首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles derived from natural materials are promising compounds in the field of environmental remediation. The present study produces and characterizes Na-zeolitic tuff in the nanorange, stabilizes the nanotuff in suspension, and investigates the effect of Na-zeolitic nanotuff on sorption of Cd. Breakdown of raw zeolitic tuff with a mean particle size of 109 μm to the nanorange was achieved by attrition milling. In the first stage of grinding, a mixture of Al-oxide beads of 1 to 2.6 mm diameter was used. The milling process lasted 4 h. In the second stage, the dried powder was milled again using a mixture of a fine zirconia beads (0.1 mm) and Al-oxide beads (1.0 mm). The powder was treated with 1 M NaCl solution. Finally, the powder was sonicated in water. After this procedure, the mean and median particle diameters were 47.6 and 41.8 nm, respectively. The nanoparticulate zeolitic tuff had a surface area of 82 m2 g?1. The estimated zero charge point of the nanoparticle suspension was 3.2. The surface zeta potential was pH dependent. The Na-zeolitic nanotuff increased Cd sorption by a factor of up to 3 compared to the raw zeolitic tuff. Our results indicate that zeolitic nanoparticles can be produced by grinding using a mixture of fine beads in an attrition mill and that this procedure increases their metal immobilizing potential.  相似文献   

2.
土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究   总被引:6,自引:0,他引:6  
采用批处理振荡法和连续稀释法分别测定了敌草隆在人工添加黑碳土壤和自然形成的不同有机质和黑碳含量的土壤中的吸附一解吸行为。吸附结果表明,人工添加黑碳的土壤对敌草隆的吸附强度和吸附容量以及吸附等温线的非线性均随土壤黑碳添加浓度的增加而逐步增大;自然土壤的吸附容量和吸附强度随土壤总有机质含量增加而增加,但吸附等温线的非线性则与土壤中黑碳对有机质的相对含量有关,黑碳比例越高,等温线非线性越大。解吸实验结果表明,无论是人工添加黑碳的土壤还是自然土壤,对敌草隆的解吸迟滞作用均随土壤黑碳含量增高而愈明显。  相似文献   

3.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

4.
Phosphorus (P) sorption processes in soils contribute to important problems in agriculture: a deficiency of this plant nutrient and eutrophication in aquatic systems. Soil organic matter (SOM) plays a major role in sorption processes, but its influence on P sorption remains unclear and needs to be elucidated to improve the ability to effectively manage soil P. The aim of this research was to investigate the influence of SOM on P sorption. The study was conducted in sandy soil profiles and in topsoils before and after removal of SOM with H2O2. The results were interpreted with the Langmuir and Freundlich isotherms. Our results indicated that SOM affected P sorption in sandy soils, but that P sorption also depended on specific soil properties (e.g. values of the degree of P saturation (DPS), P sorption capacity (PSC) and pH) often related to land use. Removal of SOM decreased PSC in most of the topsoils tested; other soil properties became important in controlling P sorption. An increase in P desorption observed after SOM removal indicated that SOM was potentially that soil constituent which increased P binding and limited P leaching from these sandy soils.  相似文献   

5.
Abstract

Sorption of trace quantities of Cd in four soils of different chemical and mineralogical properties, was studied. Initial Cd concentrations were between 15 to 150 μg. 1?1. The sorption isotherms were linear and had a positive intercept in three of the soils, indicating a constant partition‐high affinity sorption isotherm (Giles et. al6). The data also followed the Freundlich sorption isotherm, and the Freundlich K parameter was taken as a measure of the relative affinity of the different soils for the Cd metal sorbed. Cadmium sorbed was extracted by IN‐NH4C1 followed by 0.1N HC1, and the fraction remaining in the soils was considered specifically sorbed Cd. This fraction also followed a linear sorption isotherm, and was around 30% for the four soils studied. The sorption order for the amount of specifically sorbed Cd showed that the Boomer soil (kaolinite‐iron oxides) had the lowest affinity for specific sorption of this metal. This was taken as evidence that kaolinite and iron oxides have a lower capacity for retaining cadmium through specific sorption mechanism(s) than the materials present on the other soils (2:1 layer silicates and humic substances). The existence of specific mecha‐nism(s) responsible by the sorption of trace quantities of Cd in soil solutions has important implications on soil‐plant relationships, Cd mobility in soil profiles and control of Cd activity in soil solutions.  相似文献   

6.
Assessing the accumulation and transport of trace metals in soils and the associated toxicological risks on a national scale requires generally applicable sorption equations. Therefore Freundlich equations were derived for Cd, Zn and Cu using multiple linear regression on batch sorption data from the literature with a wide variety of soil and experimental characteristics, and metal concentrations ranging over five orders of magnitude. Equations were derived based on both total dissolved metal concentrations and free metal activities in solution. Free metal activities were calculated from total metal concentrations taking into account ionic activity, and inorganic (all metals) and organic complexation (Cu only). Cadmium and Zn were present in solution predominantly as free ions, while Cu was present as organic complexes. Since actual dissolved organic carbon (DOC) concentrations were not available they were estimated using an empirical field relation between DOC and organic matter content. The logarithmic transformation of the Freundlich constant for Cd was regressed on the logarithmic transformations of cation exchange capacity (CEC) (H+) and dissolved Ca, and for Zn with CEC and (H+). For Cu the log–log regression model of the Freundlich constant included the solid:solution ratio of the batch to account for dilution of DOC in the batch as compared with the field. The explained variance for the fitted Freundlich equations was 79% for Cd, 65% for Cu and 83% for Zn, using log-transformed adsorbed concentrations and soil solution activities. The Freundlich adsorption models underestimated metal contents determined from 1 m HNO3 digestion on field samples, up to a factor of 6 (Cd and Cu) or 10 (Zn).  相似文献   

7.
采用批平衡实验方法,研究了四环素(TC)在褐土和红壤中的吸附和解吸,以及Cd2+对四环素在两种土壤上吸附和解吸的影响。结果表明,四环素在褐土和红壤中的吸附可以用Freundlich等温吸附方程拟合,所得lgKf分别为3.039和3.169,这表明四环素在红壤中的吸附能力较强。此外,四环素在两种土壤上的解吸过程都存在滞后现象,所得lgKf,des分别为3.292和3.877,这将可能威胁到土壤环境和人体健康。常见重金属Cd2+的存在会促进四环素在两种土壤上的吸附,在红壤中表现显著(P〈0.05);同时红壤中四环素的lgKf,des有所增加,而在褐土中的变化不大。  相似文献   

8.
Vermicomposts from the wine and distillery industry containing spent grape marc (V1), biosolid vinasse (V2) and alperujo (V3) from the olive‐oil industry were investigated as organic amendments to a sandy and a clay soil with low organic carbon (OC) contents (≤1%). The sorption‐desorption process was studied in batch experiments using diuron as a non‐ionic herbicide model. The effect of soil and vermicompost characteristics, the solution's ionic strength and incubation time of amended soils on the sorption process was studied. The addition of vermicompost changed soil properties and enhanced sorption capacity by two‐ to four‐fold. The Koc variability showed that exogenous OC composition influenced diuron sorption. Vermicompost V1, which had the largest OC and lignin content, recorded the largest sorption increment. Vermicompost V3, which had the greatest dissolved organic carbon content and a high degree of humification, made the smallest contribution to sorption. Sorption was also dependent on extraneous calcium in the solution. The incubation of amended soils reduced diuron sorption efficiency except with V3. Pyrolysis‐gas chromatography (Py‐GC) analysis was a useful tool to characterize the vermicomposts and to understand the variation of diuron sorption constants after vermicompost incubation. This research encourages the use of vermicompost from agro‐industrial wastes as a sustainable means to minimize the side effects of neutral herbicides.  相似文献   

9.
《Geoderma》2007,137(3-4):269-278
Cadmium sorption, basic soil properties and water retention were jointly analyzed in an acidic sandy podzol under pine forest in the North of Germany. Samples were taken along a 10 m transect at a depth of 0.15 m with a sample-support of 0.15 m. The small-scale Cd sorption variability was upscaled in two steps. Firstly, it was simplified and, secondly, aggregated from the sample to the pedon scale. We evaluated different models to simplify Cd sorption variability at different levels of spatial aggregation. Our evaluation method was the numerical simulation of Cd transport in the topsoil where the variability of Cd sorption is the key input.We described Cd sorption with the Freundlich parameterization and tested three models to simplify its spatial variability. The reference model (model 1) had two and the simplified models only one spatially variable sorption parameter. Model 2 varied the parameter Kf of the Freundlich parameterization and set the exponent constant. Model 3 expressed only the linear variability of sorption. Each sample had a scaling factor that related to a constant sorption reference function. The Freundlich parameter Kf of the third simplification model (model 4), was derived by a local pedotransfer function. Its variability was, therefore, filtered by the available variation of a limited number of basic soil properties.The average sorption was at all aggregation levels not significantly different between the models. However, the corresponding uncertainty was smallest for model 3, intermediate for model 4 and largest for model 2. We evaluated the different sorption variability models with the simulation of Cd transport. The mean Cd concentrations in the topsoil predicted by the different models were statistically not different. However, at all support scales, the uncertainties of the predicted mean Cd concentrations and the RMSE's were smallest when model 3 was used, where the error was about 20% at the sample scale and decreased to below 10% at the pedon scale. Therefore, if measurements of sorption isotherms are available, we recommend to use model 3 to derive the mean sorption behavior with minimal uncertainty.  相似文献   

10.
Yang  Zhaoxue  Liang  Jie  Tang  Lin  Zeng  Guangming  Yu  Man  Li  Xiaodong  Li  Xuemei  Qian  Yingying  Wu  Haipeng  Luo  Yuan  Mo  Dan 《Journal of Soils and Sediments》2018,18(4):1530-1539
Purpose

Heavy metal pollution in soils has become a global environmental concern. The combination of biochar and compost has already been proved to be an attractive method in contaminated soil. The objective was to study the sorption-desorption characteristics of Cd, Cu, and Zn onto soil amended with combined biochar-compost.

Materials and methods

In this study, the soil was amended with combinations of biochar and compost with different ratios at 10% (w/w). To determine the sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios, we determine the effects of different ratios on soil properties and use batch experiments to investigate sorption-desorption behaviors of Cd, Cu, and Zn.

Results and discussion

The results show that the Langmuir and Freundlich model can well describe the adsorption isotherm of Cd, Cu, and Zn in the soils with or without biochar-compost combinations. The incorporation of amendment combinations into soil significantly promotes the sorption affinity of soil on metals. The sorption capacity of Cd and Zn was improved as the compost percentage rose in biochar-compost more likely due to the increase of organic matter and available phosphorus, while that of Cu was stronger with 10 and 20% biochar addition in biochar-compost combinations likely as the result of the formation of new specific adsorption sites and the mobile Cu adsorption in compost after adding a certain amount of biochar in amendment mixtures. Additionally, a certain proportion of biochar applied into amendment mixtures could suppress desorption of Cd and Cu by pH change, and the Zn desorption rate gradually decreased as the compost ratio increased in amendment mixtures.

Conclusions

The results indicated that the various ratios between biochar and compost have a significant effect on sorption-desorption of metals in soil, which helps us consider the effective combination of biochar and compost in soil.

  相似文献   

11.
Cadmium (Cd) sorption isotherms were estimated by two different analytical approaches to assess the influence of initial Cd concentrations of soil matrix on the sorption of added Cd. For the laboratory experiments a heterogeneous set of samples was collected to include a wide range of different initial Cd concentrations. Comparison of both analytical methods (conventional analysis, radioanalysis) resulted in a strong conformity of Cd contents in solution at equilibrium. The calculated Cd concentrations in the soil solid phase differ according to the analytical approach for considering the initial contents. The determination of the initial contents by the proposed radioanalytical method with 109Cd resulted in long linear Freundlich‐isotherms, even in the low concentration range. Thus, radioanalysis seems to be the most suitable method to recognise the initial contents of Cd in soil. EDTA extractable Cd represent the initial concentrations, which are averaged over solid and liquid phase. However, depending on the sorption characteristics of the soil these rates vary. In the investigated set of soil samples 52.3 to 99.3% of Cd must be added to the solid phase.  相似文献   

12.
使用序批实验方法,研究熟污泥改性黄土对镉(Cd)的吸附解吸特征。结果表明:Cd初始添加浓度大于20 mg/L,供试改性黄土对Cd的吸附等温线发生显著变化;Freundlich型吸附等温式是描述供试改性黄土对Cd吸附过程的最佳模型。各土样对Cd的解吸量与吸附量的关系可以用幂函数很好地描述。随着土样中熟污泥含量的增加,Cd的吸附固定作用增强。有机质成分是影响供试土样Cd固定能力最大的因素。  相似文献   

13.
按土重的3%和5%向采自海南和广西的3种可变电荷土壤中添加由稻草制备的生物质炭,混合培养30 d后用一次平衡法研究了生物质炭对土壤吸附Cd(Ⅱ)的影响及其与土壤表面电化学性质的关系,旨在阐明生物质炭促进可变电荷土壤吸附和固定Cd(Ⅱ)的机制。结果表明,添加稻草炭显著提高了3种土壤的阳离子交换量(CEC)和土壤pH,并使土壤胶体Zeta电位向负值方向位移。因此,添加稻草炭增加了土壤表面的负电荷量,土壤表面对Cd(Ⅱ)的吸附容量增强,使3种可变电荷土壤对Cd(Ⅱ)的吸附量增加,且Cd(Ⅱ)吸附量的增幅随稻草炭添加水平的提高而增加。Freundlich方程和Langmuir方程可以拟合3种土壤对Cd(Ⅱ)的吸附等温线,但Freundlich方程拟合效果更好,该方程表征吸附容量的常数k也随着稻草炭添加水平提高而增大。研究表明在pH3.0~5.0范围内,稻草炭均增加土壤对Cd(Ⅱ)的吸附量。添加稻草炭提高土壤pH,促进Cd(Ⅱ)的吸附,因为Cd(Ⅱ)的吸附量随pH升高而增加。解吸实验表明,添加稻草炭处理Cd(Ⅱ)的解吸量高于对照处理,说明生物质炭提高了土壤对Cd(Ⅱ)的静电吸附量。  相似文献   

14.
Agricultural soils high in both fluoride (F) and phosphate (P) are common due to long-term accumulation of F from multi-sources and extensive application of phosphate fertilizers. Iron (Fe) and aluminum (Al) (hydro)oxides in acidic soils serve as main geochemical sinks of both P and F, influencing their transport and bioavailability. Though sorption of P and F in their single-ion system has been extensively investigated, studies on co-sorption of F and P on soils are very limited. In this study, the batch technique was used to investigate mutual effects of F and P on their co-sorption/desorption in an acidic red soil with high contents of Fe and Al (hydro)oxides. Results indicate that, in F–P coexisting system, a decrease in pH enhances the sorption of both F and P. An increase in F concentration suppresses P sorption due to competitive effect. However, F sorption can be improved in the presence of P due to surface precipitation of (Al,Fe)–F–P. Sorption of F and P follows both the Langmuir and Freundlich isotherms. Different orders of F and P addition into the soil have no appreciable effect on P sorption, but exert significant impact on F sorption. The presence of F has no measurable effect on P desorption, while the stability of F in the presence of P can be significantly diminished in comparison with that in the absence of P, which would lead to an improvement of F mobility.  相似文献   

15.
Acid soil in West Cameroon has limited phosphorus (P) availability which limits plant growth. This is mainly because of low pH, high levels of exchangeable aluminium (Al) and iron (Fe) and fixation of P. In this study, acid soils, sampled in Bafang, were amended with biochar produced from coffee husks (CH) and cocoa pod husks (CP) at two different temperatures (350 and 550 °C) in other to evaluate the effect on the physicochemical properties of the acid soil and the effect on P sorption and desorption. The soil was amended with biochar at a rate of 0, 20, 40 and 80 g/kg and incubated for 7 and 60 days. Physicochemical properties of all soil–biochar samples were determined followed by sorption experiments and data fitted in the Langmuir and Freundlich isotherm models in other to evaluate soil P sorption capacity and its affinity to soil amended with biochar. Moreover, desorption studies were done to evaluate the availability of P in soil amended with biochar after sorption. The outcomes of this study reveal an increase in soil pH, electrical conductivity (EC), available P, soil organic carbon and a drastic decrease in exchangeable Al and Fe. The point of zero charge of biochar-amended soil was higher than the control and increased with amendment rate. The experimental data of the sorption of P on soils and soil–biochar samples fits into Langmuir and Freundlich models (R2 > 0.9) suggesting that the P adsorption is controlled by both model mechanisms. Soil–biochar mixture results in a decrease in the sorption capacity as compared with the control and the decrease was predominant with increasing amendment rate. At amendment rates of 20, 40 and 80 g/kg after 7 days of incubation, Q max for SCH350 were 2267, 2048 and 1823 mg/kg which increased to 2407, 2112 and 1990 mg/kg after 60 days of incubation. This tendency was observed for all biochar inputs with respect to the increase in incubation days. Furthermore, desorption of P from soil–biochar mixtures was enhanced with biochar added at greater rate and produced at higher temperature. The desorption percentage was increased by more than around 10% for all biochar types from 20 mg/kg to 80 mg/kg amendment. Thus, biochar addition to acid soils reduces P fixation to acid soil and improves P desorption to soil solution, thereby providing more available P in the soil solution and better conditions for plant growth.  相似文献   

16.
An isotopic exchange method is presented that characterizes the irreversibility of pesticide sorption-desorption by soil observed in batch equilibration experiments. The isotopic exchange of (12)C- and (14)C-labeled triadimefon [(1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1, 2,4-triazol-1-yl)-2-butanone] and imidacloprid-guanidine [1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine] in Hanford sandy loam soil indicated that these systems can be described by a two-compartment model in which about 90% of sorption occurs on reversible, easily desorbable sites, whereas 10% of the sorbed molecules are irreversibly sorbed on soil and do not participate in the sorption-desorption equilibrium. This model closely predicted the hysteresis observed in the desorption isotherms from batch equilibration experiments. The isotopic exchange of triadimefon and imidacloprid-guanidine in Drummer silty clay loam soil indicated that there was a fraction of the sorbed (14)C-labeled pesticide that was resistant to desorption, which increased as pesticide concentration decreased and was higher for triadimefon than for imidacloprid-guanidine. In contrast, the batch equilibration method resulted in ill-defined desorption isotherms for the Drummer soil, which made accurate desorption characterization problematic.  相似文献   

17.
Fluxes of cadmium in a soil profile are simulated by coupling a model for linear and nonlinear equilibrium sorption to an existing hydrological model. The aim is to develop a model for Cd transport in soil systems. A separate flow model is used to calculate the water fluxes, which are then used in an equilibrium sorption model, allowing different Freundlich isotherms to be chosen. The model is tested and a sensitivity analysis is made. The variation of soil compartment sizes gave small changes in the results, which is interpreted as a measure of the solution stability. The factor influencing Cd transport most, according to these simulations, is the sorption isotherm. The degree to which Cd sorbs to soil decides how much will be available in the soil water for plant uptake or transport through the soil to the ground water. Other studied factors such as root distribution and hydrological properties influence the result only to a limited degree. With an application of 10 mg Cd/m2 in the given range of Freundlich isotherms, the simulations gave a plant uptake of between 0 and 30% of the applied Cd in two years. At the concentration mainly used in this study (with 10 mg Cd/m2 applied), the nonlinear isotherms found in the literature gave Cd lower mobility than the linear isotherms used for comparison. For high Cd concentrations the situation would be the reverse.  相似文献   

18.
Sorption of Cd at low concentrations onto 12 Danish soils (coarse sands to sandy loams) was studied with respect to competitive effects of other heavy metals by means of laboratory batch experiments. Both a mixture of Ni, Co, and Zn and of Cr, Cu, and Pb effectively reduced the sorption of Cd onto the soils. The employed mixtures of competing heavy metals were considered to resemble moderately polluted conditions. Cadmium distribution coefficients were reduced 2 to 14 times due to competition, but at constant concentrations of competing heavy metals the shape of Cd isotherms was not affected. The effect of Ni, Co, and Zn, which like Cd is primarily governed in soil environments by sorption, was also studied individually. Apparently Zn, which is present in relatively higher concentrations than Ni and Co, accounts for most of the observed competition with Cd.  相似文献   

19.
通过吸附解吸实验研究了添加海泡石后典型水稻土对Cd的吸附解吸特性及其对吸附溶液pH值变化的响应。结果表明,Freundlich方程可以较好地拟合红黄泥、黄泥田和红沙泥3种典型水稻土对Cd的等温吸附过程(R2〉0.962)。在溶液初始Cd浓度相同的情况下,添加海泡石可使3种水稻土对Cd的吸附量增加20%以上,增强土壤对Cd的吸附强度,有效降低吸附Cd的解吸率,其效果随海泡石添加量的增大而增强。3种水稻土吸附Cd的解吸率均高于70%,而且都随吸附量的增加而上升。溶液的pH值是影响土壤吸附Cd的一个重要因素,在低pH值的条件下(pH〈4),随着溶液pH值的降低,土壤对Cd的吸附量迅速降低,当溶液pH值高于5时,pH值的变化对吸附量的影响较小。在溶液初始pH值2-8范围内,添加海泡石均能有效提高3种水稻土对Cd的吸附能力。  相似文献   

20.
Abstract

In this study the influence of zeolite application and soil liming on cadmium (Cd) sorption by soils in Greece was investigated. The zeolite was natural and consisted mainly of clinoptilolite. The soil samples were strongly acid surface horizons of an Alfisol limed from a pH of 4.0 to 8.5, and a neutral Bt horizon. The result showed that liming and zeolite application substantially increased sorption of Cd in the soils. Cadmium sorption was described adequately by the Freundlich equation whereas the Langmuir model failed to describe Cd sorption in the soils. The Freundlich constant K increased in value by zeolite application as well as by soil liming. A strong relationship was observed between this parameter and soil pH. A high percentage of cadmium sorbed was released in the desorption procedure. The amount of Cd released was reduced by zeolite application as well as by soil liming. It is concluded that zeolite application as well as soil liming increased Cd sorption by the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号