首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Tef (Eragrostis tef (Zucc.) Trotter) is the ancient and most important cereal food crop of Ethiopia. A set of 20 tef genotypes was investigated in field experiments at three environments in Ethiopia to estimate genetic variation in nitrogen (N)‐use efficiency and in characters related to N accumulation as well as their relationships to grain yield. In each environment, genotypes representing both widely grown landraces and recently released cultivars were grown under three N‐fertilizer rates (0, 4, and 8 g m–2 N). In grain yield, modern cultivars were superior to landraces, whereas in other characters, differences were less clear. The variation in grain yield was significantly related to the variation in total grain N and total plant N. Grain yield weakly correlated with N‐utilization efficiency and N harvest index. Broad sense heritability was higher for grain yield, total grain N, total plant N, and N harvest index than for N‐use, N‐uptake, and N‐utilization efficiencies. The contribution of uptake efficiency to the variation in N‐use efficiency decreased from 75% to 55% and that of utilization efficiency increased from 22% to 43% at the 4 to 8 g m–2 N‐supply rate change. This study clearly suggests that tef N‐use efficiency would be increased by selecting genotypes with greater uptake efficiency at low N‐supply levels.  相似文献   

3.
Under‐ as well as overfertilization with nitrogen (N) will result in economic loss for the farmer due to reduced yields and quality of the products. Also from an ecological perspective, it is important that the grower makes the correct decision on how much and when to apply N for a certain crop to minimize impacts on the environment. To aggravate the situation, N is a substance that is present in many compartments in different forms (nitrate, ammonium, organic N, etc.) in the soil‐plant environment and takes part in various processes (e.g., mineralization, immobilization, leaching, denitrification, etc.). Today, many N‐recommendation systems are mainly based on yield expectation. However, yields are not stable from year to year for a given field. Also the processes that determine the N supply from other sources than fertilizer are not predictable at the start of the growing season. Different methodological approaches are reviewed that have been introduced to improve N‐fertilizer recommendations for arable crops. Many soil‐based methods have been developed to measure soil mineral N (SMN) that is available for plants at a given sampling date. Soil sampling at the start of the growing period and analyzing for the amount of NO ‐N (and NH ‐N) is a widespread approach in Europe and North America. Based on data from field calibrations, the SMN pool is filled up with fertilizer N to a recommended amount. Depending on pre‐crop, use of organic manure, or soil characteristics, the recommendation might be modified (±10–50 kg N ha–1). Another set of soil methods has been established to estimate the amount of N that is mineralized from soil organic matter, plant residues, and/or organic manure. From the huge range of methods proposed so far, simple mild extraction procedures have gained most interest, but introduction into practical recommendation schemes has been rather limited. Plant‐analytical procedures cover the whole range from quantitative laboratory analysis to semiquantitative “quick” tests carried out in the field. The main idea is that the plant itself is the best indicator for the N supply from any source within the growth period. In‐field methods like the nitrate plant sap/petiole test and chlorophyll measurements with hand‐held devices or via remote sensing are regarded as most promising, because with these methods an adequate adjustment of the N‐fertilizer application strategy within the season is feasible. Prerequisite is a fertilization strategy that is based on several N applications and not on a one‐go approach.  相似文献   

4.
The fertigated area of the Brazilian citrus industry has grown rapidly during recent years, and an efficient management of nitrogen (N) application at these sites is required for sustainable citrus production. Therefore, a field trial with Valencia orange trees [Citrus sinensis (L.) Osbeck] on Swingle citrumelo rootstock (Citrus paradise Macfad. x Poncirus trifoliata L. Raf.) was conducted for 8 years to evaluate the effects of N rates (80, 160, 240 and 320 kg ha–1 y–1) applied by fertigation, either as ammonium nitrate (AN) or calcium nitrate (CN), on soil solution dynamics, fruit yield, nutritional status, and N‐use efficiency (NUE) of trees. The maximum fruit yield was reached with 240 kg N ha–1 for AN, whereas a linear response and greater fruit yield was observed for N supplied as CN. The NUE was reduced for both N forms with increasing N rates. However, the NUE for CN was 14 to 38% greater than the NUE for AN. The lower fruit yield and NUE for AN compared to CN‐treated trees was associated with the increased acidification of the soil solution with increased AN rates (pH ≤ 4.0). This limited nitrification resulted in a high ammonium (NH$ _4^+ $ ) concentration in the soil solution and a reduction in the net absorption of cations by the trees, particularly calcium (Ca). Due to the improved ion balance as well as the higher pH of the soil solution (pH ≥ 6.3) and diminished NH$ _4^+ $ availability, gains in both fruit yield and NUE in fertigated citrus groves in tropical soils can be obtained with the use of CN as a source of N.  相似文献   

5.
Considerable differences in response to nitrogen (N) availability among plant species and cultivars have been well documented. Focusing on the uptake of N, it is not clear which factor or factors determine efficient N acquisition. Two maize (Zea mays L.) inbred lines (478, N‐efficient; W312, N‐inefficient) were used to compare the relative contribution of root uptake activity and root size to N acquisition. Nitrogen‐efficient inbred 478 had higher yields and accumulated more N under field conditions than W312 under both high‐ (135 kg N ha–1) and low‐N (no N supplied) conditions. The root system of 478, as indicated by total root length, root biomass, and root‐to‐shoot ratio, was larger and more responsive to low N stress. Especially, 478 developed more and longer axial roots at low N stress. On the contrary, the average N‐accumulation rate in 478 was lower than that of Wu312. In solution culture, 13NO3influx in 478 was lower than in W312 after 8 h of nitrate provision. The expression of nitrate‐transporter genes ZmNRT1.1, ZmNRT2.1, ZmNRT2.2, and ZmNAR2.1 was stronger and lasted for a longer time after NO induction in W312. It is concluded that the efficient N acquisition in 478 is due to (1) a larger root system and (2) a stronger response of root growth to low N induction.  相似文献   

6.
Short‐term (<7 years) effects of prescribed litter‐raking on forest‐floor nutrient pools, stand nutrition, and seepage water chemistry were studied in an N‐saturated Scots pine (Pinus sylvestris L.) forest in Southern Germany subject to high atmospheric‐nitrogen deposition. The study was based on a comparison of plots with and without annual prescribed litter raking at three sites with different N‐deposition levels. Prescribed litter‐raking resulted in a considerable reduction of forest‐floor thickness and mass, as well as of forest‐floor C, N, P, K, Mg, and Ca pools. Furthermore, it induced a significant decrease of the foliar N content in current‐year needles of the pines and a more balanced nutritional status of the stand. Particularly on the site subject to the highest N deposition, but to a lesser degree also at the other sites, the mean NO concentration in the subsoil seepage water and the N export into the groundwater were substantially reduced on the litter‐raked plots. The results show that in N‐saturated Scots pine ecosystems prescribed litter‐raking on areas of limited size, which are used as sources of groundwater‐derived drinking water and/or serve as habitat for endangered plant species, is a quick and effective method to achieve a more balanced nutritional status of the trees and to reduce seepage‐water NO concentrations and N export into the groundwater. In terms of sustainable ecosystem nutrient management, the conversion of conifer monocultures into broadleaf‐rich mixed stands is the better, yet less immediately effective method to reduce the seepage‐water N export from conifer forests subject to high atmospheric‐N deposition.  相似文献   

7.
Improved nutrient‐use efficiency is important to sustain agricultural production. The goal of our study was to investigate the effects of Azovit® (Azotobacter chroococcum) inoculation of seed with N fertilization on crop yield, nutrient uptake, and N‐use efficiency (NUE) of irrigated cotton (Gossypium hirsutum L. cv. C‐6524) in secondary saline soil under continental climatic conditions of Uzbekistan. A randomized complete block design in a 4 × 2 split‐plot experiment was established in the fall of 2013. The main plot was N fertilization (0, 140, 210, and 280 kg ha?1) and the subplot was Azovit inoculation. Azovit inoculation consistently increased the seed and lint yields of cotton by 25 and 27.9%, respectively, at 210 kg N ha?1 compared to the respective control. Azovit with 210 kg N ha?1 significantly increased the cotton harvest index by 21%, when compared to the control. Likewise, nutrient uptake and NUE of cotton were higher when N (210 kg ha?1) was applied with Azovit, as compared to other treatment combinations. An extrapolation of the relationship of relative yield vs. N fertilization showed that Azovit at 210 kg N ha?1 was sufficient to obtain near‐maximum cotton production (90%) with highest NUE, as compared to the respective control. The results suggest that Azovit with 210 kg N ha?1 produces cotton yield higher and/or comparable with the currently used rates of 280 kg N ha?1 or higher, suggesting savings of 70 kg N ha?1 for cotton production in saline soils under continental climatic conditions.  相似文献   

8.
The chemical form and content of available nitrogen (N) in salt marsh substrates varies considerably. On the western coast of Ireland, habitats designated as Ombrogenic Atlantic salt marshes were formed on ombrogenic peat substrate. The peat substrate in these systems has three times more ammonium than substrate from adjacent salt marsh habitats on sand and mud substrate. This study examined the extent to which the high concentration of ammonium in peat salt marsh substrate influences the N‐ assimilating enzyme activity of halophytes and the extent to which N metabolism differs between species. Specifically, this work investigated whether plants from peat salt marshes are more likely to assimilate ammonium than plants from non‐peat substrates. Four halophyte plant species—Armeria maritima, Aster tripolium, Plantago maritime, and Triglochin maritime—were sampled from various saltmarsh habitats including three sites on peat substrate and three on non‐peat substrate, comprising sand, mud and sand/mud. The activities of N‐metabolising enzymes—glutamine synthetase (GS), glutamate synthase, glutamate dehydrogenase (GDH), and nitrate reductase (NR)—were quantified in shoot and root parts. Root GS activity in Armeria maritima and shoot GS activity in Triglochin maritima were positively correlated with increasing soil ammonium levels. Root NR activity in Aster tripolium and shoot NR activity in Plantago maritima were significantly higher in plants grown on non‐peat substrates than peat substrates. The shoot : root GS activity ratio in Triglochin maritima on peat substrate was more than double the ratio on non‐peat substrates. It is concluded that all species tested displayed differences in N‐metabolising activities depending on the chemical form and/or concentration of N in the substrate, while three out of the four species were capable of taking advantage of the high levels of ammonium in peat substrates.  相似文献   

9.
The synergistic effects of nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on plant growth, yield, grain protein, and nutrient uptake of chickpea plants were determined in a sandy clay‐loam soil. Legume grain yield and concentration and uptake of nitrogen (N) and phosphorus (P) were significantly increased as a result of co‐inoculation with Mesorhizobium and P‐solubilizing Pseudomonas and Bacillus spp. The inoculation with M. ciceri RC4 + A. chroococuum A10 + Bacillus PSB9 tripled the seed yield and resulted in highest grain protein (295 mg g–1) at 145 d after sowing (DAS). An 8% increase in P concentration above the uninoculated control was observed in case of a single inoculation with Pseudomonas PSB 5, while the P uptake was highest (2.14‐fold above the uninoculated control) with a combined inoculation with [M. ciceri RC4 + A. chroococcum A10 + Bacillus PSB 9] at 145 DAS. The highest N concentration and N uptake at 145 DAS (81% and 16% above the uninoculated control, respectively) were observed with the triple inoculation of [M. ciceri RC4 + A. chroococcum A10 + Pseudomonas PSB 5). These findings show that multiple inoculations with rhizospheric microorganisms can promote plant growth and grain yield and increase concentrations and uptake of N and P by field‐grown chickpea.  相似文献   

10.
Two experiments were conducted to study the effect of grafting on nitrogen‐use efficiency (NUE) in mini‐watermelon plants. In the first study, mini‐watermelon plants (Citrullus lanatus [Thumb.] Matsum. and Nakai cv. Minirossa) either ungrafted or grafted onto Macis, Vita (Lagenaria siceraria [Mol.] Standl.), PS1313, and RP15 (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne) rootstocks grown in hydroponics were compared in terms of shoot dry biomass, leaf area, root‐to‐shoot ratio, SPAD index, shoot N uptake, and nitrate reductase (NR) activity 40 d after transplantation in response to nitrate concentration in the nutrient solution (0.5, 2.5, 5, 10, 15, or 20 mM of NO$ _3^- $ ). In the second experiment, the suitability of a selected rootstock with high NUE (Vita) to improve crop performance and NUE of grafted mini‐watermelon plants was evaluated under field conditions. In the hydroponic experiment mini‐watermelon grafted onto Vita rootstock needed the lowest nitrate concentration (1.31 mM of NO3) in the nutrient solution to reach half maximum shoot dry weight. Total leaf area, SPAD index, and shoot N uptake increased in response to an increase of N concentration in the nutrient solution. At 2.5 mM NO$ _3^- $ , mini‐watermelon grafted on either Vita or RP15 had the highest NR activity whereas no significant difference was observed at 10 mM NO$ _3^- $ . The open‐field study indicated that increasing N‐fertilization rates from 0 to 100 kg ha–1 improved total and marketable yields of mini‐watermelon plants while decreasing NUE. When averaged over N levels, the marketable yield, NUE, N‐uptake efficiency, and N‐utilization efficiency were significantly higher by 39%, 38%, 21%, and 17%, respectively, in Minirossa grafted onto Vita compared to ungrafted Minirossa plants. Therefore, grafting mini‐watermelon plants onto selected rootstocks can be used as a quick and effective method for improving productivity and NUE.  相似文献   

11.
The effect of presubmergence and green manuring on various processes involved in [15N]‐urea transformations were studied in a growth chamber after [15N]‐urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+‐N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+‐N from applied fertilizer, it maintained higher NH4+‐N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9 % (T1), 23.9 % (T2), and 36.4 % (T3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N.  相似文献   

12.
Mineral and organic fertilizers contain different forms and amounts of nitrogen (N), which can affect yield and product quality. The aim of this study was to determine appropriate amounts of N applied as nitrate (NO ), ammonium (NH ), and organic N (a mixture based on chicken manure) for optimal growth and quality of tomatoes. A pot experiment with sand as substrate was established in a greenhouse with six‐week‐old tomato plants (Lycopersicon esculentum Mill. cv. “Armada”). Nitrogen was applied in nutrient solutions at different NO : NH ratios combined with different chloride levels (NO ‐dominated, NO = NH at low Cl, NO = NH at high Cl, and NH ‐dominated, respectively) or as organic N at four N‐application rates (250, 500, 750, 1000 mg N plant–1 week–1). No significant differences in shoot biomass and yields of red tomatoes were observed between NO ‐ or NH ‐fed plants. Nitrogen rates above 750 mg N plant–1 week–1 did not significantly increase marketable fruit yield, but enhanced shoot‐biomass production. The NH ‐N‐dominated treatments (which also had high Cl concentrations) showed increasing incidence of blossom‐end‐rot (BER)‐infected fruits. In the organic‐N treatments, shoot‐biomass production and yields were lower than in the inorganic‐N treatments, but fruit quality was good with few BER‐infected fruits. The results show that with a total N supply below 750 mg N plant–1 week–1, NH can be used as equivalent N source to NO , resulting in equivalent yields of marketable fruit under the conditions in this experiment.  相似文献   

13.
To assess the diversity of total, denitrifying and N2‐fixing bacteria in a nitrogen (N)‐limited, acid forest soil, isolated DNA was analysed for the genes 16S rRNA, nosZ and nifH. Sequence information for these genes was obtained from clone libraries and from our TReFID computer program, which employs terminal restriction patterns for bacteria using multiple restriction enzymes. Both approaches indicated that Proteobacteria (α‐ and γ‐groups) and Acidobacteria dominated. A comprehensive list of bacteria retrieved from this soil is provided and compared with literature data on the bacterial community compositions from other sites. The study indicated that the current PCR conditions with the primers employed allowed retrieval of only a portion of the bacteria occurring in soils. Massive treatment of a soil plot with NH4NO3 caused an increase in the N content, which was rapidly followed by an enhancement of carbon (C) content. Thus the C/N ratio stayed below 16.0 and the soil remained N‐limited. This may explain why the bacterial diversity did not undergo drastic shifts as was tentatively inferred from the available data sets.  相似文献   

14.
The β‐cyanoalanine pathway in plants detoxifies cyanide by assimilating this metabolic poison. Given the possibility that cyanide in soil could serve as an alternate source of nitrogen for plant nutrition, this study investigated whether nitrogen deprivation of wheat seedlings altered the activity of the first enzyme of the pathway (β‐cyanoalanine synthase) or asparaginase. The results suggest that ambient, nontoxic concentrations of soil cyanide may serve as an alternate source of nitrogen for plants under nitrogen‐limiting conditions.  相似文献   

15.
Optimizing root phosphorus (P) acquisition to reduce intensive fertilizer use is a crucial pathway for sustainable agriculture, particularly as P is an important plant macronutrient, often limiting in a majority of soils worldwide. Although many studies have assessed plant growth and P acquisition, few studies have investigated the interactive effects of nitrogen (N)‐induced root modification on soil P processes or the understudied effects of soil calcium (Ca) dynamics on soil P bioavailability. In this study, we investigate soil P and Ca response in the rhizosphere of durum wheat (Triticum turgidum L. spp. durum). Wheat grown under controlled conditions preloaded for 20 d with two N treatments [preloaded low N (1 mmol KNO3 plant?1) and preloaded high N (2 mmol KNO3 plant?1)] were transferred to rhizoboxes for 12 d [days after transfer (DAT)]. Shoot and root biomass, P and Ca concentration, and plant‐available P and extractable Ca were determined every three days (0, 3, 6, 9, 12 DAT). Significantly higher root mass (P = 0.7%), root length (P = 1.8%) and total biomass (P = 2.2%) were found at the end of the experiment but exclusively for high N preloaded wheat. This greater root biomass was associated with lower root P concentration, suggesting a dilution response, while little difference was observed in shoot P concentration over the 12 d. However, Ca accumulated in both roots and shoots under both preloading N levels. Concurrently, soil‐extractable Ca declined, and plant‐available P increased (r = –0.62; P = 0.03%), presumably due to a promoting effect of Ca uptake on soil P availability; lower soil Ca in turn increased the repulsive forces between P ions and the negatively charged soil surface, resulting in an increased P availability in the soil solution. This study contributes to the understanding of the complex interplay between multi‐nutrient dynamics within the rhizosphere.  相似文献   

16.
17.
18.
The effect of four levels of nitrogen (N) application (3.2, 16.2, 32.4, and 48.6 g m–2) on the biomass and concentration and composition of essential oils of three parsley types (plain leaf, turnip‐rooted, curl leaf) was investigated in order to determine the optimum N level for oil production by this crop. The concentration of essential oils in the roots and leaves of plain leaf parsley and turnip‐rooted parsley was not affected by N application, but decreased with increasing N rate in curl leaf parsley. However, because the mean foliage biomass for all three types was about 2.5 times higher at 16.2 g m–2 N than in the low‐N‐rate treatment, the mean foliar oil yield increased from 0.68 to 1.38 g m–2. Root biomass increased by a factor of 1.7 at 16.2 g m–2 N (compared to the low‐N‐rate treatment), but oil yield increased only marginally from 0.3 to 0.4 g m–2. The composition of the essential oils of roots and leaves differed between parsley types. Increasing N application caused a reduction in the percentage of β‐phellandrene in the essential oils of parsley leaves. In turnip‐rooted parsley, increasing N caused a reduction in the percentage of myristicin and apiole. Because these three components of the essential oils contribute to parsley aroma, it may be concluded that although application of N fertilizer leads to higher parsley biomass and oil yield per plant, the essential oil components may change and aroma quality may be affected negatively.  相似文献   

19.
Adoption of input‐responsive varieties enhanced food production during the second half of the 20th century. However, even bigger challenges lie ahead because of the growing societal demands. For example, the global population of 7.2 billion in 2013 is projected to reach 9.2 billion by 2050 and stabilize at 10 billion by 2100. The growing and increasingly affluent population, with preference towards more and more meat‐based diet, is likely to jeopardize the finite, fragile, and dwindling soil and water resources which are already under great stress in densely populated countries in Asia and elsewhere. Economic growth and increase in gross domestic product also lead to generation of waste or by‐products, along with contamination and eutrophication of water resources. International trade in food/feed products also involves transfer of virtual water, which is a serious issue when water‐scarce countries export virtual water to water‐endowed countries. The problem is confounded by the present and future climate change driven by the growing energy demands of the carbon civilization. Thus, adaptation to climate change represents both a threat and an opportunity for sustainable development. Adaptive strategies must be sustainable socially and environmentally and advance the Millennium Development Goals, while buffering agroecosystems against extreme climate events (e.g., pedologic, agronomic, and ecologic drought). Thus, recognizing and addressing the water‐soil‐waste nexus is important to achieving climate‐strategic agriculture. Sustainable intensification of agroecosystems, producing more per unit consumption of essential resources, must consider judicious management of hydrological and biogeochemical cycles (C, N, P, S). The soil C pool must be managed and enhanced to offset anthropogenic emissions, and mitigate/adapt to the climate change. The pace of adoption of recommended land use and soil‐/plant‐/animal‐management practices can be kept at par with advances in scientific knowledge through continuous dialogue between scientists on the one hand and policy makers / land managers on the other to translate research data into policy and action plans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号