首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Phosphorus (P) forms were sequentially extracted from peat derived soils (Eutric Histosols and Gleysols) at eight sites in Saxony‐Anhalt (Germany) to disclose general differences in P pools between mineral and organic soils and to investigate effects of peat humification and oxidation in conjunction with land use and soil management on the P status of soils. Overall 29 samples providing a wide variety of basic chemical properties were subjected to the Hedley fractionation. The Histosol topsoils contained more total P (Pt) (1345 ± 666 mg kg—1) than the Gleysol topsoils (648 ± 237 mg kg—1). The predominant extractable fractions were H2SO4‐P (36—63 % of Pt) in calcareous and NaOH‐Po (0—46 % of Pt) in non‐calcareous Histosols. These soils had large pools of residual P (13—93 % of Pt). Larger contents and proportions of Po and of labile P fractions generally distinguished organic from mineral soils. Regression analyses indicated that poorly crystalline pedogenic oxides and organic matter were binding partners for extractable and non‐extractable P. Intensive management that promotes peat humification and oxidation results in disproportional enrichments of labile P fractions (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po). These changes in P chemistry must be considered for a sustainable management of landscapes with Histosols and associated peat derived soils.  相似文献   

2.
Differences in soil P among silvopasture, grassland, and arable lands have been well established. Nevertheless, most of the reports compare soil properties under long‐term sites. Thus, there exists little information on the effect of the conversion of silvopasture to arable or grassland use on soil P pools. The objective of the study was to determine the impact of converting silvopasture system (SP) into arable cropping and grassland system on the distribution of P pools and potential P bioavailability. We compared the following systems: SP system, SP converted to arable cropland (SP‐AL), SP converted to grassland (SP‐GL), and for comparative purposes, a long‐term arable cropland (AL). The P fractionation was performed by a sequential extraction scheme, using acid and alkaline extractants on samples collected from the 0–10 and 10–20 cm soil layers. It was assumed that the large variations in soil‐P fractionations are caused by the different management practices associated with land conversion. The results of P fractionation showed a dominance of calcium‐bound P, HCl‐extractable Pi constituted up to 36% of the soil total P (TP). However, the type of land use did not affect this P fraction. On the other hand, the reduction in labile‐Pi and NaOH‐Pi fractions observed at the SP‐AL site may have led to the decline in readily available P. The soil total organic P (TPo) content was 8% and 17% lower at SP‐AL compared to SP and SP‐GL site, respectively. Labile organic‐P (labile‐Po) content was markedly higher at SP site compared to arable soils, and was ≈ 10% of TPo. The NaOH‐Po constituted the highest fraction of the organic‐P pool (55%–79% of TPo) across all the study systems, and was positively correlated with TPo (p < 0.01). The study indicates that conversion of SP system in temperate regions to arable cropping with conventional tillage seems to result in the reduction of P availability compared to SP, indicating SP as an important land‐use practice.  相似文献   

3.
Abstract

Bray 1 phosphorus (B1P) and sequential phosphorus (P) fractions were determined on soils treated with triple superphosphate (TSP), Gafsa (GPR), and Christmas Island phosphate rocks (CIPR), respectively, with and without manure. The fractions extracted in decreasing lability were iron oxide–impregnated paper strip P (Pi‐strip P), inorganic (Pi), and organic (Po) bicarbonate (NaHCO3‐Pi and ‐Po), hydroxide [sodium hydroxide (NaOH)‐Pi and ‐Po], hydrochloric acid (HCl) P, and residual (residue P). The magnitude of B1P was in the order TSP>GPR=CIPR. Average B1P from PRs was two‐fold the amount in TSP, whereas that of the fractions was NaOH‐P>Residue P<sodium bicarbonate (NaHCO3) P<Pi‐strip P <HCl. Bray 1 extracted mainly the most labile fractions (Pi‐strip P and NaHCO3‐Pi), and plant P uptake was correlated mainly to NaOH‐Po and NaHCO3‐Pi. Magnitude of various fractions differed between TSP and PRs. Both B1P and the fractions were equally correlated to P uptake (R2=0.38**). Nevertheless, sequential fractionation appears to be a powerful tool to identify the P status and availability in soil.  相似文献   

4.
Abstract

Surface horizon samples from two Vertisols, an Andisol, and an Alfisol were collected from farmers’ fields, research station farms, and from uncultivated/ nonfertilized areas to characterize the organic and inorganic forms of phosphorus (P) in the highland plateau soils of Ethiopia using the Hedley soil P fractionation scheme. The total P values ranged from 226 mg‐kg‐1 in the Akaki Vertisol samples developed on alluvial deposits to 1570 mgkg‐1 in the Andisol samples, where the HCl fraction dominates the inorganic soil P pool. The Alfisol samples contained 400 mg‐kg‐1 of total P, with the NaOHand residual P being the dominant P fractions. The resin inorganic phosphorus (Pi) and bicarbonate Pi fractions generally accounted for less than 15% of the total P in all soils, and were positively correlated with organic C. The NaOH P fraction, which was most prominent in the surface horizon samples of the Alfisols, accounted for 4–15% of total P. The HCl P fraction, ranged from 1% in the Alfisols to 46% in the Andisols, and positively correlated with pH. All of the P fractions were negatively correlated with clay and extractable Al contents. The organic P (Po) fractions were positively related to organic carbon (C) and dithionate extractable iron (Fe). All samples collected from farmers’ fields showed a loss of P from the residual, and HCl fractions as compared to the uncultivated/nonfertilized samples. There is also a decrease in the labile P (resin Pi, bicarbonate Pi, and Po) fractions, except for the Akaki Vertisol samples. However, under research station management, the amount of labile P fractions either increased or remained at the same level as the uncultivated/nonfertilized samples, except for the Andisol. Addition of P fertilizer at the recommended rates to the Debre Zeit research station Vertisol appears to have resulted in a slight increase in the labile P and prevented loss of P from the HClP and residual P fractions.  相似文献   

5.
With the emphasis on sustainable agriculture, attention has been increasingly turning to recycling of crop residues as a component of fertility management strategies for tropical soils. We assessed the effects of soybean residue (SR) and wheat residue (WR) applied either alone or in combination with fertilizer P (FP) on dynamics of labile P, distribution of P fractions, and P sorption in a semiarid tropical Alfisol by conducting a 16 w long incubation experiment. The amount of P added through crop residues, FP or their combinations was kept constant at 10 mg P (kg soil)–1. Addition of SR or WR resulted in net increase of labile inorganic (Pi) and organic P (Po) and microbial P throughout the incubation period, except that the WR decreased labile Pi during first 2 w due to Pi immobilization. The P immobilization associated with WR addition was, however, offset when fertilizer P was combined with WR. Generally, the increases in labile‐P fractions were larger with the SR and SR+FP than with the WR and WR+FP. The sequential fractionation of soil P at the end of 16 w indicated that a major part of added fertilizer P transformed into moderately labile and stable P fractions as evident from the increased NaOH‐Pi and HCl‐P in the FP treatment. In contrast, the addition of SR and WR alone or in combination with FP favored a build‐up in NaHCO3‐Pi and ‐Po and NaOH‐Po fractions while causing a decrease in NaOH‐Pi and HCl‐P fractions. The addition of these crop residues also effectively decreased the P‐sorption capacity and hence reduced the standard P requirement of the soil (i.e., the amount of P required to maintain optimum solution P concentration of 0.2 mg P l–1) by 24%–43%. Results of the study, thus, imply that soybean and wheat crop residues have the potential to improve P fertility of Alfisols by decreasing P‐sorption capacity and by redistributing soil P in favor of labile‐P fractions and promoting accretion of organic P.  相似文献   

6.
The availability of C and N to the soil microbial biomass is an important determinant of the rates of soil N transformations. Here, we present evidence that changes in C and N availability affect the 15N natural abundance of the microbial biomass relative to other soil N pools. We analysed the 15N natural abundance signature of the chloroform‐labile, extractable, NO3, NH4+ and soil total N pools across a cattle manure gradient associated with a water reservoir in semiarid, high‐desert grassland. High levels of C and N in soil total, extractable, NO3, NH4+ and chloroform‐labile fractions were found close to the reservoir. The δ15N value of chloroform‐labile N was similar to that of extractable (organic + inorganic) N and NO3 at greater C availability close to the reservoir, but was 15N‐enriched relative to these N‐pools at lesser C availability farther away. Possible mechanisms for this variable 15N‐enrichment include isotope fractionation during N assimilation and dissimilation, and changes in substrate use from a less to a more 15N‐enriched substrate with decreasing C availability.  相似文献   

7.
Identifying ‘functional' pools of soil organic matter and understanding their response to tillage remains elusive. We have studied the effect of tillage on the enriched labile fraction, thought to derive from microbes and having an intermediate turnover time. Four soils, each under three regimes, long‐term arable use without tillage (NT), long‐term arable under conventional tillage (CT), and native vegetation (NV), were separated into four aggregate size classes. Particle size fractions of macro‐ (250–2000 μm) and microaggregates (53–250 μm) were isolated by sonication and sieving. Subsequently, densiometric and chemical analyses were made on fine‐silt‐sized (2–20 μm) particles to isolate and identify the enriched labile fraction. Across soils, the amounts of C and N in the particle size fractions were highly variable and were strongly influenced by mineralogy, specifically by the contents of Fe and Al oxides. This evidence indicates that the fractionation procedure cannot be standardized across soils. In one soil, C associated with fine‐silt‐sized particles derived from macroaggregates was 567 g C m?2 under NV, 541 g C m?2 under NT, and 135 g C m?2 under CT, whereas C associated with fine‐silt‐sized particles derived from microaggregates was 552, 1018, 1302 g C m?2 in NV, NT and CT, respectively. These and other data indicate that carbon associated with fine‐silt‐sized particles is not significantly affected by tillage. Its location is simply shifted from macroaggregates to microaggregates with increasing tillage intensity. Natural abundance 13C analyses indicated that the enriched labile fraction was the oldest fraction isolated from both macro‐ and microaggregates. We conclude that the enriched labile fraction is a ‘passive' pool of soil organic matter in the soil and is not derived from microbes nor sensitive to cultivation.  相似文献   

8.
Changes in phosphorus (P) during soil development are central to the understanding of labile P for plant productivity and soil P management. We used NaOH‐EDTA extraction with 31P nuclear magnetic resonance spectroscopy (31P NMR), sequential P fractionation, and general soil chemical characterization to better our understanding of P dynamics within two chronosequences (Manawatu and Reefton) and one Basalt maturity sequence under original native vegetation. With time, orthophosphate and orthophosphate monoesters tended to increase with organic C to a maximum of about two‐thirds of NaOH‐EDTA‐extractable P in young soils (16 000 years in the Reefton chronosequence), but gradually declined thereafter to about one‐third of NaOH‐EDTA‐extractable P in the oldest soils (130 000 years old). This coincided with a depletion of P from primary minerals (e.g. apatite) and readily available P for plant production. This depletion of inorganic P resulted in a greater reliance on organic P cycling via mineralization, hence the depletion of the normally recalcitrant monoester‐P pool. Concomitantly, the build‐up of labile P species (diesters and pyrophosphate) and scyllo‐ over myo‐inositol hexakisphosphate occurred as soils developed, and might be attributed to microbial activity, including scavenging for P. This work highlights the importance of organic P cycling during pedogenesis.  相似文献   

9.
Classical chemical fractionation of soil sulphur (S) into HI‐reducible S and carbon‐bonded S does not separate S in soil into fractions that have differing mineralization potentials. Other techniques are needed to separate organic S into more labile and less labile fractions of biological significance, irrespective of their bonding relations. We have sequentially fractionated soil S and carbon (C) into their ionic forms released onto ion‐exchange resins and organic S and C extracted in alkali of increasing concentration. We evaluated the technique on pasture and arable soils that had received various fertilizer and cultivation treatments. Total S and C were greater in the soil of the fertilized pasture than in that of the unfertilized pastures. Continuous arable cropping decreased total soil S and C, whereas restoration to pasture caused an accumulation. Resin, 0.1 m NaOH, 1 m NaOH and residual fractions accounted for between 1–13%, 49–69%, 4–16% and 19–38% of total soil S and between 5–6%, 38–48%, 5–7% and 46–53% of total soil C, respectively. Among different S and C fractions, the size of the 0.1 m NaOH and residual fractions changed more with the change in land use and management. The 0.1 m NaOH fraction had a narrower C:S ratio (50–75:1) than did the residual fraction (96–141:1). The significant degree of change in these two fractions, caused by differences in land management, indicates that they may be useful indicators of change in ‘soil quality’.  相似文献   

10.
We attempted to modify and evaluate existing sequential fractionation schemes for B involving the use of chemicals, which subsequently do not interfere with the measurement of B by colorimetry. Also evaluated was the contribution of various soil B fractions to the amount of B extracted by hot CaCl2, CaCl2‐mannitol, salicylic acid, ammonium acetate, HCl, and tartaric acid. For this purpose, 17 soils with diverse properties were used. The extraction scheme proposed here partitioned B into five pools, (i) readily soluble, (ii) specifically adsorbed, (iii) oxide bound, (iv) organically bound, and (v) residual boron, respectively extracted with 0.01 M CaCl2, 0.05 M KH2PO4, 0.175 M NH4‐oxalate (pH 3.25), 0.5 M NaOH, and HF + H2SO4 + HClO4. The procedure of elimination of color from extracts of oxide bound, organically bound, and residual B fractions was also evolved. Relationships of individual B fractions with physicochemical properties of the experimental soils confirmed the general validity of the proposed fractionation scheme. The relationships of different B fractions with extractable B in soils suggest that hot CaCl2 and salicylic acid may be better extractants for available B in soils.  相似文献   

11.
Abstract

Information on the availability of different soil phosphorus (P) forms is useful for crop production. Phosphorus contents of 12 Iranian calcareous soils from upper‐, mid‐, and lower‐slope positions of two arid and two semiarid toposequences were fractionated to various organic and inorganic pools, and correlations of the P fractions with wheat responses were investigated. Among the inorganic P (IP) fractions, apatite type (Ca10‐P) and dicalcium phosphate equivalents (Ca2‐P) possessed the highest and the lowest amounts of P reserve in the soils, respectively. On average, about 20% of the total P was found in organic form (OP), of which 32% was labile (LOP), 51% was moderately labile (MLOP), and 17% was nonlabile (NLOP). The amounts of the soil P fractions were considerably influenced by the positions of the soils on the landscapes. The maximum contents of soil IP, Ca2‐P, Fe‐P (iron‐bound P), and Ca10‐P were observed in the lower‐slope positions. The amount of soil available [0.5 M sodium bicarbonate (NaHCO3) extractable] P was significantly correlated with Ca2P (r=0.895), Fe‐P (r=0.760), and Occl‐P (iron‐occluded P) (r=0.897). Direct correlation studies, however, showed that wheat shoot dry‐matter yield (DMY) was significantly affected by the amounts of Ca2‐P, Fe‐P, OP, LOP, and MLOP fractions both at early (4 weeks) and late (10 weeks) stages of growth. All organic and inorganic P fractions, except Al‐P (aluminum‐bound P), Ca8‐P (octacalcium phosphate equivalents), and NLOP, also showed significant relations to the amount and/or concentration of P in wheat tissues at 4 and 10 weeks after sowing. Among the measured soil properties, the amount of organic carbon was the most affecting factor on the size of the P fractions.  相似文献   

12.
Organic amendments considerably affect nutrient balance and interfraction mobility of nutrients by influencing the chemical, physical, and biological environment in soils. In this study, the effects of five amendments including: two composts, farmyard manure, packaging‐industry by‐product, and olive‐mill waste on time‐dependent interfraction mobility of P among mineral P fractions in two semiarid‐region soils differing in carbonate content and texture were investigated. Organic materials were applied at the rate of 0, 25, 50, and 100 g (kg soil)–1 soil thoroughly mixed and incubated at 27°C ± 2°C for 110 d. Phosphorus fractions were sequentially extracted by 0.1 M NaOH + 1 M NaCl (NaOH‐P), citrate‐bicarbonate‐dithionite (CBD‐P), and 0.5 M HCl (Ca‐P). Results showed that organic amendments especially farmyard manure significantly influenced NaOH‐P, CBD‐P, and Ca‐P. In addition, higher application rates of organic residues increased NaOH‐P fraction. NaOH‐P and CBD‐P fractions were increased after addition of organic residues and then converted to Ca‐P fraction within the end of incubation period. Increasing application rate of organic residues allowed P to be retained in more labile fractions for a longer period. The amount of Ca‐P was found to be related with carbonate content of soils. It can be concluded that organic residues applied to calcareous soils may enhance P nutrition of agricultural plants.  相似文献   

13.
The phosphorus (P) forms in long-term fertilization determine the fate and transport of P in soil. However, the fate of various pools of organic P of added P in the long-term measured with sequential chemical fractionation is not well-understood. Four soil physical aggregates (>250, 125–250, 63–125 and <63 μm) from 0- to 20-cm depth after 35 years of long-term fertilization treatments including control (CK), nitrogen and phosphorus fertilizer (NP) and NP combined with farmyard manure (NPM) under continuous winter wheat were separated using settling tube apparatus. Results showed that the application of long-term P fertilization had no apparent effects on promoting the mass proportion of soil aggregates except for >250 μm, where the NP and NPM treatments significantly increased the mass proportion by 60% and 70% over CK, respectively. Compared with CK, P fertilizer (NP and NPM) treatments significantly increased organic P (Po) contents in each size aggregate. In particular, mean labile Po increased by 35% and 246%, moderately labile Po by 125% and 161%, nonlabile Po by 105% and 170% and total Po (TPo) by 101% and 178%, respectively, under NP and NPM treatments, respectively. There was a significant correlation between soil organic carbon (SOC) and Po fractions. SOC was exponentially positively correlated with labile Po but linearly positively correlated with moderately labile Po, nonlabile Po and TPo fractions among soil aggregates. A reduced C:Po ratio (<100) in soil aggregates among treatment indicates a large amount of available P accumulated in soils, and soil P loss risk in the study site is still high. Our results show that the Po pool measured by sequential chemical fractionation may represent an important, yet often overlooked, source of P in agriculture ecosystems. According to the result, long-term mineral P fertilizer combined with organic amendments better sustains soil structural stability in large aggregates, contributing more Po availability in the moderately labile P followed by labile P in soil aggregates.  相似文献   

14.
Lower P‐input levels in organic than conventional farming can decrease soil total and available P, which can potentially be resupplied from soil organic P. We studied the effect of 30 y of conventional and organic farming on soil P forms, focussing especially on organic P. Soil samples (0–20 cm) were taken in a field experiment with a nonfertilized control, two organic systems receiving P inputs as animal manure, and two conventional systems receiving only mineral P or mineral P and manure. Soils were analyzed for total, inorganic, organic, and microbial P, by sequential P fractionation and by enzyme additions to alkaline soil extracts. Samples taken prior to starting the experiment were also analyzed. Average annual P balances ranged from –20 to +5 kg ha–1. For systems with a negative balance, labile and moderately labile inorganic P fractions decreased, while organic and stable inorganic P fractions were hardly affected. Similar quantities and proportions of organic P extracted with NaOH‐EDTA were hydrolyzed in all soils after addition of an acid phosphatase, a nuclease, and a phytase, and enzyme‐stable organic P was also similar among soils. Thus, neither sequential fractionation nor enzyme addition to alkaline soil extracts showed an effect of the type of applied P (manure vs. mineral) on organic P, suggesting that organic P from manure has largely been mineralized. Thus far, we have no indication that the greater microbial activity of the organic systems resulted in a use of stable P forms.  相似文献   

15.
The Hedley sequential‐phosphorus (P)‐fractionation method has been used in many countries to study the effects of land‐use and management systems on soil P. Many data sets have been obtained but collectively never have been considered or to goal topic reviewed. Therefore, the objectives of this review were to compile and systematically evaluate these data. The data generated over many years were grouped into temperate, and subtropical and tropical soils of different land use and duration of soil‐management studies. In natural ecosystems, vegetation types and composition and percent of vegetation covers substantially affected all P fractions with pronounced impacts on the labile and moderately labile P. In short‐term studies (≤ 10 y), changes in the labile and moderately labile inorganic P (Pi) fractions were detected when more P (e.g., by factor 5) was applied than commonly recommended for agricultural crops. However, without P application the changes in all P fractions were subtle in temperate soils, but declines were significant in labile and moderately labile P in subtropical and tropical soils. In both temperate and tropical climates, medium (10–25 y) and long‐term (>25 y) cultivation without P application depleted all P fractions, whereas most of P fractions increased with continuous P application, regardless of the amount and source of P. Synthesis of data resulted in multiple‐regression functions which described differences in labile and moderately labile P fractions as function of differences in amount of P application and duration of the experiments. Moreover, the correlation analysis also showed strong association among most of the P fractions. Current limitations in data interpretation of Hedley fractionation can be overcome by the application of 31P nuclear–magnetic resonance (NMR) and X‐ray absorption near‐edge fine‐structure (XANES) spectroscopy.  相似文献   

16.
Abstract

Laboratory drying may alter manure phosphorus (P) distribution. The effects of freeze, air (22°C), and oven (65°C) drying on sequentially fractioned poultry manure P were examined. Higher drying temperatures resulted in lower percentage of dry matter. Increased H2O‐ and decreased sodium bicarbonate (NaHCO3)‐extractable P with drying provided evidence that drying increases poultry manure P solubility. Labile fractions were predominantly inorganic P (Pi), whereas sodium hydroxide (NaOH) and hydrochloric acid (HCl) fractions had significant amounts of organic P (Po). Drying altered H2O‐ and NaHCO3‐extractable Pi but had no consistent effect on Po in these fractions. This work suggests that variations due to drying should be taken into consideration when evaluating manures for P availability or when comparing data in which different drying methods have been utilized.  相似文献   

17.
Fractionation of soil is undertaken to isolate organic carbon with distinct functional properties, such as stability and turnover times. Soil organic carbon (SOC) fractionation helps us to understand better the response of SOC to changes in land use, management or climate. However, fractionation procedures are often poorly defined and there is little information available on their reproducibility in different laboratories. In a ring trial, we assessed the reproducibility of a SOC fractionation method introduced by Zimmermann et al. (2007). The isolated fractions were linked to the model pool sizes of the Rothamsted carbon model (RothC). We found significant differences between six laboratories for all five defined fractions in three different soils with coefficients of variation ranging from 14 to 138%. During ultrasonic dispersion, the output power (energy per unit time) was identified as an important factor controlling the distribution of SOC within these five fractions, while commonly only the output energy is standardized. The amount of water used to wet‐sieve dispersed soil slurry significantly influenced the amount of extracted dissolved organic carbon (DOC). We therefore suggest using a fixed amount of power for ultrasonic dispersion (20 W) and a minimum amount of water for wet sieving (2000 ml). RothC pool sizes were predicted from the measured fractions and compared with RothC equilibrium pool size distributions. This model initialization using measured SOC fractions, however, led to an over‐estimation of stable RothC SOC pools when compared with pool size distributions derived from RothC equilibrium runs under a bare fallow soil model simulation. To improve the isolation of particulate organic matter from stable mineral‐bound organic matter, we suggest that the density should be increased from 1.8 to 2.0 g cm?3 in the density fractionation step. We formulated a modified fractionation procedure, which aims specifically to enhance reproducibility across laboratories and to improve the match of the isolated SOC fractions with RothC's SOC pools.  相似文献   

18.
A major source of runoff phosphorus (P) from agricultural soils is land-applied animal manure. Our work reports P levels in pasture soils in northern Alabama affected by long-term (0–20 years) application of poultry litter (PL). Sequential fractionation revealed different buildup patterns of labile and stable P fractions in these soils. Phosphorus built up in subsurface (20–40 cm and 40–60 cm deep) soils with lower application rates than P accumulated in surface (0–20 cm deep) soils, indicating a greater potential for surface runoff than leaching from these pasture fields. Correlation analysis of the surface soils showed levels of stable P extractable by sodium hydroxide (NaOH) were related to the cumulative amount of PL applied. The level of water-extractable P increased because PL application was significantly related to the number of years the soil receiving PL, not the annual application rate or the cumulative amount of PL applied.  相似文献   

19.
Changes are reported in the chemical and biological composition of soil phosphorus (P) in a Black Chernozemic silt loam (Blaine Lake Association) and a Dark Brown Chernozemic sandy loam (Bradwell Association) during 60–90 years of cultivation. Cultivated and adjacent uncultivated soils were sampled, separated into particle size fractions by physical dispersion and the fractions subjected to a sequential chemical extraction to remove several forms of inorganic phosphorus (Pi) and organic phosphorus (Po). In the uncultivated Bradwell soil significant amounts (7%) of secondary (NaOH extractable) Pi forms were associated with high levels of labile (bicarbonate and resin extractable) Pi. These secondary Pi forms, which were concentrated in the finer particle size fractions (<2μm), contributed to the P loss during cultivation of the coarse textured Bradwell soil, whereas all P loss in the Blaine Lake soils was due to Po losses alone. Sulphuric acid extractable P (thought to be mainly apatites) accumulated in both soils under cultivation, particularly in the coarse silt (50–5 μm) fraction. Labile P fractions were greatly reduced during cultivation, indicating a significant reduction in available P and P fertility of cultivated soils. This reduction in P fertility was closely tied to soil organic matter losses.  相似文献   

20.
The characteristics of dissolved organic matter (DOM) in soils are often determined through laboratory experiments. Many different protocols can be used to extract organic matter from soil. In this study, we used five air‐dried soils to compare three extraction methods for water‐extractable organic matter (WEOM) as follows: (i) pressurised hot‐water‐extractable organic carbon (PH‐WEOC), a percolation at high pressure and temperature; (ii) water‐extractable organic carbon (WEOC), a 1‐hour end‐over shaking; and (iii) leaching‐extractable organic carbon (LEOC), a leaching of soil columns at ambient conditions. We quantified the extraction yield of organic carbon; the quality of WEOM was characterized by UV absorbance, potential biodegradability (48‐day incubation) and parallel factor analysis (PARAFAC) modelling of fluorescence excitation emission matrices (FEEMs). Biodegradation of dissolved organic carbon (DOC) was described by two pools of organic C. The proportions of labile and stable DOC pools differed only slightly between the WEOC and LEOC methods, while PH‐WEOC contains more stable DOC. The mineralization rate constants of both labile and stable DOC pools were similar for the three methods. The FEEMs were decomposed into three components: two humic‐like fluorophores and a tryptophan‐like fluorophore. The effect of extraction method was poorly discriminant and the most similar procedures were PH‐WEOC and LEOC while WEOC extracts were depleted in humic‐like fluorophores. This study demonstrates that WEOM quality is primarily determined by soil characteristics and that the extraction method has a smaller, but still significant, impact on WEOM quality. Furthermore, we observed considerable interaction between extraction procedure and soil type, showing that method‐induced differences in WEOM quality vary with soil characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号