogeneous. To test the hypothesis that local nutrient enrichment of soil leads to increased root proliferation in the nutrient-rich soil zone, we studied the effects of nutrient enrichment on the growth and nutrient concentrations of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) roots. Three-year-old seedlings were grown for 9 months in split-root containers filled with nutrient-poor forest mineral soil, with one side supplemented with additional mineral nutrients. Root dry weight and root length in Scots pine and Norway spruce were increased in the nutrient-supplemented soil compared with the nonsupplemented side, whereas root growth in Douglas-fir was unaffected by nutrient enrichment. Of the three species examined, Norway spruce exhibited the highest root and shoot growth and the highest nutrient demand. Specific root length (m g(-1)) and the number of root tips per unit root length were not affected by local nutrient addition in any of the species. Despite increased root growth in Norway spruce and Scots pine in nutrient-supplemented soil, their root systems contained similar nutrient concentrations on both sides of the split-root container. Thus, coniferous trees may respond to local nutrient supply by increased root proliferation, but the response varies depending on the species, and may only occur when trees are nutrient deficient. As a response to local nutrient enrichment, increases in root dry matter or root length may be better indicators of pre-existing nutrient deficiencies in conifers than increases in root nutrient concentrations.  相似文献   

18.
MASON  W. L.; BIGGIN  P. 《Forestry》1988,61(2):149-163
Seedlings of Sitka spruce and Lodgepole pine were grown in fivedifferent container types; Ontario tubes, Kopparfors multipots,Finn peat pots, Japanese paperpots and Spencer-Lemaire root-trainers.They were planted in forest experiments in 1972/3 when 8-14weeks old and their subsequent performance compared with 2 years-oldbare-rooted transplants. After 2–3 years' growth, tubed seedlings proved consistentlypoorer than all other treatments for both height and survival.Finn peat pots were marginally the best of the other containerstested. Containerised plants generally showed poorer survivaland substantially less height growth than transplants, withdifferences being greater for Sitka spruce than for Lodgepolepine. For both species well-handled transplants appear the mostappropriate plant type for use in upland Britain. Implications for the future role of containerised seedlingsin upland forestry in Britain are considered. The benefits ofcontainer systems may be greatest in the production of seedlingsof ‘sensitive’ species or of high genetic quality.  相似文献   

19.
The aim of the study was to examine how the thickness and species of softwood influence cupping during cyclic conditions. The study was conducted with full-scale test walls in laboratory conditions. On the basis of the results, the thickness and species of softwood both have a significant influence on cupping of the cladding board. The boards made of Norway spruce were considerably more resistant to cupping than those made of Scots pine sapwood. Boards made of Scots pine sapwood were more likely to remain curved after each drying period. It appears probable that the cupping sensitivity of Scots pine sapwood affects the durability of the cladding, e.g., causing cracking formation on the surface and peeling of the coating. From the curving results, it is possible to estimate surface elongation and durability of the wood surface and of the coating in cyclic conditions.  相似文献   

20.
This study aims to derive allometric functions to estimate the above- and belowground biomass components of the most important tree species in Latvia. The study material included a total of 81 Norway spruce (Picea abies [L.] Karst), 102 Scots pine (Pinus sylvestris L.), 105 birch spp. (mainly silver birch (Betula pendula Roth)) and 84 European aspen (Populus tremula L.) trees sampled in 124 forest stands. The suitability of three mathematical models for the prediction of total aboveground biomass, stem biomass, total live and dead branch biomass, belowground biomass and small root biomass was evaluated. Our analysis revealed that the use of the Intergovernmental Panel on Climate Change mean default values for the root-to-shoot ratio recommended for temperate and boreal ecological zones leads to the overestimation of root biomass of young trees, especially Scots pine and Norway spruce. Our findings indicate that biomass functions recommended for other Baltic Sea countries are not appropriate for the assessment of the biomass stock in Latvia’s forests because these lead to biased estimates. The biomass functions derived in our study are recommended for reporting the biomass stock in Latvia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号